Skip to main content

Comparison of Surface and Bulk Properties of Pendant and Hybrid Fluorosilicones

  • Chapter

Part of the book series: Advances in Silicon Science ((ADSS,volume 4))

Abstract

The most common fluorosilicone polymer commercialized to date is polymethyltrifluoropropylsiloxane. However, the low content of is the perfluorinated groups in the polymer 36.5 wt% does not fulfill the requirements of some high tech applications, particularly when swelling properties or degradation at high temperatures are concerned. A number of strategies have been employed to increase the fluorine content of fluorosilicone polymers. One elegant way is to introduce into the silicone chain, either as a pendant group or inside the backbone, perfluorinated groups of increasing size (typically C6 or higher). We refer to silicones with perfluorinated chains introduced as side groups as “pendant silicones” whereas those carrying fluorine atoms in the main backbone are called “hybrid silicones”. The most popular synthesis techniques of such polymers are briefly discussed here. A full fuller comparison is given of the two classes of polymers in terms of surface, mechanical, swelling and thermal properties.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-94-007-3876-8_14

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Report of the presidential commission on the space shuttle challenger accident, available through the web: http://history.nasa.gov/rogersrep/genindex.html

  2. http://www.daikin.com/press/2005/050414/index.html

  3. Holbrook GW, Brown PL (1959) US Pat US 2915544

    Google Scholar 

  4. Holbrook GW (1966) US Pat US 3269983

    Google Scholar 

  5. Steward O (1965) GB Pat GB 1014156

    Google Scholar 

  6. Boutevin B, Pietrasanta Y (1985) Prog Org Coat 13(5):297

    Article  CAS  Google Scholar 

  7. Ameduri B, Boutevin B (2005) J Fluorine Chem 126:221

    Article  CAS  Google Scholar 

  8. Guida-Pietrasanta F, Boutevin B (2005) Adv Polym Sci 179:1

    CAS  Google Scholar 

  9. Owen MJ (1990) Adv Chem Ser 224:705

    Article  Google Scholar 

  10. Pierce OR, Kim YK (1971) Rubber Chem Technol 41:1350

    Article  Google Scholar 

  11. Kobayashi H, Owen MJ (1990) Polym Prepr 31(1):334

    CAS  Google Scholar 

  12. Kobayashi H (1992) Eur Pat EP 535597

    Google Scholar 

  13. Lee CL (1970) Ger Offen., DE 1963523

    Google Scholar 

  14. Yuzhelevskii YA, Kagan EG, Fedoseeva NN (1970) Vysokomol Soedn A 12(7):1585

    CAS  Google Scholar 

  15. Miyake H, Shintani S, Furukawa Y (1988) Japan Pat, JP 6327530

    Google Scholar 

  16. Boileau S (1993) Makromol Chem 73:177

    Article  CAS  Google Scholar 

  17. Boileau S, Boutevin B, Pietrasanta Y (1987) Polym Mater Sci Eng 56:384

    CAS  Google Scholar 

  18. Furukawa Y, Shin-Ya Y, Miyake Y, Kishino H, Yamada M, Kato H, Sato M (2001) J Appl Polym Sci 82(13):3333

    Article  CAS  Google Scholar 

  19. Furukawa Y, Shin-Ya S, Saito M, Narui SI, Miyake H (2002) Polym Adv Technol 13:60

    Article  CAS  Google Scholar 

  20. Lee CL (1969) US Pat US 2026446

    Google Scholar 

  21. Kaufmann R, Braunsperger K, Wegehaupt KH, Von A (1986) US Pat US 4577040

    Google Scholar 

  22. Boutevin B, Youssef B (1989) Makromol Chem 190:277

    Article  CAS  Google Scholar 

  23. Abdellah L, Boutevin B, Youssef B (1991) Eur Polym J 27(8):821

    Article  CAS  Google Scholar 

  24. Abdellah L, Boutevin B, Youssef B (1991) Eur Polym J 27:695

    Article  CAS  Google Scholar 

  25. Boutevin B, Abdellah L, Dinia NM (1995) Eur Polym J 31(11):1127

    Article  CAS  Google Scholar 

  26. Boutevin B, Youssef B, Abdellah L, Dinia NM (1996) Eur Polym J 32(6):701

    Article  CAS  Google Scholar 

  27. Kobayashi H, Nishiumi W (1993) Makromol Chem 194(5):1403

    Article  CAS  Google Scholar 

  28. Szendrey JP (1969) US Pat US 3560436

    Google Scholar 

  29. Szendrey JP (1969) US Pat US 3560437

    Google Scholar 

  30. Talcott TD (1961) US Pat US 3006878 (Dow Corning)

    Google Scholar 

  31. Holbrook GM, Steward OW (1966) Ger Offen DE 1445324 (Dow Corning)

    Google Scholar 

  32. Brown E (1965) US Pat US 3179619 (Dow Corning)

    Google Scholar 

  33. Lentz CW (1967) US Pat US 3328349 (Dow Corning)

    Google Scholar 

  34. Brown ED (1967) Fr Pat FR 1499082 (Dow Corning)

    Google Scholar 

  35. Evans ER (1981) Fr Pat FR 2464276 (General Electric)

    Google Scholar 

  36. Kobayashi H, Owen MJ (1990) Macromolecules 23:4929

    Article  CAS  Google Scholar 

  37. Kobayashi H, Owen MJ (1993) Makromol Chem 194:259

    Article  CAS  Google Scholar 

  38. Boutevin B, Pietrasanta Y, Youssef B (1986) J Fluorine Chem 31:57

    Article  CAS  Google Scholar 

  39. Boutevin B, Pietrasanta Y, Youssef B (1986) J Fluorine Chem 34:167

    Article  CAS  Google Scholar 

  40. Boutevin B, Youssef B (1989) J Fluorine Chem 45:355

    Article  CAS  Google Scholar 

  41. Boutevin B, Youssef B (1991) Macromolecules 24:629

    Article  CAS  Google Scholar 

  42. Chu EY, Pearce EM, Kwei TK, Yeh TF, Okamoto Y (1991) Makromol Chem, Rapid Commun 12:1

    Article  CAS  Google Scholar 

  43. Höpken J, Möller M, Boileau S (1991) New Polymer Mater 2(4):339

    Google Scholar 

  44. Beyou E, Babin P, Benneteau B, Dunoguès J, Teyssié D, Boileau S (1994) Colloid Polym Sci 32:1673

    CAS  Google Scholar 

  45. Beyou E, Babin P, Benneteau B, Dunoguès J, Teyssié D, Boileau S, Corpart JM (1995) Polym Int 38:237

    Article  CAS  Google Scholar 

  46. Boileau S, Beyou E, Babin P, Benneteau B, Dunoguès J, Teyssié D (1996) Eur Coat J 7–8:508

    Google Scholar 

  47. Atherton JH (1973) Ger Offen DE 2311879

    Google Scholar 

  48. Chujo Y, Mc Grath JE (1983) Polym Prep 24:47

    CAS  Google Scholar 

  49. Chujo Y, Mc Grath JE (1995) J Macromol Sci, Part A, Pure Appl Chem 32(1):29

    Article  Google Scholar 

  50. Doeff M, Lindner E (1989) Macromolecules 22:2951

    Article  CAS  Google Scholar 

  51. Wilczek L (1993) US Pat US 5233071 (Dupont)

    Google Scholar 

  52. Furukawa Y, Kotera M (2002) Colloid Polym Sci 40:3120

    CAS  Google Scholar 

  53. Mera AE, Morris RE (2001) Macromol Rapid Commun 22:513

    Article  CAS  Google Scholar 

  54. Furukawa Y, Kotera M (2003) J Appl Polym Sci A, Polym Chem 87:1085

    CAS  Google Scholar 

  55. Furukawa Y, Yoneda T (2003) J Polym Sci A, Polym Chem 41:2704

    Article  CAS  Google Scholar 

  56. Boutevin B, Guida-Pietrasanta F, Ratsimihety A (2000) J Polym Sci A, Polym Chem 38:3722

    Article  CAS  Google Scholar 

  57. Abdellah L, Boutevin B, Guida-Pietrasanta F, Smaihi M (2003) J Membr Sci 217(1–2):295

    Article  CAS  Google Scholar 

  58. Colomines G, André S, Andrieu X, Rousseau A, Boutevin B (2003) J Appl Polym Sci 90:2021

    Article  CAS  Google Scholar 

  59. Boutevin B, Pietrasanta Y (1984) Fr Pat FR 8417279 (Atochem)

    Google Scholar 

  60. Loree LA, Brown ED (1971) US Pat US 3576020

    Google Scholar 

  61. Boutevin B, Pietrasanta Y, Sarraf L (1986) J Fluorine Chem 31:425

    Article  CAS  Google Scholar 

  62. Boutevin B, Fleury E, Pietrasanta Y, Sarraf L (1986) J Fluorine Chem 31:437

    Article  CAS  Google Scholar 

  63. Ameduri B, Boutevin B (1997) In: Chambers RD (ed) Topics in current chemistry: organofluorine chemistry. Springer, Heidelberg, pp 165–233

    Google Scholar 

  64. Ameduri B, Boutevin B (2000) J Fluorine Chem 102:253–268

    Article  Google Scholar 

  65. Boutevin B, Boileau S, Pietrasanta Y, Lantz A (1984) FR PAT FR 2566401 (Elf Atochem)

    Google Scholar 

  66. Shashkova ZS, Frolova KS, Uelskaya NN (1970) USSR Pat SU 267910

    Google Scholar 

  67. Grindahl GA (1970) Fr Pat FR 2035608

    Google Scholar 

  68. Wu TC (1966) Fr Pat FR 1461933

    Google Scholar 

  69. Klebanskii AL, Yuzhelevskii YA, Kagan EG, Larionova ON, Kharlamova AV, Sergeeva EP (1970) USSR Pat SU 236006

    Google Scholar 

  70. Patwardhan GV, Zimmer H, Mark JE (1997) J Inorg Organomet Polym 7(2):93

    Article  CAS  Google Scholar 

  71. Zhao Q, Mark JE (1990) Polym Prep 31(1):303

    CAS  Google Scholar 

  72. Patwardhan DV, Zimmer H, Mark JE (1996) Polym Prep 37:294

    CAS  Google Scholar 

  73. Giori C, Zerlaut GA (1973) J Polym Sci Polym Chem Ed 11(3):509

    Article  CAS  Google Scholar 

  74. Zhao Q, Mark JE (1992) Macromol Rep A 29:221

    Google Scholar 

  75. Green JW, Rubal MJ, Osman BM, Welsch RL, Cassidy PE, Fitch JW, Blanda MT (2000) Polym Adv Technol 11:820

    Article  CAS  Google Scholar 

  76. Zhou H, Venumbaka SR, Fitch JW III, Cassidy PE (2003) Macromol Symp 192:115

    Article  CAS  Google Scholar 

  77. Manseri A, Ameduri B, Boutevin B, Caporiccio G (1997) J Fluorine Chem 81:103

    Article  Google Scholar 

  78. Kim Y (1972) Siloxane Elastomers, US patent 3,542,830 (assigned to Dow Corning)

    Google Scholar 

  79. Riley MO, Kim YK, Pierce OR (1977) J Fluorine Chem 10:85

    Article  CAS  Google Scholar 

  80. Loree L, Pierce O, Kim Y (1970) (Dow Corning), US 3647740

    Google Scholar 

  81. Kim YK (1974) US patent 3,818,064 (assigned to Dow Corning)

    Google Scholar 

  82. Ameduri B, Boutevin B (2004) Well architectured fluoropolymers; synthesis, properties and applications. Amsterdam, Elsevier

    Google Scholar 

  83. Modena M, Pianca M, Tato M, Moggi G (1989) J Fluorine Chem 43:15

    Article  CAS  Google Scholar 

  84. Okawa T (2002) Eur Pat Appl 1,146,048 A2 (assigned to Dow Corning Toray Silicone)

    Google Scholar 

  85. Boutevin B, Caporiccio G, Guida-Pietrasanta F, Ratsimihety A (1999) Europ Patent Appl 1,097,958 (assigned to Daikin)

    Google Scholar 

  86. Thomas TH, Kendrick TC (1969) J Polym Sci A 7:537

    CAS  Google Scholar 

  87. Kim YK (1974) US patent 3,818,064 (assigned to Dow Corning)

    Google Scholar 

  88. Boutevin B, Caporiccio G, Guida-Pietrasanta F, Ratsimihety A (1997) Main Group Metal Chem 20:133

    Article  CAS  Google Scholar 

  89. Boutevin B, Caporiccio G, Guida-Pietrasanta F, Ratsimihety A (1997) Recent Res Dev Polym Sci 1:241–248

    CAS  Google Scholar 

  90. Boutevin B, Caporiccio G, Guida-Pietrasanta F, Ratsimihety A (1998) Macromol Chem Phys 199:61

    Article  CAS  Google Scholar 

  91. Maxson M, Norris AW, Owen MJ (1997) In: Scheirs J (ed) Modern Fluoropolymer. Wiley, Chichester, Chap 20:359

    Google Scholar 

  92. Legrand DG, Gaine GL (1969) J Colloid Interface Sci 31(2):162

    Article  CAS  Google Scholar 

  93. Kobayashi H, Owen MJ (1995) Trends Polym Sci 3:10

    Google Scholar 

  94. Kobayashi H, Owen MJ (1993) Makromol Chem 194(6):1785

    Article  CAS  Google Scholar 

  95. Grunlan MA, Lee NS, Weber WP (2005) Polym Prep 46(1):407

    CAS  Google Scholar 

  96. Owen MJ, Groh J (1990) J Appl Polym Sci 40:789

    Article  CAS  Google Scholar 

  97. Shafrin EG, Zisman WA (1964) Adv Chem Ser 43:145

    Article  CAS  Google Scholar 

  98. Owen MJ (1988) J Appl Polym Sci 35(4):895

    Article  CAS  Google Scholar 

  99. Kobayashi H (1993) US 5300670 (Dow Corning Toray Silicone)

    Google Scholar 

  100. Hamada Y, Kobayashi H, Nishiumi W (1995) US 5578381 (Dow Corning Toray Silicone)

    Google Scholar 

  101. Kobayashi H, Honma H, Masatomi T (2000) US 6303675 (Dow Corning Toray Silicone)

    Google Scholar 

  102. Kobayashi H, Masatomi T (1996) US 5880227 (Dow Corning Toray Silicone)

    Google Scholar 

  103. Kobayashi H, Masatomi T (1996) US 5681914 (Dow Corning Toray Silicone)

    Google Scholar 

  104. Thünemann A, Kublicas R (2001) J Mater Chem 11(2):381

    Article  Google Scholar 

  105. Bertolucci M, Galli G, Chiellini E, Wynne KJ (2004) Macromolecules 37:3666

    Article  CAS  Google Scholar 

  106. Takago T, Inomata H, Sato S, Kinami H (1994) US 5342913 (Shinetsu Chemical Co)

    Google Scholar 

  107. Inomata H, Kishita H, Sato S, Koike N, Matsuda T (1993) US 5310846

    Google Scholar 

  108. Hamdani S, Longuet C, Perrin D, Lopez Cuesta JM, Ganachaud F (2009) Polym Degrad Stab 94:465

    Article  CAS  Google Scholar 

  109. Battjes K (1995) Macromolecules 28:790

    Article  CAS  Google Scholar 

  110. Kuo CM, Battjes K (1997) Rubber Chem Technol 70:769

    Article  CAS  Google Scholar 

  111. Ameduri B, Boutevin B, Guida-Pietrasanta F, Manseri A, Ratsimehty A (1996) J Polym Sci A, Polym Chem 34:3077

    Article  CAS  Google Scholar 

  112. Andre S, Guida-Pietrasanta F, Rousseau A, Boutevin B, Caporiccio G (2002) J Polym Sci Part A, Polym Chem 40:4485

    Article  CAS  Google Scholar 

  113. Fox T, Flory P (1950) J Appl Phys 21:581

    Article  CAS  Google Scholar 

  114. Fox T, Flory P (1954) J Polym Sci A, Polym Chem 14:315

    CAS  Google Scholar 

  115. Rizzo J, Harris FW, Fox T, Flory P (2000) Polymer 41:5125

    Article  CAS  Google Scholar 

  116. Grassie N, Macfarlane IG, Francey KF (1979) Eur Polym J 15:415

    Article  CAS  Google Scholar 

  117. Conrad MP, Shoichet MS (2007) Polymer 48:5333

    Article  CAS  Google Scholar 

  118. Boutevin B, Caporiccio G, Guida-Pietrasanta F (2003) J Fluorine Chem 124:131

    Article  CAS  Google Scholar 

  119. Boutevin B, Caporiccio G, Rousseau A (2001) EP 1097957 (Daikin Ind LTD)

    Google Scholar 

  120. Kim Y, O’Riley M (1976) US 3975362 (Dow corning)

    Google Scholar 

  121. Gomez-Anton MR, Masegosa RM, Horta A (1987) Polymer 28:2116

    Article  CAS  Google Scholar 

  122. Strepparola E, Caporiccio G (1984) Ind Eng Chem Prod Res Dev 24:4

    Google Scholar 

  123. Evans ER (1981) US 4355121 (General Electric)

    Google Scholar 

  124. Bush RB, Evans ER (1983) US 4525528 (General Electric)

    Google Scholar 

  125. Evans E (1992) EP 520777 (General Electric)

    Google Scholar 

  126. Yerrick KB, Beck HN (1964) Rubber Chem Technol 37:261

    Article  CAS  Google Scholar 

  127. Appetecchi G, Alessandrini F, Passerini S, Caporiccio G, Boutevin B, Guida-Pietrasanta F (2004) Electrochem Acta 50:149

    CAS  Google Scholar 

  128. Chaffee R, Siegel RA, Voci RJ (1992) EP 0542471 (Dow corning)

    Google Scholar 

  129. Singh N, Leman JT, Morgan JM (2002) EP 1176173 (General electric)

    Google Scholar 

  130. Irish PT, Maxson MT (1997) EP 0761762 Dow corning

    Google Scholar 

  131. Maxson MT (1988) Dow corning

    Google Scholar 

  132. Maxson MT (1991) US 5302632 Dow corning

    Google Scholar 

  133. Matsushita T, Shigehisa Y (1993) US 5378742 Dow corning toray silicone

    Google Scholar 

  134. Kobayashi H (1995) US 5428097 Dow corning toray silicone

    Google Scholar 

  135. Kobayashi H (1995) EP 0656391 Dow corning toray silicon

    Google Scholar 

  136. Kobayashi H (1995) EP 0636663 Dow corning toray silicon

    Google Scholar 

  137. Mize K, Takashi M, Kishita H, Oyama M (1993) US 5264522 Shin Etsu Chemical Co

    Google Scholar 

  138. Vaidya A, Chaudhury MK (2002) J Colloid Interface Sci 249:235

    Article  CAS  Google Scholar 

  139. Hou A, Yu J, Shi Y (2008) Eur Polym J 44:1696

    Article  CAS  Google Scholar 

  140. Tang C, Liu W, Ma S, Wang Z, Hu C (2010) Prog Org Coat 69:359

    Article  CAS  Google Scholar 

  141. Suzuki H, Takeishi M, Narisawa I (2000) J Appl Polym Sci 78:1955

    Article  CAS  Google Scholar 

  142. Baradie B, Lai PHM, Soichet M (2005) Can J Chem 83:553

    Article  CAS  Google Scholar 

  143. Maraboti I, Morelli A, Orsini LM, Martinelli E, Galli G, Chiellini E, Lien EM, Pettitt ME, Callow ME, Callow JA, Conlan SL, Mutton RJ, Clare A, Kocijan A, Donik C, Jenko M (2009) Biofouling 25:481

    Article  CAS  Google Scholar 

  144. Mielczarski JA, Mielczarski E, Galli G, Morelli A, Martinelli E, Chiellini E (2010) Langmuir 26:2871

    Article  CAS  Google Scholar 

  145. Liang J, He L, Zhao X, Dong X, Luo H, Li W (2011) J Mater Chem 21:6934

    Article  CAS  Google Scholar 

  146. Luo Z, He T, Yu H, Dai L (2008) Macromol React Eng 2:398

    Article  CAS  Google Scholar 

  147. Zhang W, Zheng Y, Orsini L, Morelli A, Galli G, Chiellini E, Carpenter EE, Wynne KJ (2010) Langmuir 26:5848

    Article  CAS  Google Scholar 

  148. Hung MH, Ameduri B (2010) World Pat WO2011/071599 and US2012/8,138,274 (CNRS–DuPont Performance Elastomers)

    Google Scholar 

  149. Boyer C, Ameduri B, Hung MH (2010) Macromolecules 43:3652

    Article  CAS  Google Scholar 

  150. Darras V, Fichet O, Perrot F, Boileau S, Teyssie D (2007) Polymer 48:687

    Article  CAS  Google Scholar 

  151. Scheirs J (1997) In: Scheirs J (ed) Modern fluoropolymers. Wiley, New York, p 435, Chap. 24

    Google Scholar 

  152. Yamaguchi H, Koike N, Takewaki K (2010) US 2010/0324250 (assigned to Shin Etsu)

    Google Scholar 

  153. Ato S, Arai M, Osawa Y, Sato M (2003) Europ Pat 1,288,243 A1 (assigned to Shin Etsu)

    Google Scholar 

  154. Uritani P (2002) High Performance Elastomers. In: Conference, November 13–14, Koln, Germany. Paper #14

    Google Scholar 

  155. Wilcek L (2011) WO 2011/011653 (DuPont de Nemours)

    Google Scholar 

  156. Ergengother A (1996) High Performance Polymers 55:787

    Google Scholar 

  157. Owens D, Wendt R (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  158. Fowkes F (1962) J Phys Chem 66:382

    Article  CAS  Google Scholar 

  159. Fowkes F (1964) Adv Chem Ser 43:99

    Article  CAS  Google Scholar 

  160. Hauser R, Walkers CA, Kilbourne FL (1956) Ind Eng Chem 48:1202

    Article  CAS  Google Scholar 

  161. Boyer R, Dow Chemical CO, Unpublished Data (Chemica Co)

    Google Scholar 

  162. Mangaraj D, Patra S, Rashid S (1963) Makromol Chem 65:39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bruno Ameduri or François Ganachaud .

Editor information

Editors and Affiliations

Appendices

Appendix A: Definition and Measurements of Surface Tension for Soft Polymers

5.1.1 A.1 Definition of Surface Tension

Surface tension is the force per unit length necessary to minimize the surface area between two immiscible media. This contraction force results from the propensity of bulk liquid molecules to attract those at the interface to ensure cohesion between them. For a liquid, the measurement of this parameter is easy and reliable, since an equilibrium state between the liquid and the surrounding gas or liquid can always be reached. For solid surfaces, the elastic force between that surface and a drop of liquid may not be at equilibrium, and the surface energy of the solid acts as an attractive force opposing contraction of the liquid. Consequently, liquid and solid surface tensions cannot be compared.

5.1.2 A.2 Measurement of Liquid Surface Tensions

Two techniques are used to measure the surface tension of liquid polymers; the pendant drop technique and the Wilhelmy plate technique (equations (5.3) and (5.4) and Fig. 5.27). The former is not frequently used in the papers reviewed in this chapter, since it requires an apparatus calibration component and the shape of the drop may not be perfectly round for viscous polymers. The Wilhelmy plate technique consists of measuring the pulling force on the plate introduced into the liquid. The simplest case is when a meniscus forms between the plate and the liquid where the contact angle is θ=0, and the surface tension is calculated knowing the perimeter of the plate, i.e. horizontal length and thickness (5.4). Note that a correction for the liquid buoyancy is avoided by performing the force measurement when the edge of the plate is at the same level with the liquid surface.

(5.3)
(5.4)

In these equations γ is surface tension of the liquid; ρ is density; g is specific gravity; H is a coefficient calibrated on the apparatus; f w is the pulling force; and p is the plate perimeter.

Fig. 5.27
figure 46

Sessile drop (left) and Wilhelmy plate (right) techniques to measure liquid surface tension

5.1.3 A.3 Measurement of Solid Surface Tensions

Solid surface tensions are almost exclusively determined using a contact angle technique as illustrated in Fig. 5.28. When a drop of a liquid is deposited on the polymer substrate the contact angle between the liquid, air and solid is given by Young’s equation:

$$ \gamma_{\mathrm{L}}\cos\theta =\gamma_\mathrm{S}-\gamma_{\mathrm{SL}} $$
(5.5)

where γ L,γ S and γ SL are the liquid/air, solid/air and solid/liquid surface tensions, respectively. Since in this equation only γ L and θ are known, this requires one to use semi-empirical equations to deduce the surface tension of the solid γ S.

Fig. 5.28
figure 47

Contact angle of a standard liquid drop on a flat (polymer) surface. By definition, if θ is less than 90°, the liquid wets the solid surface

Surface tensions can be divided into two components, a dispersive one (\(\gamma_{\mathrm{S}}^{d}\)) and a polar one (\(\gamma_{\mathrm{S}}^{p}\)), according to (5.6):

$$ \gamma_{\mathrm{S}}=\gamma_{\mathrm{S}}^d+\gamma_{\mathrm{S}}^p $$
(5.6)

Based on this, Owens and Wendt [157] derived equation (5.7) using a geometric approximation:

$$ \gamma_{\mathrm{L}}(1+\cos \theta)=2(\gamma_{\mathrm{S}}^d\gamma_{\mathrm{L}}^d)^{1/2}+2(\gamma_{\mathrm{S}}^p\gamma_{\mathrm{L}}^p)^{1/2} $$
(5.7)

Generally, two model liquids are necessary to determine both components. To determine the dispersive component, test liquids with no polar surface tension component, such as hexadecane, are chosen, while the polar component can be obtained from a polar liquid, typically water.

Another method of solid surface tension determination is given by the Girifalco–Good–Fowkes–Young equation [158, 159]:

$$ \cos\theta=2(\gamma_{\mathrm{S}}^d)^{1/2}(\gamma_\mathrm{L})^{-1/2}-1 $$
(5.8)

The so-called Zisman technique consists of determination of the surface tension by plotting cosθ versus γ L for a series of liquid alkanes and extrapolating to cos θ=1; where \(\gamma_{\mathrm{S}}^{d}=\gamma_{\mathrm{L}}\). This surface tension is referred to in this chapter as the dispersive critical surface tension, γ c. The technique is believed to give solid surface tensions which depend little on the test liquids, although it was recently observed that short alkanes may partly swell the fluorosilicones.

One can also perform dynamic measurement of the contact angle: in this case the advancing angle (θ A) is close but not similar to the one obtained by static measurements, i.e. “at equilibrium”, whereas the receding angle (θ R) is measured after dewetting the surface (experimentally performed by sucking back a part of the liquid to decrease the droplet volume). The contact angle hysteresis (ω), i.e. the difference between the advancing and the receding contact angles, gives an indication either of the chemical rearrangement of the surface upon contact with the liquid, or of the surface roughness.

Appendix B: Swelling Measurements, Solubility Parameters and PDMS Case

A solvent is generally a liquid that dissolves another liquid, solid or gaseous solute, resulting in a uniform mixture called solution. Two substances are miscible if they show the same cohesion energy, c (cal cm−3). Since true solution requires complete separation of individual molecules, a cross-linked polymer can never dissolve but an appropriate solvent is likely to be absorbed by the network to give a swollen gel similar to a very viscous solution. The amount of swelling of the polymer depends on the competition between: (i) the free energy of the mixture on insertion of solvent molecules to solvate polymer segments; and (ii) the elastic retraction force acting opposite to the distortion, caused by the chain elongation in the swollen cross-linked network. Equilibrium of these two forces leads to an optimal volume swell.

Hildebrand solubility parameters δ (cal1/2 cm−3/2) describe interactions between different solvents and solutes. Swelling will be at maximum when the solubility parameter of the solvent δ s and the polymer δ p are numerically similar: δ sδ p. Many theoretical models of the solvent-polymer pairing have been proposed to explain their intrinsic interactions. However, the theories are limited because of the large variety of solvents available and their different chemical properties. In some studies, the solubility parameters are often divided into three components, describing hydrogen bonding, polarity and dispersive behavior of solutes; these theories are not considered here.

By definition, the solubility parameters do not include any hypothesis with regard to the association, the polarity, the solvation and the hydrogen bonding between solvent and polymer. However, Yerrick and Beck [126] classified solvents according to their electrostatic interactions with solutes into three categories: those inducing weak interactions (aliphatic, aromatic, fluorocarbon, chlorinated solvents); moderate (dipole–dipole) interactions (esters, ketones, ethers, nitriles); and strong (hydrogen bonding) interactions (aliphatic alcohols). For instance, the swelling of PDMS networks in different solvents is shown in Fig. 5.29 [126]. It can be seen from this figure that while hydrocarbon and chlorinated solvents have the same solubility parameter, chlorinated solvents tend to increase swelling while the hydrocarbons do not. Ethers, esters and ketones show reduced swelling abilities. In these solvents, interactions are mainly due to permanent dipole moments that tend to increase the efficient molecular volume and consequently to decrease their swelling ability. Plotting the volume swell as a function of the Hildebrand parameter yields the solubility parameter of PDMS (δ PDMS=7.5 cal1/2 cm−3/2), as the maximum in the resulting curve. This value is in the range of earlier data in the literature (7.3 to 7.7 cal1/2 cm−3/2) [160162] and is consistent with weak interaction forces characteristic for this polymer.

Fig. 5.29
figure 48

Volume swells of PDMS elastomer as a function of solvent solubility parameters, for solvents with weak (▲), strong (○), and moderate (★) electrostatic interactions

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pasquet, C., Longuet, C., Hamdani-Devarennes, S., Ameduri, B., Ganachaud, F. (2012). Comparison of Surface and Bulk Properties of Pendant and Hybrid Fluorosilicones. In: Owen, M., Dvornic, P. (eds) Silicone Surface Science. Advances in Silicon Science, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3876-8_5

Download citation

Publish with us

Policies and ethics