Skip to main content

Pathology: Histomorphometrical Features of IBC – Angiogenesis, Lymphangiogenesis, and Tumor Emboli

  • Chapter
  • First Online:
Inflammatory Breast Cancer: An Update

Abstract

Inflammatory breast cancer (IBC) is a form of human breast cancer that, unfortunately, has not benefited from the recent advances that have been made for the more common forms of breast cancer. For example the greatest advances that have benefited patients with breast cancer made over the past decade have been the recognition that breast conserving therapy (lumpectomy with radiation therapy) can be as effective as total mastectomy in certain situations; that axillary-sparing sentinel node dissection can be as informative as full axillary dissection, again, in certain situations; that, mammographic screening in postmenopausal women can be effective at detecting disease while it is organ confined and hence curable, reducing the age-adjusted mortality from breast cancer; that tamoxifen treatment in both an adjuvant setting and a chemopreventive setting can effectively treat and/or reduce the occurrence of estrogen positive breast cancer; that the major susceptibility genes for breast cancer, BRCA1 and BRCA2, increase breast cancer risk and mandate more aggressive surveillance and therapy; and that Her-2/neu status effectively stratifies patients with Her-2/neu positive breast cancers and triggers the use of Herceptin (Trastuzumab) which can be effective. Unfortunately none of these advances have directly benefited patients with IBC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berx G, Van Roy F (2001) The E-cadherin/catenin complex: an important gatekeeper in breast cancer tumorigenesis and malignant progression. Breast Cancer Res 3:289–293

    Article  PubMed  CAS  Google Scholar 

  2. Hajra KM, Chen DYS, Fearon ER (2002) The slug zinc-finger protein suppresses E-cadherin in breast cancer. Cancer Res 62:1613–1618

    PubMed  CAS  Google Scholar 

  3. Lombaerts M, van Wezel T, Philippo K, Dierssen JWF, Zimmerman RME, Oosting J, van Eijk R, Eilers PH, van de Water B, Cornelisse CJ et al (2006) E-cadherin transcriptional down-regulation by promoter methylation but not mutation is related to epithelial-to mesenchymal transition in breast cancer cell lines. Br J Cancer 94:661–671

    PubMed  CAS  Google Scholar 

  4. Tomlinson JS, Alpaugh ML, Barsky SH (2001) An intact overexpressed E-cadherin/α, β-catenin axis characterizes the lymphovascular emboli of inflammatory breast carcinoma. Cancer Res 61:5231–5241

    PubMed  CAS  Google Scholar 

  5. Xiao Y, Ye Y, Yearsley K, Jones S, Barsky SH (2008) The lymphovascular embolus of inflammatory breast cancer expresses a stem cell-like phenotype. Am J Pathol 173:561–574

    Article  PubMed  CAS  Google Scholar 

  6. Xiao Y, Ye Y, Zou X, Jones S, Yearsley K, Shetuni B, Tellez J, Barsky SH (2010) The lymphovascular embolus of inflammatory breast cancer exhibits a notch 3 addiction. Oncogene 30:287–300, Epub ahead of print 20 January 2011

    Article  PubMed  Google Scholar 

  7. Ye Y, Tellez JD, Durazo M, Belcher M, Yearsley K, Barsky SH (2010) E-cadherin accumulation within the lymphovascular embolus of inflammatory breast cancer is due to altered trafficking. Anticancer Res 10:3903–3910

    Google Scholar 

  8. Albini A, Noonan DM (2010) The ‘chemoinvasion’ assav, 25 years and still going strong: the use of reconstituted basement membranes to study cell invasion and angiogenesis. Curr Opin Cell Biol 22:677–689

    Article  PubMed  CAS  Google Scholar 

  9. Quigley JP, Armstrong PB (1998) Tumor cell intravasation alu-cidated: the chick embryo opens the window. Cell 94:281–284

    Article  PubMed  CAS  Google Scholar 

  10. Nguyen M, Strubel NA, Bischoff J (1993) A role for sialyl Lewis-X/a glycoconjugates in capillary morphogenesis. Nature 365:267–269

    Article  PubMed  CAS  Google Scholar 

  11. Shih C, Weinberg RA (1982) Isolation of a transforming sequence from a human bladder carcinoma cell line. Cell 29:161–169

    Article  PubMed  CAS  Google Scholar 

  12. Robertson FM, Ogasawara MA, Ye Z, Chu K, Pickei R, Debeb BG, Woodward WA, Hittelman WN, Cristofanilli M, Barsky SH (2010) Imaging and analysis of 3D tumor spheroids enriched for a cancer stem cell phenotype. J Biomol Screen 15:820–829

    Article  PubMed  CAS  Google Scholar 

  13. Bryant D, Stow JL (2004) The ins and outs of E-cadherin trafficking. Trends Cell Biol 14:427–434

    Article  PubMed  CAS  Google Scholar 

  14. van IJzendoorn SC (2006) Recycling endosomes. J Cell Sci 119:1679–1681

    Article  PubMed  Google Scholar 

  15. Beronja S, Laprise P, Papoulas O, Pellikka M, Sisson J, Tepass U (2005) Essential function of Drosophila Sec6 in apical exocytosis of epithelial photoreceptor cells. J Cell Biol 169:635–646

    Article  PubMed  CAS  Google Scholar 

  16. Langevin J, Morgan MJ, Sibarita JB, Aresta S, Murthy M, Schwarz T, Camonis J, Bellaïche Y (2005) Drosophila exocyst components Sec5, Sec6, and Sec15 regulate DE-cadherin trafficking from recycling endosomes to the plasma membrane. Dev Cell 9:365–376

    Article  PubMed  CAS  Google Scholar 

  17. Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T (2004) Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 279:43027–43034

    Article  PubMed  CAS  Google Scholar 

  18. Palacios F, Tushir JS, Fujita Y, D’Souza-Schorey C (2005) Lysosomal targeting of E-cadherin: a unique mechanism for the down-regulation of cell-cell adhesion during epithelial to mesenchymal transitions. Mol Cell Biol 25:389–402

    Article  PubMed  CAS  Google Scholar 

  19. Hammond DE, Carter S, McCullough J, Urbé S, Vande Woude G, Clague MJ (2003) Endosomal dynamics of Met determine signaling output. Mol Biol Cell 14:1346–1354

    Article  PubMed  CAS  Google Scholar 

  20. Kanazawa C, Morita E, Yamada M, Ishii N, Miura S, Asao H, Yoshimori T, Sugamura K (2003) Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochem Biophys Res Commun 309:848–856

    Article  PubMed  CAS  Google Scholar 

  21. Le Roy C, Wrana JL (2005) Clathrin- and non-clathrin-mediated endocytic regulation of cell signalling. Nat Rev Mol Cell Biol 6:112–126

    Article  PubMed  Google Scholar 

  22. Toyoshima M, Tanaka N, Aoki J, Tanaka Y, Murata K, Kyuuma M, Kobayashi H, Ishii N, Yaegashi N, Sugamura K (2007) Inhibition of tumor growth and metastasis by depletion of vesicular sorting protein hrs: its regulatory role on E-cadherin and β-catenin. Cancer Res 67:5162–5171

    Article  PubMed  CAS  Google Scholar 

  23. Edinger AL, Cinalli RM, Thompson CB (2003) Rab7 prevents growth factor-independent survival by inhibiting cell-autonomous nutrient transporter expression. Dev Cell 5:571–582

    Article  PubMed  CAS  Google Scholar 

  24. Feng Y, Press B, Wandinger-Ness A (1995) Rab 7: an important regulator of late endocytic membrane traffic. J Cell Biol 131:1435–1452

    Article  PubMed  CAS  Google Scholar 

  25. Vitelli R, Santillo M, Lattero D, Chiariello M, Bifulco M, Bruni CB, Bucci C (1997) Role of the small GTPase Rab 7 in the late endocytic pathway. J Biol Chem 272:4391–4397

    Article  PubMed  CAS  Google Scholar 

  26. Chun J, Prince A (2009) TLR2-induced calpain cleavage of epithelial junctional proteins facilitates leukocyte transmigration. Cell Host Microbe 5:47–58

    Article  PubMed  CAS  Google Scholar 

  27. Franco SJ, Huttenlocher A (2005) Regulating cell migration: calpains make the cut. J Cell Sci 118:3829–3838

    Article  PubMed  CAS  Google Scholar 

  28. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801

    PubMed  CAS  Google Scholar 

  29. Lebart MC, Benyamin Y (2006) Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J 273:3415–3426

    Article  PubMed  CAS  Google Scholar 

  30. Rios-Doria J, Day KC, Kuefer R, Rashid MG, Chinnaiyan AM, Rubin MA, Day ML (2003) The role of calpain in the proteolytic cleavage of E-cadherin in prostate and mammary epithelial cells. J Biol Chem 278:1372–1379

    Article  PubMed  CAS  Google Scholar 

  31. Wells A, Huttenlocher A, Lauffenburger DA (2005) Calpain proteases in cell adhesion and motility. Int Rev Cytol 245:1–16

    Article  PubMed  CAS  Google Scholar 

  32. Gumbiner BM (2000) Regulation of cadherin adhesive activity. J Cell Biol 148:339–404

    Article  Google Scholar 

  33. Herren B, Levkau B, Raines EW, Ross R (1998) Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol Biol Cell 9:1589–1601

    PubMed  CAS  Google Scholar 

  34. Ito K, Okamoto I, Araki N, Kawano Y, Nakao M, Fujiyama S, Tomita K, Mimori T, Saya H (1999) Calcium influx triggers the sequential proteolysis of extracellular and cytoplasmic domains of E-cadherin, leading to loss of beta-catenin from cell-cell contacts. Oncogene 18:7080–7090

    Article  PubMed  CAS  Google Scholar 

  35. Marambaud P, Shioi J, Serban G, Georgakopoulos A, Sarner S, Nagy V, Baki L, Wen P, Efthimiopoulos S, Shao Z, Wisniewski T, Robakis NK (2002) A presenilin-1/gamma-secretase cleavage releases the E-cadherin intracellular domain and regulates disassembly of adherens junctions. EMBO J 21:1948–1956

    Article  PubMed  CAS  Google Scholar 

  36. Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276:4972–4980

    Article  PubMed  CAS  Google Scholar 

  37. Vallorosi CJ, Day KC, Zhao X, Rashid MG, Rubin MA, Johnson KR, Wheelock MJ, Day ML (2000) Truncation of the beta-catenin binding of E-cadherin precedes epithelial apoptosis during prostate and mammary involution. J Biol Chem 113:3328–3334

    Article  Google Scholar 

  38. Silvera D, Arju R, Darvishian F, Levine P, Zolfaghari L, Goldberg J, Hochman T, Formenti SC, Schneider RJ (2009) Essential role for elF4GI overexpression in the pathogenesis of inflammatory breast cancer. Nat Cell Biol 11:903–908

    Article  PubMed  CAS  Google Scholar 

  39. Silvera D, Schneider RJ (2009) Inflammatory breast cancer cells are constitutively adapted to hypoxia. Cell Cycle 8:3091–3096

    Article  PubMed  CAS  Google Scholar 

  40. Chen X, Kojima S, Borisy GG, Green KJ (2003) p120 catenin associates with kinesin and facilitates the transport of cadherin–catenin complexes to intercellular junctions. J Cell Biol 163:547–557

    Article  PubMed  CAS  Google Scholar 

  41. Davis MA, Ireton RC, Reynolds AB (2003) A core function for p120-catenin in cadherin turnover. J Cell Biol 163:525–534

    Article  PubMed  CAS  Google Scholar 

  42. Xiao K, Allison DF, Buckley KM, Kottke MD, Vincent PA, Faundez V, Kowalczyk AP (2003) Cellular levels of p120 catenin function as a set point for cadherin expression levels in microvascular endothelial cells. J Cell Biol 163:535–545

    Article  PubMed  CAS  Google Scholar 

  43. Ireton RC, Davis MA, van Hengel J, Mariner DJ, Barnes K, Thorenson MA, Anastasiadis PZ, Matrisian L, Bundy LM, Sealy L et al (2002) A novel role for p120 catenin in E-cadherin function. J Cell Biol 159:465–476

    Article  PubMed  CAS  Google Scholar 

  44. Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W (1996) Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382:638–642

    Article  PubMed  CAS  Google Scholar 

  45. Ferber EC, Kajita M, Wadlow A, Tobiansky L, Niessen C, Ariga H, Daniel J, Fujita Y (2008) A role for the cleaved cytoplasmic domain of E-cadherin in the nucleus. J Biol Chem 283:12691–12700

    Article  PubMed  CAS  Google Scholar 

  46. Alattia JR, Ames JB, Porumb T, Tong KI, Meng YH, Ottensmeyer P, Kay CM, Ikura M (1997) Lateral self-assembly of E-cadherin directed by cooperative calcium binding. FEBS Lett 417:405–408

    Article  PubMed  CAS  Google Scholar 

  47. Koch AW, Pokutta S, Lustig A, Engel J (1997) Calcium binding and homoassociation of E-cadherin domains. Biochemistry 36:7697–7705

    Article  PubMed  CAS  Google Scholar 

  48. Gopalakrishna R, Barsky SH (1985) Quantitation of tissue calpain activity after isolation by hydrophobic chromatography. Anal Biochem 148:413–423

    Article  PubMed  CAS  Google Scholar 

  49. Gopalakrishna R, Barsky SH (1986) Hydrophobic association of calpains with subcellular organelles – compartmentalization of calpains and the endogenous inhibitor calpastatin in tissues. J Biol Chem 261:13936–13942

    PubMed  CAS  Google Scholar 

  50. Messaritou G, East L, Roghi C, Isacke CM, Yarwood H (2009) Membrane type-1 matrix metalloproteinase activity is regulated by the endocytic collagen receptor Endo180. J Cell Sci 122:4042–4048

    Article  PubMed  CAS  Google Scholar 

  51. Wakabayashi T, De Strooper B (2008) Presenilins: members of the γ-secretase quartets, but part-time soloists too. Physiology (Bethesda) 23:194–204

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. John J. Hasenau, Dr. Walter F. Mandeville, Patricia L. Atkins and Jared H. Smith of Laboratory Animal Medicine for their veterinarian and technical assistance with the maintenance of the MARY-X xenografts. This work was supported by the Department of Defense Breast Cancer Research Program Grants BC990959, BC024258, BC053405, the American Airlines-Susan G Komen for the Cure Promise Grant KG081287-02 and the University of Nevada Vasco A. Salvadorini Endowment.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanford H. Barsky M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barsky, S.H., Robertson, F.M. (2012). Pathology: Histomorphometrical Features of IBC – Angiogenesis, Lymphangiogenesis, and Tumor Emboli. In: Ueno, N., Cristofanilli, M. (eds) Inflammatory Breast Cancer: An Update. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3907-9_5

Download citation

Publish with us

Policies and ethics