Skip to main content

Marine Plankton

  • Chapter
  • First Online:
Ecology of Cyanobacteria II

Summary

The marine environment, which includes estuarine, coastal and open ocean waters, is a phylogenetically rich repository of planktonic cyanobacteria. All major cyanobacterial groups are represented in the marine plankton, yet specific environmental constraints strongly select for certain groups to dominate in geographically and climatically distinct regions of the world’s oceans. In this chapter, physical, chemical and biotic properties of estuarine, coastal and open ocean habitats are examined with respect to their controls on the diversity, abundance and distributions of marine planktonic cyanobacteria. The focus is on the filamentous and colonial cyanobacteria that periodically accumulate as dense “blooms” that may discolor oceanic and coastal waters. Blooms are of considerable biogeochemical and ecological significance, because they represent large concentrations of phytoplankton biomass that impact carbon, nutrient (N, P, Fe and micronutrients), and oxygen cycling. The smaller coccoid picoplanktonic forms are an additionally important biomass fraction addressed elsewhere (see Chap. 20 by Scanlan). Marine planktonic cyanobacteria employ a suite of morphological, physiological and ecological adaptations and strategies aimed at optimizing growth and reproduction in response to environmental constraints, including nutrient depletion (oligotrophy), variable degrees of turbulence, sub-optimal light and temperature conditions that characterize much of the world’s oceans. These include N2 fixation, nutrient sequestration and storage, buoyancy regulation, consortial and symbiotic associations, and coloniality. Specific planktonic taxa are able to exploit human and naturally-(climatic) induced environmental perturbations and changes, such as nutrient-enrichment, rising temperatures, increased tropical cyclone activity, altered rainfall patterns and droughts. Some cyanobacterial bloom taxa are considered harmful (CyanoHABs) because they can negatively affect water quality and habitat condition by producing toxins, exacerbating hypoxia, and altering food webs. Potential nutrient and other management strategies aimed at controlling CyanoHAB outbreaks and dominance are addressed. The extent and limits of biotic evolution in this ancient group of metabolically-diverse phototrophs has strongly affected the geochemical and biotic changes characterizing the evolution of the Earth’s oceans and biosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agawin NSR, Duarte CM, Agusti S, Vaque D (2011) Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol 34:57–67

    Google Scholar 

  • Albertano P, Di Somma D, Capucci E (1997) Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image analysis fluorescence microscopy. J Plankton Res 19:1405–1416

    Google Scholar 

  • Allen MM, Stanier RY (1968) Selective isolation of blue-green algae from water and soil. J Gen Microbiol 51:203–209

    PubMed  CAS  Google Scholar 

  • Antia NJ, Harrison PJ, Oliveira L (1991) The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia 30:1–89

    Google Scholar 

  • Axmann IM, Kensche P, Vogel J, Kohl S, Herzel H, Hess WR (2005) Identification of cyanobacterial non-coding RNAs by comparative genome analysis. Genome Biol 6:R73

    PubMed  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Kupper H, Kolber Z, Bergman B, Falkowski P (2001) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    PubMed  CAS  Google Scholar 

  • Bianchi TS, Engelhaupt E, Westman P, Andren T, Rolff A, Elmgren R (2000) Cyanobacterial blooms in the Baltic Sea: natural or human-induced? Limnol Oceanogr 48:716–726

    Google Scholar 

  • Bishop PE, Premakumar R (1992) Alternative nitrogen fixation systems. In: Stacey G, Burris RH, Evans HJ (eds) Biological nitrogen fixation, 1st edn. Routledge/Chapman and Hall, Inc., New York, pp 736–762

    Google Scholar 

  • Boesch DF, Burreson E, Dennison W, Houde E, Kemp M, Kennedy V, Newell R, Paynter K, Orth R, Ulanowicz R (2001) Factors in the decline of coastal ecosystems. Science 293:629–638

    Google Scholar 

  • Boesch DF, Hecky RE, O’Melia C, Schindler DW (2005) Eutrophication of Swedish Seas. Report 5509, MARS 2006, Swedish Environmental Protection Agency, Stockholm, Sweden

    Google Scholar 

  • Bothe H, Tripp HJ, Zehr JP (2011) Unicellular cyanobacteria with a new mode of life: the lack of photosynthetic oxygen evolution allows nitrogen fixation to proceed. Arch Microbiol 192(10):783–790

    Google Scholar 

  • Bou Karam D, Flamant C, Tulet P, Todd MC, Pelon J, Williams E (2009) Dry cyclogenesis and dust mobilization in the Inter Tropical Discontinuity of the West African Monsoon: a case study. J Geophys Res 114:D13106. doi:10.1029/2008JD011444

    Google Scholar 

  • Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Bueseler KO, Coale KH, Culen JJ, de Baar HJW, Follows M, Harvey M, Lancelot C, Levasseur M, Owens NPJ, Pollard R, Rivkin RB, Sarmiento J, Schoemann V, Smetacek V, Takeda S, Tsuda A, Turner S, Watson AJ (2007) Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315:612–617

    PubMed  CAS  Google Scholar 

  • Burford MA (2006) A comparison of phytoplankton community assemblages in artificially and naturally mixed subtropical water reservoirs. Freshw Biol 51:973–982

    CAS  Google Scholar 

  • Butterwick C, Heaney SI, Talling JF (2005) Diversity in the influence of temperature on the growth rates of freshwater algae, and its ecological relevance. Freshw Biol 50:291–300

    Google Scholar 

  • Capone DG (1983) Benthic nitrogen fixation. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic, New York, pp 105–137, 900 pp

    Google Scholar 

  • Capone DG, Zehr JP, Paerl HW, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally-significant marine cyanobacterium. Science 276:1221–1229

    CAS  Google Scholar 

  • Capone DG, Mulholland M, Carpenter EJ (eds) (2008) Nitrogen in the marine environment, vol 2. Academic, Orlando

    Google Scholar 

  • Carmichael WW (1997) The cyanotoxins. Adv Bot Res 27:211–256

    CAS  Google Scholar 

  • Carpenter EJ (2002) Marine cyanobacterial symbioses. Biol Environ Proc R Ir Acad 102B:15–18

    Google Scholar 

  • Carpenter EJ, Capone DG (1992) Nitrogen fixation in Trichodesmium blooms. In: Carpenter DG, Capone EJ, Rueter JG (eds) Marine pelagic cyanobacteria: Trichodesmium and other Diazotrophs. Kluwer Academic Publishers, Dordrecht, pp 211–217, 357 pp

    Google Scholar 

  • Carpenter EJ, Foster RA (2002) Marine symbioses. In: Rai AN, Bergman B, Rasmussen U (eds) Cyanobacteria in symbiosis. Kluwer Academic Publishers, Dordrecht, pp 11–17, 355 pp

    Google Scholar 

  • Carpenter EJ, Janson S (2001) Anabaena gerdii sp nov., a new planktonic filamentous cyanobacterium from the South Pacific Ocean and Arabian Sea. Phycologia 40:105–110

    Google Scholar 

  • Carpenter EJ, Price CC IV (1976) Marine Oscillatoria (Trichodesmium): an explanation for aerobic nitrogen fixation without heterocysts. Science 191:1278–1280

    PubMed  CAS  Google Scholar 

  • Chen CT, Millero FJ (1986) Precise thermodynamic properties for natural waters covering only the limnological range. Limnol Oceanogr 31:657–662

    CAS  Google Scholar 

  • Church MJ, Jenkins BD, Karl DM, Zehr JP (2005) Vertical distributions of nitrogen-fixing phylotypes at Station ALOHA in the oligotrophic North Pacific Ocean. Aquat Microb Ecol 38:3–14

    Google Scholar 

  • Church MJ, Ducklow HW, Letelier RM, Karl DM (2006) Temporal dynamics in heterotrophic picoplankton productivity in the subtropical North Pacific Ocean. Aquat Microb Ecol 45:41–53

    Google Scholar 

  • Church MJ, Björkman KM, Karl DM, Saito MA, Zehr JP (2008) Regional distributions of nitrogen fixing bacteria in the Pacific Ocean. Limnol Oceanogr 53:63–77

    CAS  Google Scholar 

  • Codispoti LA, Brandes JA, Christensen JP, Devol AH, Naqvi SWA, Paerl HW, Yoshinari T (2001) The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? Sci Mar 65(Supp. 2):85–105

    CAS  Google Scholar 

  • Cole JJ, Lane JM, Marino R, Howarth RW (1993) Molybdenum assimilation by cyanobacteria and phytoplankton in freshwater and saltwater. Limnol Oceanogr 38:25–35

    CAS  Google Scholar 

  • Conley DJ, Carstensen J, Vaquer-Sunyer R, Duarte CM (2009a) Ecosystems thresholds with hypoxia. Hydrobiologia 629:21–29

    CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009b) Controlling eutrophication: nitrogen and phosphorus. Science 323:1014–1015

    PubMed  CAS  Google Scholar 

  • D’Elia CF, Sanders JG, Boynton WR (1986) Nutrient enrichment studies in a coastal plain estuary: phytoplankton growth in large scale, continuous cultures. Can J Fish Aquat Sci 43:397–406

    Google Scholar 

  • De Senerpont Domis LN, Mooij WM, Huisman J (2007) Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. Hydrobiologia 584:403–413

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    PubMed  CAS  Google Scholar 

  • Dortch Q, Parsons ML, Rabalais NN, Turner RE (1999) What is the threat of harmful algal blooms in Louisiana Coastal Waters? In: Rozas LP, Nyman JA, Proffitt CE, Rabalais NN, Reed DJ, Turner RE (eds) Recent research in Coastal Louisiana: natural system function and response to human influences. Louisiana Sea Grant College Program, Baton Rouge

    Google Scholar 

  • Downing JA, Watson SB, McCauley E (2001) Predicting cyanobacteria dominance in lakes. Can J Fish Aquat Sci 58:1905–1908

    Google Scholar 

  • Du Bois JD, Kapusta LA (1981) Osmotic stress effects on the N2(C2H2ASA) activity of aquatic cyanobacteria. Aquat Bot 11:11–20

    Google Scholar 

  • Dugdale RC (1967) Nutrient limitation in the sea: dynamics, identification and significance. Limnol Oceanogr 12:685–695

    Google Scholar 

  • El-Shehawy R, Lugomela C, Ernst A, Bergman B (2003) Diurnal expression of hetR and diazocyte development in the filamentous non-heterocystous cyanobacterium Trichodesmium erythraeum. Microbiology 149:1139–1146

    PubMed  CAS  Google Scholar 

  • Elliott JA, Jones ID, Tackeray SJ (2006) Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559:401–411

    CAS  Google Scholar 

  • Elmgren R (1989) Man’s impact on the ecosystem of the Baltic Sea; energy flows today and at the turn of the century. Ambio 18:326–332

    Google Scholar 

  • Elmgren R (2001) Understanding human impact on the Baltic ecosystem: changing views in recent decades. Ambio 30:222–231

    PubMed  CAS  Google Scholar 

  • Elmgren R, Larsson U (2001) Nitrogen and the Baltic Sea: managing nitrogen in relation to phosphorus. Sci World 1(S2):371–377

    Google Scholar 

  • Escalera L, Reguera B, Takishita K, Yoshimatsu Y, Koike K, Koike K (2010) Cyanobacterial endosymbionts in the benthic dinoflagellate Sinophysis canaliculata (Dinophysiales, Dinophyceae). Protist. doi:10.1016/j.protis.2010.07.003

  • Falcón LI, Carpenter EJ, Cipriano F, Bergman B, Capone DG (2004) N2 fixation by unicellular bacterioplankton from the Atlantic and Pacific Oceans: phylogeny and in situ rates. Appl Environ Microbiol 70:765–770

    PubMed  Google Scholar 

  • Farnelid H, Öberg T, Riemann L (2009) Identity and dynamics of putative N2-fixing picoplankton in the Baltic Sea proper suggest complex patterns of regulation. Environ Microbiol Rep 1:145–154

    CAS  Google Scholar 

  • Finni T, Kononen K, Olsonen R, Wallström K (2001) The history of cyanobacterial blooms in the Baltic Sea. Ambio 30:172–178

    PubMed  CAS  Google Scholar 

  • Fisher TR, Peele ER, Ammerman JA, Harding LW (1992) Nutrient limitation of phytoplankton in Chesapeake Bay. Mar Ecol Prog Ser 82:51–63

    Google Scholar 

  • Fogg GE (1956) The comparative physiology and biochemistry of the blue-green algae. Bacteriol Rev 20:148–165

    PubMed  CAS  Google Scholar 

  • Fogg GE (1969) The physiology of an algal nuisance. Proc R Soc Lond Ser B 173:175–189

    Google Scholar 

  • Fogg GE (1982) Marine plankton. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell/University of California Press, Oxford/Berkeley, pp 491–513, 688 pp

    Google Scholar 

  • Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue-green algae. Academic, London

    Google Scholar 

  • Fong AA, Karl DM, Lukas R, Letelier RM, Zehr JP, Church MJ (2008) Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pacific Ocean. ISME J 2:663–676

    PubMed  CAS  Google Scholar 

  • Foster RA, O’Mullan GD (2008) Nitrogen-fixing and nitrifying symbioses in the marine environment. In: Capone DG, Bronk D, Mulholland M, Carpenter EJ (eds) Nitrogen in the marine environment, 2nd edn. Elsevier Science, Amsterdam, pp 1197–1218

    Google Scholar 

  • Foster RA, Zehr JP (2006) Characterization of diatom-cyanobacteria symbioses on the basis of nifH, hetR, and 16S rRNA sequences. Environ Microbiol 8:1913–1925

    PubMed  CAS  Google Scholar 

  • Foster RA, Bergman B, Carpenter EJ (2006a) Unicellular cyanobionts in open ocean dinoflagellates, radiolarians, and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol 42:453–463

    CAS  Google Scholar 

  • Foster RA, Collier JA, Carpenter EJ (2006b) Reverse transcription PCR amplification of cyanobacterial symbiont 16S rRNA sequences from single non-photosynthetic eukaryotic marine planktonic host cells. J Phycol 42:243–250

    CAS  Google Scholar 

  • Foster RA, Subramaniam A, Zehr JP (2008) Distribution and activity of diazotrophy in the Eastern Equatorial Atlantic. Environ Microbiol 11:741–750

    PubMed  Google Scholar 

  • Foy RH, Gibson CE, Smith RV (1976) The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Eur J Phycol 11:151–163

    Google Scholar 

  • Fredriksson C, Bergman B (1995) Nitrogenase quantity varies diurnally in a subset of cells within colonies of the non-heterocystous cyanobacteria Trichodesmium spp. Microbiology 141:2471–2478

    CAS  Google Scholar 

  • Gallon JR (1992) Tansley review no. 44/reconciling the incompatible: N2 fixation and O2. New Phytol 122:571–609

    CAS  Google Scholar 

  • Garcia-Pichel F, Castenholz RW (1993) Occurrence of UV-absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169

    PubMed  CAS  Google Scholar 

  • Gómez F, Furuya K, Takeda S (2005) Distribution of the cyanobacterium Richelia intracellularis as an epiphyte of the diatom Chaetoceros compressus in the western Pacific Ocean. J Plankton Res 27:323–330

    Google Scholar 

  • Hallegraeff GM (1993) A review of harmful algal blooms and their apparent global increase. Phycologia 32:79–99

    Google Scholar 

  • Herbst V, Overbeck J (1978) Metabolic coupling between the alga Oscillatoria redekei and accompanying bacteria. Naturwissen­schaften 65:598–599

    CAS  Google Scholar 

  • Holland HD (1978) The chemistry of the atmosphere and oceans. Wiley, New York, 341 pp

    Google Scholar 

  • Holm-Hansen O (1964) Physiology of algae. In: Encyclopedia of science and technology, yearbook. McGraw-Hill, Inc., New York, pp 129–132

    Google Scholar 

  • Hood RR, Bates NR, Capone DG, Olson DB (2001) Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. Deep Sea Res 48:1609–1648

    CAS  Google Scholar 

  • Hood RR, Subramanian A, May LR, Carpenter EJ, Capone DG (2002) Remote estimation of nitrogen fixation by Trichodesmium. Deep Sea Res 49:123–147

    CAS  Google Scholar 

  • Hood RR, Coles VJ, Capone DG (2004) Modeling the distribution of Trichodesmium and nitrogen fixation in the Atlantic Ocean. J Geophys Res Ocean 109:1–25

    Google Scholar 

  • Horne AJ (1977) Nitrogen fixation.- a review of this phenomenon as a polluting process. Prog Water Technol 8:359–372

    CAS  Google Scholar 

  • Howarth RW, Cole JJ (1985) Molybdenum availability, nitrogen availability, and phytoplankton growth in natural waters. Science 229:653–655

    PubMed  CAS  Google Scholar 

  • Howarth RW, Butler T, Lunde K, Swaney D, Chu CR (1993) Turbulence and planktonic nitrogen fixation: a mesocosm experiment. Limnol Oceanogr 38:1696–1711

    Google Scholar 

  • Huber AL (1986) Nitrogen fixation by Nodularia spumigena Martens (Cyanobacteria). I. Field studies on the contribution of blooms to the nitrogen budget of the Peel-Harvey Estuary, Western Australia. Hydrobiologia 131:193–203

    CAS  Google Scholar 

  • Huisman J, Sharples J, Stroom J, Visser PM, Kardinaal WEA, Verspagen JMH, Sommeijer B (2004) Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85:2960–2970

    Google Scholar 

  • Huisman JM, Matthijs HCP, Visser PM (2005) Harmful cyanobacteria, Springer aquatic ecology series 3. Springer, Dordrecht

    Google Scholar 

  • Janson S, Carpenter EJ, Bergman B (1993) Compartmentalisation of nitrogenase in a non-heterocystous cyanobacterium: Trichodesmium contortum. FEMS Microbiol Lett 118:9–14

    Google Scholar 

  • Janson S, Wouters J, Bergman B, Carpenter EJ (1999) Host specificity in the Richelia diatom symbiosis revealed by hetR gene sequence analysis. Environ Microbiol 1:431–438

    PubMed  CAS  Google Scholar 

  • Jöhnk KD, Huisman J, Sharples J, Sommeijer B, Visser PM, Stroom JM (2008) Summer heatwaves promote blooms of harmful cyanobacteria. Glob Change Biol 14:495–512

    Google Scholar 

  • Johnson PW, Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935

    Google Scholar 

  • Kahru M, Leppänen JM, Rud O (1993) Cyanobacterial blooms cause heating of the sea surface. Mar Ecol Prog Ser 101:1–7

    Google Scholar 

  • Kahru M, Leppänen JM, Rud O, Savchuk OP (2000) Cyanobacteria blooms in the Gulf of Finland triggered by saltwater inflow into the Baltic Sea. Mar Ecol Prog Ser 207:13–18

    Google Scholar 

  • Kana TM (1993) Rapid oxygen cycling in Trichodesmium thiebautii. Limnol Oceanogr 38:18–24

    CAS  Google Scholar 

  • Kanoshina I, Lips U, Leppänen JM (2003) The influence of weather conditions (temperature and wind) on cyanobacterial bloom development in the Gulf of Finland (Baltic Sea). Harmful Algae 2:29–41

    Google Scholar 

  • Karl D, Michaels A, Bergman B, Capone D, Carpenter E, Letelier R, Lipschultz F, Paerl H, Sigman D, Stal L (2002) Dinitrogen fixation in the world’s oceans. Biogeochemistry 57(58):47–98

    Google Scholar 

  • Keating KI (1978) Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–973

    PubMed  CAS  Google Scholar 

  • Keto J, Horppila J, Kairesalo T (1992) Regulation of the development and species dominance of summer phytoplankton in Lake Vesijarvi – predictability of enclosure experiments. Hydrobiologia 243:303–310

    Google Scholar 

  • Kirrikki M, Inkala A, Kuosa H, Pitkänen H, Kuussisto M, Sarkuula J (2001) Evaluating the effects of nutrient load reductions on the biomass of toxic nitrogen-fixing cyanobacteria in the Gulf of Finland, Baltic Sea. Boreal Environ Res 6:131–146

    Google Scholar 

  • Knoll A (2003) Life on a young planet: the first three billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Komarék J, Anagnostidis K (1986) Modern approach to the classification system of cyanophytes. Archiv Hydrobiol Suppl 73 Algol Stud 43:157–164

    Google Scholar 

  • Kononen K (1992) Dynamics of the toxic cyanobacterial blooms in the Baltic Sea. Finn Mar Res 261:3–36

    Google Scholar 

  • Kononen K, Kuparinen J, Mäkelä J, Laanemets J, Pavelson J, Nõmmann S (1996) Initiation of cyanobacterial blooms in a frontal region at the entrance to the Gulf of Finland, Baltic Sea. Limnol Oceanogr 41:98–112

    CAS  Google Scholar 

  • Kononen K, Huttunen M, Kanoshina I, Laanemets J, Moisander P, Pavelson J (1999) Spatial and temporal variability of a dinoflagellate-cyanobacterium community under a complex hydrodynamical influence: a case study at the entrance to the Gulf of Finland. Mar Ecol Prog Ser 186:43–57

    Google Scholar 

  • Konopka A (1984) Effect of light-nutrient interactions on buoyancy regulation by planktonic cyanobacteria. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 41–48

    Google Scholar 

  • Konopka A, Brock TD, Walsby AE (1978) Buoyancy regulation by planktonic blue-green algae in Lake Mendota, Wisconsin. Arch Hydrobiol 83:524–537

    Google Scholar 

  • Kucera SA (1996) The influence of small-scale turbulence on N2 fixation and growth in heterocystous cyanobacteria. M. S. thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  • Kuosa H (1991) Picoplanktonic algae in the northern Baltic Sea: seasonal dynamics and flagellate grazing. Mar Ecol Prog Ser 73:269–276

    Google Scholar 

  • Kuparinen J, Kuosa H (1993) Autotrophic and heterotrophic picoplankton in the Baltic Sea. Adv Mar Biol 29:73–128

    Google Scholar 

  • Küpper H, Ferimazova N, Setlik I, Berman-Frank I (2004) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133

    PubMed  Google Scholar 

  • Lange W (1967) Effects of carbohydrates on these symbiotic growth of the planktonic blue-green algae with bacteria. Nature 215:1277–1278

    PubMed  CAS  Google Scholar 

  • Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation and nodularin production by two Baltic Sea Cyanobacteria. Appl Environ Microbiol 63:1647–1656

    PubMed  Google Scholar 

  • Lenes JM, Walsh JJ, Otis DB, Carder KL (2005) Iron fertilization of Trichodesmium off the west coast of Barbados: a one-dimensional numerical model. Deep Sea Res 52:1021–1041

    CAS  Google Scholar 

  • Leredulier DT, Bernard T, Goas G, Hamelin J (1984) Osmo­regula­tion in Klebsiella pneumoniae: enhancement of anaerobic growth and nitrogen fixation under stress by proline betaine, γ-butyrobetaine, and other related compounds. Can J Microbiol 30:299–305

    Google Scholar 

  • Likens GE (ed) (1972) Nutrients and eutrophication, American Society of Limnology Oceanography special symposium 1. American Society of Limnology Oceanography, Lawrence

    Google Scholar 

  • Margalef R (1968) Perspectives in ecological theory. University of Chicago Press, Chicago

    Google Scholar 

  • Margalef R (1978) Life-forms of phytoplankton as survival alternatives in an unstable environment. Oceanol Acta 1:493–509

    Google Scholar 

  • Marshall HG (2002) Autotrophic picoplankton: their presence and significance in marine and freshwater ecosystems. Va J Sci 53:13–33

    Google Scholar 

  • Martin JH et al (1994) Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature 371:123–129

    CAS  Google Scholar 

  • Martinez L, Silver MW, King JM, Alldredge AL (1983) Nitrogen fixation by floating diatom mats: a source of new nitrogen to oligotrophic ocean waters. Science 221:152–154

    PubMed  CAS  Google Scholar 

  • Mearns-Spragg M, Bregu K, Boyd G, Burgess JG (2005) Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates, after exposure to terrestrial bacteria. Lett Appl Microbiol 27:142–146

    Google Scholar 

  • Moisander PH, Paerl HW (2000) Growth, primary productivity, and nitrogen fixation potential of Nodularia spp. (Cyanophyceae) in water from a subtropical estuary in the United States. J Phycol 36:645–658

    CAS  Google Scholar 

  • Moisander PH, Rantajärvi E, Huttunen M, Kononen K (1997) Phyto­plankton community in relation to salinity fronts at the entrance to the Gulf of Finland, Baltic Sea. Ophelia 46:187–203

    Google Scholar 

  • Moisander PH, Hench JL, Kononen K, Paerl HW (2002a) Small-scale shear effects on heterocystous cyanobacteria. Limnol Oceanogr 47:108–119

    Google Scholar 

  • Moisander PH, McClinton E III, Paerl HW (2002b) Salinity effects on growth, photosynthetic parameters, and nitrogenase activity in estuarine planktonic cyanobacteria. Microb Ecol 43:432–442

    PubMed  CAS  Google Scholar 

  • Moisander PH, Breinart RA, Hewson I, White AS, Johnson KS, Carolson CA, Montoya JP, Zehr JP (2010) Unicellular cyanobacterial distributions broaden the oceanic N2 fixation domain. Science 327:1512–1514

    PubMed  CAS  Google Scholar 

  • Murphy TO, Lean DRS, Nalewajko C (1976) Blue-green algae: their excretion of selective chelators enables them to dominate other algae. Science 221:152–154

    Google Scholar 

  • Murrell MC, Lores EM (2004) Phytoplankton and zooplankton seasonal dynamics in a subtropical estuary: importance of cyanobacteria. J Plankton Res 26:371–382

    Google Scholar 

  • Nakano S, Hayakawa K, Frenette JJ, Nakajima T, Jiao CM, Tsujimura S, Kumagai M (2001) Cyanobacterial blooms in a shallow lake: a large-scale enclosure assay to test the importance of diurnal stratification. Arch Hydrobiol 150:491–509

    CAS  Google Scholar 

  • Nausch G, Nehring D, Aertebjerg G (1999) Anthropogenic nutrient load of the Baltic Sea. Limnologica 29:233–241

    CAS  Google Scholar 

  • Neilands JB (1967) Hydroxamic acids in nature. Science 156:1443–1447

    PubMed  CAS  Google Scholar 

  • Niemi A (1979) Blue-green algal blooms and N:P ratio in the Baltic Sea. Acta Bot Fenn 110:57–61

    CAS  Google Scholar 

  • Nixon SW (1986) Nutrient dynamics and the productivity of marine coastal waters. In: Halwagy R, Clayton D, Behbehani M (eds) Coastal eutrotrophication. The Alden Press, Oxford, pp 97–115

    Google Scholar 

  • Nixon SW (1995) Coastal eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–220

    Google Scholar 

  • Paerl HW (l982) Interactions with bacteria. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 441–461, 688 pp

    Google Scholar 

  • Paerl HW (1983) Environmental factors promoting and regulating N2 fixing blue-green algal blooms in the Chowan River, NC. University of North Carolina Water Resources Research Institute report no. 176. Water Resources Research Institute of the University of North Carolina, Raleigh, 65 pp

    Google Scholar 

  • Paerl HW (1986) Growth and reproductive strategies of freshwater blue-green algae (cyanobacteria). In: Sandgren CD (ed) Growth and reproductive strategies of freshwater Phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Paerl HW (1987) Dynamics of blue-green algal blooms in the lower Neuse River, NC: causative factors and potential controls. University of North Carolina Water Resources Research Institute report no 229. Water Resources Research Institute of the University of North Carolina, Raleigh, 164 pp

    Google Scholar 

  • Paerl HW (1988) Nuisance phytoplankton blooms in coastal, estuarine, and inland waters. Limnol Oceanogr 33:823–847

    CAS  Google Scholar 

  • Paerl HW (1990) Physiological ecology and regulation of N2 fixation in natural waters. Adv Microbiol Ecol 11:305–344

    CAS  Google Scholar 

  • Paerl HW (1994) Spatial segregation of CO2 fixation in Trichodesmium sp.: linkage to N2 fixation potential. J Phycol 30:790–799

    Google Scholar 

  • Paerl HW (1996) A comparison of cyanobacterial bloom dynamics is freshwater, estuarine and marine environments. Phycologia 35(6):25–35

    Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165

    CAS  Google Scholar 

  • Paerl HW (1999) Physical-chemical constraints on cyanobacterial growth in the oceans. In: Charpy L, Larkum AWD (eds) Marine cyanobacteria, Bulletin de l’Institut océanographique, Monaco. Special vol no. 19. Musée océanographique, Monaco, pp 319–349

    Google Scholar 

  • Paerl HW (2000) Marine plankton. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Scientific Publications, Dordrecht, pp 121–148, 669 pp

    Google Scholar 

  • Paerl HW (2008) Nutrient and other environmental controls of harmful cyanobacterial blooms along the freshwater-marine continuum. Adv Exp Med Biol 619:216–241

    Google Scholar 

  • Paerl HW (2009) Controlling eutrophication along the freshwatermarine continuum: dual nutrient (N and P) reductions are essential. Estuar Coasts 32:593–601

    CAS  Google Scholar 

  • Paerl HW, Bebout BM (1988) Direct measurement of O2-depleted microzones in marine Oscillatoria: relation to N2 fixation. Science 242:441–445

    Google Scholar 

  • Paerl HW, Fulton RS (2006) Ecology of harmful cyanobacteria. In: Graneli E, Turner J (eds) Ecology of harmful marine algae. Springer, Berlin, pp 95–107

    Google Scholar 

  • Paerl HW, Huisman J (2008) Blooms like it hot. Science 320:57–58

    PubMed  CAS  Google Scholar 

  • Paerl HW, Huisman J (2009) Climate change: a catalyst for global expansion of harmful cyanobacterial blooms. Environ Microbiol Rep 1(1):27–37

    CAS  Google Scholar 

  • Paerl HW, Kuparinen J (2002) Microbial aggregates and consortia. In: Bitton G (ed) Encyclopedia of environmental microbiology, vol 1. Wiley, New York, pp 160–181

    Google Scholar 

  • Paerl HW, Millie DF (1996) Physiological ecology of toxic cyanobacteria. Phycologia 35:160–167

    Google Scholar 

  • Paerl HW, Piehler MF (2008) Nitrogen and marine eutrophication. In: Capone DG, Mulholland M, Carpenter E (eds) Nitrogen in the marine environment, vol 2. Academic, Orlando, pp 529–567

    Google Scholar 

  • Paerl HW, Pinckney JL (1996) Microbial consortia: their role in aquatic production and biogeochemical cycling. Microb Ecol 31:225–247

    PubMed  Google Scholar 

  • Paerl HW, Tucker C (1995) Ecology of blue-green algae in aquaculture ponds. J World Aquacult Soc 26:1–53

    Google Scholar 

  • Paerl HW, Whitall DR (1999) Anthropogenically-derived atmospheric nitrogen deposition, marine eutrophication and harmful algal bloom expansion: is there a link? Ambio 28:307–311

    Google Scholar 

  • Paerl HW, Zehr JP (2000) Nitrogen fixation. In: Kirchman DJ (ed) Microbial ecology of the oceans. Academic, New York, pp 387–426, 542 pp

    Google Scholar 

  • Paerl HW, Tucker J, Bland PT (1983) Carotenoid enhancement and its role in maintaining blue-green algal (Microcystis aeruginosa) surface blooms. Limnol Oceanogr 8:847–857

    Google Scholar 

  • Paerl HW, Priscu JC, Brawner DL (1989) Immunochemical localization of nitrogenase in marine Trichodesmium aggregates: relationship to N2 fixation potential. Appl Environ Microbiol 55:2965–2975

    PubMed  CAS  Google Scholar 

  • Paerl HW, Prufert LE, Ambrose WW (1991) Contemporaneous N2 fixation and oxygenic photosynthesis in the non-heterocystous mat-forming cyanobacterium Lyngbya aestuarii. Appl Environ Microbiol 57:3086–3092

    PubMed  CAS  Google Scholar 

  • Paerl HW, Prufert-Bebout L, Guo C (1994) Iron-stimulated N2 fixation and growth in natural and cultured populations of the planktonic marine cyanobacterium Trichodesmium. Appl Environ Microbiol 60:1044–1047

    PubMed  CAS  Google Scholar 

  • Paerl HW, Mallin MA, Donahue CA, Go M, Peierls BL (1995a) Nitrogen loading sources and eutrophication of the Neuse River Estuary, NC: direct and indirect roles of atmospheric deposition. University of North Carolina Water Resources Research Institute report no 291. Water Resources Research Institute of the University of North Carolina, Raleigh

    Google Scholar 

  • Paerl HW, Pinckney JL, Kucera S (1995b) Clarification of the structural and functional roles of heterocysts and anoxic microzones in the control of pelagic nitrogen fixation. Limnol Oceanogr 40:634–638

    CAS  Google Scholar 

  • Paerl HW, Willey JD, Go M, Peierls BL, Pinckney JL, Fogel ML (1999) Rainfall stimulation of primary production in Western Atlantic Ocean waters: roles of different nitrogen sources and co-limiting nutrients. Mar Ecol Prog Ser 176:205–214

    CAS  Google Scholar 

  • Paerl HW, Fulton RS, Moisander PH, Dyble J (2001) Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci World 1:76–113

    CAS  Google Scholar 

  • Paerl HW, Valdes LM, Piehler MF, Lebo ME (2004) Solving problems resulting from solutions: The evolution of a dual nutrient management strategy for the eutrophying Neuse River Estuary, North Carolina, USA. Environ Sci Technol 38:3068–3073

    PubMed  CAS  Google Scholar 

  • Paerl HW, Hall NS, Calandrino ES (2011a) Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–1745

    Google Scholar 

  • Paerl RW, Johnson KS, Welsh RM, Worden AZ, Chavez FP, Zehr JP (2011b) Differential distributions of Synechococcus subgroups across the California current system. Front Microbiol 2:59. doi:10.3389/fmicb.2011.0005

    PubMed  Google Scholar 

  • Panosso R, Granéli E (2000) Effects of dissolved organic matter on the growth of Nodularia spumigena (Cyanophyceae) cultivated under N and P deficiency. Mar Biol 136:331–336

    Google Scholar 

  • Paulsen DM, Paerl HW, Bishop PE (1991) Evidence that molybdenum-dependent nitrogen fixation is not limited by high sulfate in marine environments. Limnol Oceanogr 36:1325–1334

    CAS  Google Scholar 

  • Pearsall W (1932) Phytoplankton in the English Lakes. 2. The composition of the phytoplankton in relation to dissolved substances. J Ecol 20:241–262

    CAS  Google Scholar 

  • Peeters F, Straile D, Lorke A, Livingstone DM (2007) Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Glob Change Biol 13:1898–1909

    Google Scholar 

  • Phlips EJ, Badylak S, Lynch TC (1999) Blooms of the picoplanktonic cyanobacterium Synechococcus in Florida Bay, a subtropical inner-shelf lagoon. Limnol Oceanogr 44:1166–1175

    Google Scholar 

  • Piehler MF, Dyble J, Moisander PH, Pinckney JL, Paerl HW (2002) Effects of modified nutrient concentrations and ratios on the structure and function of the native phytoplankton community in the Neuse River Estuary, North Carolina USA. Aquat Ecol 36:371–385

    CAS  Google Scholar 

  • Pihl L, Baden SP, Diaz RJ (1991) Effects of periodic hypoxia on distributions of demersal fish and crustaceans. Mar Biol 108:349–360

    Google Scholar 

  • Pinckney JL, Millie DF, Vinyard BT, Paerl HW (1997) Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary (North Carolina, USA). Can J Fish Aquat Sci 54:2491–2501

    Google Scholar 

  • Potts M (1980) Blue-green algae (cyanophyta) in marine coastal environment of the Sinai Peninsula: distribution, zonation, stratification and taxonomic diversity. Phycologia 19:60–73

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Poutanen EL, Nikkilä K (2001) Carotenoid pigments as tracers of cyanobacterial blooms in recent and post-glacial sediments of the Baltic Sea. Ambio 30:179–183

    PubMed  CAS  Google Scholar 

  • Prufert-Bebout L, Paerl HW, Lassen C (1993) Growth, nitrogen fixation, and spectral attenuation in cultivated Trichodesmium species. Appl Environ Microbiol 59:1367–1375

    PubMed  CAS  Google Scholar 

  • Rabalais NN, Turner RE (eds) (2001) Coastal hypoxia: consequences for living resources and ecosystems, Coastal and Estuarine studies 58. American Geophysical Union, Washington, DC, 454 pp

    Google Scholar 

  • Ray RT, Haas LW, Sieracki ME (1989) Autotrophic picoplankton dynamics in a Chesapeake Bay sub-estuary. Mar Ecol Prog Ser 52:273–285

    Google Scholar 

  • Redfield AC (1958) The biological control of chemical factors in the environment. Am Sci 46:205–222

    CAS  Google Scholar 

  • Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Lett 39:51–56

    CAS  Google Scholar 

  • Reynolds CS (1987) Cyanobacterial water blooms. Adv Bot Res 13:67–143

    Google Scholar 

  • Reynolds CS (2006) The ecology of Phytoplankton. Cambridge University Press, Cambridge, UK, 535 pp

    Google Scholar 

  • Reynolds CS, Walsby AE (1975) Water blooms. Biol Rev 50:437–481

    CAS  Google Scholar 

  • Richardson K (1997) Harmful or exceptional phytoplankton blooms in the marine ecosystem. Adv Mar Biol 31:302–385

    Google Scholar 

  • Robarts RD, Zohary T (1987) Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. NZ J Mar Freshw Res 21:391–399

    CAS  Google Scholar 

  • Rocap G, Distel DL, Waterbury JB, Chisholm SW (2002) Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl Environ Microbiol 68:1180–1191

    CAS  Google Scholar 

  • Rueter J, Hutchins DA, Smith RW, Unsworth NL (1992) Iron nutrition of Trichodesmium. In: Carpenter EJ, Capone DG, Rueter JG (eds) Marine pelagic cyanobacteria: Trichodesmium and other Diazotrophs. Kluwer Academic Publishers, Dordrecht, pp 289–306, 357 pp

    Google Scholar 

  • Ryther JH, Dunstan WM (1971) Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science 171:1008–1112

    PubMed  CAS  Google Scholar 

  • Sañudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411:66–69

    PubMed  Google Scholar 

  • Schindler DW (1975) Whole-lake eutrophication experiments with phosphorus, nitrogen and carbon. Verh Int Ver Theor Angew Limnol 19:3221–3231

    Google Scholar 

  • Schindler DW, Hecky RE, Findlay DL, Stainton MP, Parker BR, Paterson M, Beaty KG, Lyng M, Kasian SEM (2008) Eutrophication of lakes cannot be controlled by reducing nitrogen input: results of a 37-year whole-ecosystem experiment. Proc Natl Acad Sci USA 105:11254–11258

    PubMed  CAS  Google Scholar 

  • Schopf WJ (1993) Microfossils of the Early Archean Apex Chert: new evidence of the antiquity of life. Science 260:640

    PubMed  CAS  Google Scholar 

  • Seitzinger SP, Giblin AE (1996) Estimating denitrification in North Atlantic continental shelf sediments. Biogeochemistry 35:235–259

    CAS  Google Scholar 

  • Sellner KG (1997) Physiology, ecology, and toxic properties of marine cyanobacteria blooms. Limnol Oceanogr 42:1089–1104

    Google Scholar 

  • Seward AC (ed) (1909) Darwin and modern science. Essays in commemoration of the centenary of the birth of Charles Darwin and of the fiftieth anniversary of the publication of The origin of species. Cambridge: Cambridge University Press

    Google Scholar 

  • Shapiro J (1990) Current beliefs regarding dominance of blue-greens: the case for the importance of CO2 and pH. Verh Int Ver Theor Angew Limnol 24:38–54

    Google Scholar 

  • Sharif DI, Gallon J, Smith CJ, Dudley E (2008) Quorum sensing in Cyanobacteria: N-octanoyl-homoserine lactone release and response, by the epilithic colonial cyanobacterium Gloeothece PCC6909. ISME J 2:1171–1182

    PubMed  CAS  Google Scholar 

  • Smetacek V, Bathmann U, Nöthig E-M, Scharek R (1991) Coastal eutrophication: causes and consequences. In: Mantoura RCF, Martin J-M, Wollast R (eds) Ocean margin processes in global change. Wiley, Chichester, pp 251–279

    Google Scholar 

  • Smith VH (1983) Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221:669–671

    PubMed  CAS  Google Scholar 

  • Smith VH (1990) Nitrogen, phosphorus, and nitrogen fixation in lacustrine and estuarine ecosystems. Limnol Oceanogr 35:1852–1859

    CAS  Google Scholar 

  • Staal M, Meysman FJR, Stal LJ (2003) Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans. Nature 425:504–507

    PubMed  CAS  Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274

    PubMed  CAS  Google Scholar 

  • Stein JR (1973) Phycological methods. Cambridge University Press, Cambridge, 448 pp

    Google Scholar 

  • Stewart I, Falconer IR (2008) Cyanobacteria and cyanobacterial toxins. In: Walsh PJ, Smith SL, Fleming LE, Solo-Gabriele HM, Gerwick WH (eds) Oceans and human health: risks and remedies from seas. Academic, New York, pp 271–296

    Google Scholar 

  • Stow CA, Borsuk ME, Stanley DW (2001) Long-term changes in watershed nutrient inputs and riverine exports in the Neuse River, North Carolina. Water Res 35:489–499

    Google Scholar 

  • Stüken A, Rücker J, Endrulat T, Preussel K, Hemm M, Nixdorf B, Karsten U, Wiedner C (2006) Distribution of three alien cyanobacterial species (Nostocales) in northeast Germany: Cylindrospermopsis raciborskii, Anabaena bergii and Aphanizomenon aphanizomenoides. Phycologia 45:696–703

    Google Scholar 

  • Subramaniam A, Brown CW, Hood R, Carpenter EJ, Capone DG (2001) Detecting Trichodesmium blooms in SeaWiFS imagery. Deep Sea Res 49:107–121

    Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M (2007) Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuar Coast Shelf Sci 71:580–592

    Google Scholar 

  • Sylvan JB, Dortch Q, Nelson DM, Maier Brown AF, Morrison W, Ammerman JW (2006) Phosphorus limits phytoplankton growth on the Louisiana shelf during the period of hypoxia formation. Environ Sci Technol 40:7548–7553

    PubMed  CAS  Google Scholar 

  • Taylor FJR (1982) Symbioses in marine microplankton. Ann Inst Oceanogr (Paris) 58:61–90

    Google Scholar 

  • Ter Steeg PF, Hanson PJ, Paerl HW (1986) Growth-limiting quantities and accumulation of molybdenum in Anabaena oscillarioides (cyanobacteria). Hydrobiologia 140:143–147

    Google Scholar 

  • Thomas WH, Gibson CH (1990) Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax-Polyedra Stein. Deep Sea Res A 37:1583–1593

    Google Scholar 

  • Tilman D, Kiesling RL (1984) Freshwater algal ecology: taxonomic tradeoffs in the temperature dependence of nutrient competitive abilities. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. American Society for Microbiology, Washington, DC, pp 314–320

    Google Scholar 

  • Tonk L, Bosch K, Visser PM, Huisman J (2007) Salt tolerance of the harmful cyanobacterium Microcystis aeruginosa. Aquat Microb Ecol 46:117–123

    Google Scholar 

  • Vahtera E, Laanemets J, Pavelson J, Huttunen M, Kononen K (2005) Effect of upwelling on the pelagic environment and bloom-forming cyanobacteria in the western Gulf of Finland, Baltic Sea. J Mar Syst 58:67–82

    Google Scholar 

  • Villareal TA (1992) Marine nitrogen-fixing diatom-cyanobacteria symbioses. In: Carpenter EJ, Capone DG, Rueter JG (eds) Marine pelagic cyanobacteria, Trichodesmium and other Diazotrophs. Kluwer Academic Publishers, Dordrecht, pp 163–175, 357 pp

    Google Scholar 

  • Villareal TA (1994) Widespread occurrence of the Hemiaulus-cyanobacteria symbiosis in the southwest North Atlantic Ocean. Bull Mar Sci 54:1–7

    Google Scholar 

  • Villareal TA, Carpenter EJ (1990) Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnol Oceanogr 35:1832–1837

    Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenko J, Mellilo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    CAS  Google Scholar 

  • Vollenweider RA, Kerekes JJ (1982) Eutrophication of waters: monitoring, assessment and control. OECD, Paris

    Google Scholar 

  • Vollenweider RA, Marchetti R, Viviani R (eds) (1992) Marine coastal eutrophication. Elsevier Science, New York

    Google Scholar 

  • Walsby AE (1974) The extracellular products of Anabaena cylindrica Lemm. I. Isolation of a macromolecular pigment-peptide complex. Br Phycol J 9:371–381

    Google Scholar 

  • Walsby AE (1992) The gas vesicles and buoyancy of Trichodesmium. In: Carpenter EJ, Capone DG, Rueter JG (eds) Marine pelagic cyanobacteria: Trichodesmium and other Diazotrophs. Kluwer Academic Publishers, Dordrecht, pp 141–161, 357 pp

    Google Scholar 

  • Walsh JJ, Steidinger KA (2001) Saharan dust and Florida red tides: the cyanophyte connection. J Geophys Res 106:11597–11612

    CAS  Google Scholar 

  • Waterbury JB, Rippka R (1989) Cyanobacteria. Subsection I. Order Chroococcales Wettstein 1924, emend. Rippka et al., 1979. In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams & Wilkins, Baltimore, pp 1728–1729

    Google Scholar 

  • Wiedner C, Rücker J, Brüggemann R, Nixdorf B (2007) Climate change affects timing and size of populations of an invasive cyanobacterium in temperate regions. Oecologia 152:473–484

    PubMed  Google Scholar 

  • Wolk CP (1982) Heterocysts. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 359–386, 688 pp

    Google Scholar 

  • Yunes JS, Salomon PS, Matthiensen A, Beattie KA, Raggett SL, Codd GA (2004) Toxic blooms of cyanobacteria in the Patos Lagoon Estuary, southern Brazil. J Aquat Ecosyst Stress Recovery 5:223–229

    Google Scholar 

  • Zehr JP, Paerl HW (2008) Molecular ecological aspects of nitrogen fixation in the marine environment. In: Kirchman D (ed) Microbial ecology of the oceans. Academic, New York, pp 481–525

    Google Scholar 

  • Zehr JP, Waterbury JB, Turner PJ, Montoya J, Omoregie E, Steward GF, Hansen A, Karl DM (2001) Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412:635–638

    PubMed  CAS  Google Scholar 

  • Zehr JP, Methé B, Foster R (2005) New nitrogen-fixing microorganisms from the oceans: biological aspects and global implications. In: Wang YP, Lin M, Tian ZX, Elmerich C, Newton WE (eds) Biological nitrogen fixation, sustainable agriculture and the environment. Springer, Dordrecht, pp 361–365

    Google Scholar 

  • Zehr JP, Montoya JP, Jenkins BD, Hewson I, Mondragon E, Church MJ, Hansen A, Karl DM (2007) Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre. Limnol Oceanogr 52:169–183

    CAS  Google Scholar 

Download references

Acknowledgements

I appreciate the technical assistance and input of A. Joyner, R. Fulton, P. Moisander, J. Dyble-Bressie, L. Valdes-Weaver, and B. Peierls. Research discussed in this chapter was partially supported by the National Science Foundation (OCE 0726989, 0825466, 0812913, CBET 0826819, 0932632), NOAA-ECOHAB Project NA05NOS4781194, and EPA-STAR project R82867701, the US Dept. of Agriculture NRI Project 00-35101-9981, U.S. EPA STAR Project and R82867701, NOAA/North Carolina Sea Grant Program R/MER-43, the North Carolina Department of Natural Resources and Community Development/UNC Water Resources Research Institute (Neuse River Estuary Monitoring and Modeling Project, ModMon), and the St. Johns Water Management District, Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans W. Paerl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paerl, H.W. (2012). Marine Plankton. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_5

Download citation

Publish with us

Policies and ethics