Skip to main content

Subaerial Cyanobacteria

  • Chapter
  • First Online:
Book cover Ecology of Cyanobacteria II

Summary

Subaerial cyanobacterial communities are conspicuous on the surfaces of many environments subject to considerable water stress, though the communities are increasingly likely to be endolithic the greater the water stress. In temperate regions the communities tend to be best developed on calcareous surfaces, especially in the case of strict epiliths. However, the contrast with non-calcareous surfaces is less obvious in the tropics, where many examples of well developed cyanobacterial communities have been reported from non-calcareous surfaces. Detailed floristic lists often include species of Gloeocapsa, Pseudocapsa, Phormidium, Microcoleus, Tolypothrix, Scytonema, Dichothrix and Stigonema, and also Nostoc from the more horizontal surfaces. Almost all taxa have a well developed extracellular matrix, which includes scytonemin or other coloured UV-protective pigments in all except the most shaded environments. Although the general effects of differences in environmental factors such as temperature, light, UV stress, pH, CO2 and mineral nutrients are understood quite well, relatively little is known about the detailed responses to different combinations and periodicities of these factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadjian V (1993) The lichen symbiosis. Wiley, New York, 250 pp

    Google Scholar 

  • Ahmadjian V (1995) Lichens are more important than you think. BioScience 45:123–124

    Google Scholar 

  • Alexander V, Billington M (1986) Nitrogen fixation in the Alaskan taiga. In: Vleve V (ed) Forest ecosystems in the Alaskan Taiga. Springer, New York, pp 112–121

    Chapter  Google Scholar 

  • Al-Thukair AA, Golubic S (1991) New endolithic cyanobacteria from the Arabian Gulf. 1. Hyella immanis sp. nov. J Phycol 27:766–780

    Article  Google Scholar 

  • Anagnostidis K, Komárek J (1998) Cyanoprokaryota 1. Teil: Chroococcales. Süsswasserflora von Mitteleuropa. Gustav Fischer, Jena

    Google Scholar 

  • Anagnostidis K, Roussomoustaki M (1988) Cyanophytes from metal-burdened substrates. Arch Hydrobiol Suppl 80; Algol Stud 50–53:561–564

    Google Scholar 

  • Anagnostidis K, Economou-Amilli A, Roussomoustakaki M (1983) Epilithic and chasmoendolithic microflora (Cyanophyta, Bacillariophyta) from marbles of the Parthenon (Acropolis-Athens, Greece). Nova Hedwigia 38:227–287

    Google Scholar 

  • Anon (2005) http://www.EngineeringToolBox.com/

  • Badger MA, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Beckett RP, Kranner I, Minibayeva FV (2008) Stress physiology and symbiosis. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 136–153, 286 pp

    Google Scholar 

  • Bell RA, Athey PV, Sommerfeld MR (1988) Distribution of endolithic algae on the Colorado Plateau of northern Arizona. Southwest Nat 33:315–322

    Article  Google Scholar 

  • Bennett P, Siegel DI (1987) Increased solubility of quartz in water due to complexing organic compounds. Nature 326:684–687

    Article  CAS  Google Scholar 

  • Bergman B, Osborne B (2002) The Gunnera-Nostoc symbiosis. Biol Environ 102B:35–39

    Google Scholar 

  • Bolivar FC, Sanchez-Castillo PM (1997) Biomineralization processes in the fountains of the Alhambara, Granada, Spain. Biodeterior Biodegrad 40:205–215

    Article  CAS  Google Scholar 

  • Borzi A (1892) Alghe d’acqua dolce delle Papuasia, raccolte su cranii umani dissepolti. Nuov Notarisia (for 1892) 3:35–53

    Google Scholar 

  • Branco LHZ, Hoffmann L, Teiveira JP, de Morais-Filho JC (2009) Aerophytic cyanoprokaryotes from the Atlantic rainforest region of São Paulo State, Brazil: Chroococcales and Oscillatoriales. Cryptogam Algol 30:135–152

    Google Scholar 

  • Broady PA (1981) Ecological and taxonomic observations on subaerial epilithic algae from Princess Elizabeth Land and MacRobertson Land, Antarctica. Br Phycol J 16:257–266

    Article  Google Scholar 

  • Brook AJ (1968) The discoloration of roofs in the United States and Canada by algae. J Phycol 4:250

    Article  Google Scholar 

  • Brook GA, Folkoff ME, Box EO (1983) A world model of soil carbon dioxide. Earth Surf Proc Landf 8:79–88

    Article  CAS  Google Scholar 

  • Büdel B, Bendix J, Bicker FR, Green TGA (2008) Dewfall as a water source frequently activates the endolithic cyanobacterial communities in the granites of Taylor Valley, Antarctica. J Phycol 44:1415–1424

    Article  Google Scholar 

  • Büdel B, Schulz B, Reichenberger H, Fritz B, Green TGA (2009) Cryptoendolithic cyanobacteria from calcite marble rock ridges, Taylor Valley, Antarctica. Algol Stud 129:61–69

    Article  Google Scholar 

  • Caiola MG, Forni C, Albertano P (1987) Characterization of the algal flora growing on ancient Roman frescoes. Phycologia 26:387–396

    Article  Google Scholar 

  • Chacón E, Berrendero E, Garcia-Pichel F (2006) Biogeological signatures of microboring cyanobacterial communities in marine carbonates from Cabo Rojo, Puerto Rico. Sediment Geol 185:215–228

    Article  Google Scholar 

  • Chapman P (1993) Caves and cave life, New naturalist series. Harper Collins, London, 220 pp

    Google Scholar 

  • Claus G (1962) Data on the ecology of algae of Peace Cave in Hungary. Nova Hedwigia 21:55–79

    Google Scholar 

  • Couté A, Bury E (1988) Ultrastructure d’une cyanophyceé aerienne calcifeé cavernicole: Scytonema julianum (Frank) Richter (Hormogoneophyceae, Nostocales, Scytonemataceae). Hydrobiologia 160:219–240

    Article  Google Scholar 

  • Cox G, Benson D, Dwarte DM (1981) Ultrastructure of a cave wall cyanophyte, Gloeocapsa NS4. Arch Microbiol 130:165–174

    Article  Google Scholar 

  • Cox G, James JM, Leggett KEA, Osborne RAL (1989) Cyanobacterially deposited speleothems: subaerial stromatolites. Geomicrobiol J 7:245–252

    Article  Google Scholar 

  • Dan TK, Sreedharan VP, Patel M, Rothatgi FK (1982) The mechanism of blackening of tile surfaces. Int Biodeterior Bull 18:99–104

    Google Scholar 

  • Danin A (1993) Biogenic weathering of marble monuments in Didim, Turkey, and in Traian Column, Rome. Water Sci Technol 27:557–563

    CAS  Google Scholar 

  • Danin A, Canova G (1990) Deterioration of limestone walls in Jerusalem and marble monuments in Rome caused by cyanobacteria and cyanophilous lichens. Int Biodeterior 26:397–417

    Article  Google Scholar 

  • Danin A, Gerson R, Marton K, Garty J (1982) Patterns of limestone and dolomite weathering by lichens and blue-green algae and their paleoclimatic significance. Palaeogeogr Palaeoclimatol Palaeoecol 37:211–233

    Article  Google Scholar 

  • Darlington A (1981) Ecology of walls. Heinemann Educational Books, London

    Google Scholar 

  • Davis JS, Rands DG (1982) Lime incrusting Hapalosiphon intricatus (Cyanophyceae) and phosphate availability in a Florida cave. Schweiz Z Hydrol 44:289–294

    CAS  Google Scholar 

  • de Caire GZ, de Cano MS, de Mulé MCZ, Palma RM, Colombo K (1997) Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. J Appl Phycol 9:249–253

    Article  Google Scholar 

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forest. Nature 419:917–920

    Article  PubMed  CAS  Google Scholar 

  • DeLuca TH, Zackrisson O, Gentili F, Sellstedt A, Nilsson MC (2007) Ecosystem controls on nitrogen fixation in boreal feather moss communities. Ecologia 152(1):121–130

    Google Scholar 

  • DeLuca TH, Zackrisson O, Gundale MJ, Nilsson M-C (2008) Ecosystem feedbacks and nitrogen fixation in boreal forests. Science 320:1181

    Article  PubMed  CAS  Google Scholar 

  • Elix JA, Stocker-Wörgötter E (2008) Biochemistry and secondary metabolites. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, pp 106–135, 286 pp

    Google Scholar 

  • Ercegović A (1925) La végétation des lithophytes sur les calcaires et les dolomites en Croatie. Acta Bot Croat 1:64–114

    Google Scholar 

  • Ercegović A (1932) Études écologiques et sociologiques des Cyanophycées lithophytes de la côte Yougoslave de l’Adriatique. Bull Int Acad Yougosl Sci Beaux Arts 26:33–56

    Google Scholar 

  • Fjerdingstad E (1957) A lime incrusting community of a Danish well. Rev Algol 4:246–248

    Google Scholar 

  • Fjerdingstad E (1965) The algal flora of some ‘Tintenstriche’ in the ‘Alpes Maritimes’ (France). Schweiz Z Hydrol 27:167–171

    Google Scholar 

  • Fletcher A (1973) The ecology of maritime (supralittoral) lichens of some rocky shores of Anglesey. Lichenologist 5:401–422

    Article  Google Scholar 

  • Foerster JW (1971) The ecology of an elfin forest in Puerto Rico, 14. The algae of Pico del Oeste. J Arnold Arbor 52:86–109

    Google Scholar 

  • Friedmann EI, Larock PA, Brunson JO (1980) Adenosine triphosphate (ATP), chlorophyll, and organic nitrogen in endolithic microbial communities and adjacent soils in the dry valleys of southern Victoria Land. Antarct J US 15:164–167

    Google Scholar 

  • Fritsch FE (1907a) The subaerial and freshwater algal flora of the tropics. Ann Bot 21:235–275

    Google Scholar 

  • Fritsch FE (1907b) A general consideration of the subaerial and freshwater algal flora of Ceylon. A contribution to the study of tropical algal ecology. Part 1. Subaerial algae and algae of the inland fresh waters. Proc R Soc B 79:197–254

    Article  Google Scholar 

  • Fritsch FE, Rich F (1924) Contributions to our knowledge of the freshwater algae of Africa 4. Trans R Soc S Afr 11:297–398

    Article  Google Scholar 

  • Gademann K, Portmann C (2008) Secondary metabolites from cyanobacteria: complex structures and powerful bioactivities. Curr Org Chem 12:326–341

    Article  CAS  Google Scholar 

  • Garcia-Pichel F, Ramírez-Reinat E, Gao Q (2010) Microbial excavation of solid carbonates powered by P-type ATPase-mediated transcellular Ca++ transport. Proc Natl Acad Sci USA 107(50):21749–21754

    Article  PubMed  CAS  Google Scholar 

  • Garty J (1990) Influence of epilithic microorganisms on the surface temperature of building walls. Can J Bot 68:1349–1353

    Article  Google Scholar 

  • Geitler L (1932) Cyanophyceae. In: Rabenhorst L (ed) Kryptogamen-Flora von Deutschland, Österreich und der Schweiz 14. Akademische Verlagsgesellschaft, Leipzig, p 1139

    Google Scholar 

  • Gentili F, Nilsson M-C, Zackrisson O, DeLuca TH, Sellstedt A (2005) Physiological and molecular diversity of feather moss associative N2-fixing cyanobacteria. J Exp Bot 56:3121–3127

    Article  PubMed  CAS  Google Scholar 

  • Golubić S (1967a) Die Algenvegetation an Sandsteinfelsen Ost-Venezuelas (Cumaná). Int Rev Ges Hydrobiol 52:693–699

    Article  Google Scholar 

  • Golubić S (1967b) Algenvegetation der Felsen. In: Elster H-J, Ohle W (eds) Die Binnengewasser 23. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart

    Google Scholar 

  • Golubic S, Friedmann I, Schneider J (1981) The lithobiontic niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9(7):1613–1631

    Article  PubMed  CAS  Google Scholar 

  • Gunale VR, Balakrishnan MS (1983) Studies on the subaerial algal flora epiphytic on bryophytes. Indian J Bot 6:202–209

    Google Scholar 

  • Hall K, Lindgren BS, Jackson P (2005) Rock albedo and monitoring of thermal conditions in respect of weathering: some expected and some unexpected results. Earth Surf Proc Landf 30:801–811

    Article  Google Scholar 

  • Herrera A, Cockell CS, Self S, Blaxter M, Reitner J, Thorsteinsson T, Arp G, Drose W, Tindle AG (2009) A cryptoendolithic community in volcanic glass. Astrobiology 9:369–381

    Article  PubMed  CAS  Google Scholar 

  • Hirose H, Akyiama M (1967) A review of aerial and soil algae III. Bull Jpn Soc Phycol 15:107–118

    Google Scholar 

  • Hoffmann L (1986) Algues bleues aériennes et subaériennes du Grand-Duché de Luxembourg. Bull Jard Bot Natl Belg 56:77–127

    Article  Google Scholar 

  • Hoffmann L (1989) Algae of terrestrial habitats. Bot Rev 55:77–105

    Article  Google Scholar 

  • Ininbergs K, Bay G, Rasmussen U, Ward DA, Nilsson M-C (2011) Composition and diversity of nifH genes of nitrogen-fixing cyanobacteria associated with boreal forest feather mosses. New Phytol. doi:10.1111/j.1469-8137.2011.03809.x (11 pp)

  • Issa OM, Défarge C, Le Bissonais Y, Marin B, Duval O, Bruand A, S’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290:209–219

    Article  CAS  Google Scholar 

  • Jaag O (1945) Untersuchungen über die Vegetation und Biologie des näckten Gestein in den Alpen und im schweizerischen Mittelland. Schweiz Natur Ges 9:1–560 (For Gloeocapsa, see pp 180–221)

    Google Scholar 

  • John DM (1988) Algal growths on buildings: a general review and methods of treatment. Biodeterior Abstr 2:81–102

    Google Scholar 

  • Kol E (1968) Kryobiologie: Biologie und Limnologie der Schnees und Eises. I. Kryovegetation. In: Elster HJ, Ohle W (eds) Die Binnengewasser XXIV. Schweizerbart’sche, Stuttgart, 216 pp

    Google Scholar 

  • Komárek J, Anagnostidis K (2005) Cyanoprokaryota: 2.Teil/Part 2. Oscillatoriales. In: Büdel B, Krienitz L, Gärtner G, Schagerl M (eds) Süßwasserflora von Mitteleuropa 19(2). Spektrum/Elsevier, Heidelberg, 759 pp (Reprinted by Spektrum/Springer in 2008)

    Google Scholar 

  • Kranner I, Cram WJ, Zorn M (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc Natl Acad Sci USA 102:3141–3146

    Article  PubMed  CAS  Google Scholar 

  • Lagerström A, Nilsson M-C, Zackrisson O, Wardle DA (2007) Ecosystem input of nitrogen through biological fixation in feather mosses during ecosystem retrogression. Funct Ecol 21:1027–1033

    Article  Google Scholar 

  • Lange OL, Leisner JMR, Bilger W (1999) Chlorophyll fluorescence characteristics of the cyanobacterial lichen Peltigera rufescens under field conditions. II Diel and annual distribution of metabolic activity and possible mechanisms to avoid photoinhibition. Flora 194:413–430

    Google Scholar 

  • Leclerc JC, Couté A, Dupuy P (1983) Le climat annuel de deux grottes et d’une église du Poitou, où vivant des colonies pures d’algues sciaphiles. Crypt Algol 4:1–19

    Google Scholar 

  • Lefévre M (1974) La ‘Maladie verte’ de Lascaux. Stud Conserv 19:126–156

    Article  Google Scholar 

  • Lennihan R, Chapin SDM, Dickson LG (1994) Nitrogen fixation and photosynthesis in high arctic forms of Nostoc commune. Can J Bot 72:940–945

    Article  Google Scholar 

  • Lewin RA (2006) Black algae. J Appl Phycol 18:699–702

    Article  Google Scholar 

  • Lewin RA, Farnsworth PA, Yamanaka G (1981) The algae of green polar bears. Phycologia 20:303–314

    Article  Google Scholar 

  • Liermann LJ, Kalinowski BE, Brantley SL, Ferry JG (2000) Role of bacterial siderophores in dissolution of hornblende. Geochim Cosmochim Acta 64:587–602

    Article  CAS  Google Scholar 

  • Lindo Z, Whiteley JA (2011) Old trees contribute bio-available nitrogen through canopy bryophytes. Plant Soil 342:141–148

    Article  CAS  Google Scholar 

  • Lindo Z, Winchester NN (2007) Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forest, Vancouver Island, Canada. Soil Biol Biochem 39:2957–2966

    Article  CAS  Google Scholar 

  • Littler MM, Littler DS, Blair S, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59

    Article  PubMed  CAS  Google Scholar 

  • Lundberg J, McFarlane DA (2011) Subaerial freshwater phosphatic stromatolites in Deer Cave, Sarawak – a unique geobiological cave formation. Geomorphology 128:57–72

    Article  Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature, 2nd edn. WH Freeman & Co., New York

    Google Scholar 

  • Markham J (2009) Variations in moss-associated nitrogen fixation in boreal forest stands. Oecologia 161:353–359

    Article  PubMed  Google Scholar 

  • Martınez A, Asencio AD (2009) Distribution of cyanobacteria at the Gelada Cave (Spain) by physical parameters. J Cave Karst Stud 72:11–20

    Article  Google Scholar 

  • Meeks JC, Elhai J, Thiel T, Potts M, Larimer FW, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular symbiotic cyanobacterium. Photosynth Res 70:85–106

    Article  PubMed  CAS  Google Scholar 

  • Mikhailyuk TI (2008) Terrestrial lithophilic algae in a granite canyon of the Teteriv River (Ukraine). Biologia 63(6):824–830

    Article  Google Scholar 

  • Mulec J, Kosi G, Vrhovsek D (2008) Characterization of cave aerophytic algal communities and effects of irradiance levels on production of pigments. J Cave Karst Stud 70:3–12

    CAS  Google Scholar 

  • Nash TH III (2008) Introduction. In: Nash TH III (ed) Lichen biology, 2nd edn. Cambridge University Press, Cambridge, UK, p 286

    Chapter  Google Scholar 

  • Neustupa J, Škaloud P (2010) Diversity of subaerial algae and cyanobacteria growing on bark and wood in the lowland tropical forest of Singapore. Plant Ecol Evol 143:51–62

    Article  Google Scholar 

  • Nienow JA, Friedmann EI (1993) Terrestrial lithophytic (rock) communities. In: Friedmann EI, Thistle AB (eds) Antarctic microbiology. Wiley, New York, pp 343–412

    Google Scholar 

  • Nurul Islam AKM (1972) Subaerial algae of Bangladesh. Bangladesh J Bot 1:13–64

    Google Scholar 

  • Olsson-Francis K, de la Torre R, Cockell CS (2010) Isolation of novel extreme-tolerant cyanobacteria from a rock-dwelling microbial community by using exposure to low earth orbit. Appl Environ Microbiol 76(7):2115–2121

    Article  PubMed  CAS  Google Scholar 

  • Omelon CR, Pollard WH, Ferris FG (2006) Environmental controls on microbial colonization of high Arctic cryptoendolithic habitats. Polar Biol 30:3019–3029

    Article  Google Scholar 

  • Onek LA, Smith RJ (1992) Calmodulin and calcium mediated regulation of prokaryotes. J Gen Microbiol 138:1039–1049

    Article  PubMed  CAS  Google Scholar 

  • Pandey KD, Kashyap AK, Gupta RK (1992) Nitrogen fixation by cyanobacteria associated with moss communities in Schirmacher oasis, Antarctica. Isr J Bot 41:187–198

    CAS  Google Scholar 

  • Pentecost A (1978) Blue-green algae and freshwater carbonate deposits. Proc R Soc Lond B 200:43–61

    Article  CAS  Google Scholar 

  • Pentecost A (1982) A quantitative study of calcareous and Tintenstriche algae from the Malham district, Northern England. Br Phycol J 17:443–456

    Article  Google Scholar 

  • Pentecost A (1992) A note on the colonisation of limestone rocks by cyanobacteria. Arch Hydrobiol 124:167–172

    Google Scholar 

  • Pentecost A (1993) Field relationships between scytonemin density, growth and irradiance in cyanobacteria occurring in low illumination regimes. Microb Ecol 26:101–110

    Article  Google Scholar 

  • Pentecost A (1998) The significance of calcite (travertine) formation by algae in a moss-dominated travertine from Matlock Bath, England. Arch Hydrobiol 143:487–509

    CAS  Google Scholar 

  • Pentecost A (2010) Bark surface area in English woodlands - how much is there and how much do we sample? Bull Br Lichen Soc 107:35–43

    Google Scholar 

  • Pentecost A (2011) Some ‘Lamp Floras’ from show caves in Northern England. Cave Karst Sci (in press)

    Google Scholar 

  • Pentecost A, Rose F (1985) Changes in the cryptogam flora of the Wealden sandrocks, 1688–1984. Bot J Linn Soc 90:217–230

    Article  Google Scholar 

  • Pentecost A, Whitton BA (2000) Limestones. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer, Dordrecht, pp 258–279, 669 pp

    Google Scholar 

  • Pentecost A, Zhang Z (2004) A note on the distribution of plants in Scoska Cave, North Yorkshire, United Kingdom, and their relationship to light intensity. J Cave Karst Sci 31:119–122

    Google Scholar 

  • Petersen JB (1915) Studier over Danske aërofile alger. K Danske Vidensk Selsk Ser 7. 12:272–379

    Google Scholar 

  • Petersen JB (1928) The aerial algae of Iceland. In: Rosenvigne LK, Warming E (eds) Botany of Iceland 2. J. Frimodt, Copenhagen, pp 327–447

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Rev 58:755–805

    PubMed  CAS  Google Scholar 

  • Poulickova A, Hasler P (2007) Aerophytic diatoms from caves of Central Moravia (Czech Republic). Preslia 79:185–204

    Google Scholar 

  • Price GD, Badger MR (2002) Advances in understanding aquatic ­photosynthetic organisms utilize sources of dissolved inorganic carbon for CO2 fixation. Funct Plant Biol 29:117–121

    Article  CAS  Google Scholar 

  • Price GD, Maeda S, Omada T, Badger MR (2002) Modes of active inorganic carbon uptake in the cyanobacterium Synechoccocus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Proteau PJ, Gerwick WH, Garcia-Pichel F, Castenholz RW (1993) Structure of scytonemin, an ultraviolet sunscreen pigment from the sheaths of cyanobacteria. Experientia 49:825–829

    Article  PubMed  CAS  Google Scholar 

  • Raven J, Cockell CS (2006) Influence on photosynthesis of starlight, moonlight, planetlight and light pollution (reflections on PAR in the universe). Astrobiology 6:668–675

    Article  PubMed  CAS  Google Scholar 

  • Reynolds CS (1984) The ecology of freshwater Phytoplankton. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Sanmartín P, Villa F, Silva B, Cappitelli F, Prieto B (2010) Color measurements as a reliable method for estimating degradation to pigments. Biodegradation 22(4):763–771

    Article  PubMed  CAS  Google Scholar 

  • Schlichting HE Jr (1975) Some subaerial algae from Ireland. Br Phycol J 10:257–261

    Article  Google Scholar 

  • Schumm F, Aptroot A (2010) Seychelles lichen guide. Beck OHG, Süssen

    Google Scholar 

  • Shaw E, Hill DR, Brittain N, Wright DJ, Tauber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69(9):5679–5684

    Article  PubMed  CAS  Google Scholar 

  • Sheath RG, Vis ML, Hambrook JA, Kole KM (1996) Tundra stream macro-algae of North America: composition, distribution and physiological adaptations. Hydrobiologia 336:67–82

    Article  Google Scholar 

  • Strzelczyk AB (1981) Stone. In: Rose AH (ed) Microbial biodeterioration. Economic microbiol 6. Academic, London, pp 61–80

    Google Scholar 

  • Stumm W, Morgan JJ (1996) Aquatic chemistry – chemical equilibria and rates in natural waters, 3rd edn. Wiley Interscience, New York/London

    Google Scholar 

  • Suutari M, Majaneva M, Fewer DP, Voirin B, Aiello A, Friedl T, Chiarello AG, Blomster J (2010) Molecular evidence for a diverse green algal community growing in the hair of sloths and a specific association with Trichophilus welckeri (Chlorophyta, Ulvophyceae). BMC Evol Biol 10:86. doi:10.1186/1471-2148-10-86

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi N, Kohshima S, Seko K (2001) Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct Antarct Alp Res 33:115–122

    Article  Google Scholar 

  • Tian Y, He F (1996) A preliminary study on the microcommunity ecology of karst Cyanophyta in mat from Fendong Cave, Panxian, Guizhou. Carsalogica Sin 15:233–238

    Google Scholar 

  • Tripathi SN, Chung IK, Lee JA (2007) Diversity and characteristics of terrestrial cyanobacteria near Gimhae City, Korea. J Plant Biol 50(1):50–59

    Article  Google Scholar 

  • Trono GC (1961) Studies of the Myxophyceae and Chlorophyceae of the Araneta University campus and vicinity. Araneta J Agric 8(3):139–192

    Google Scholar 

  • Uher B (2010) Cyanobacterium Petalonema alatum BERK. ex KIRCHN. – species variability and diversity. Fottea 10:83–92

    Google Scholar 

  • Viles HA (1988) Cyanobacteria and other biological influences on terrestrial limestone weathering on Aldabra: implications for landform development. Biol Sci Wash Bull 8:5–13

    Google Scholar 

  • Vinogradova ON, Kovalenko OV, Wasser SP, Nevo E (1998) Species diversity gradient to darkness stress in blue-green algae/cyanobacteria: a microscale test in a prehistoric cave, Mount Carmel, Israel. Isr J Plant Sci 46:229–238

    Google Scholar 

  • Wee YC, Lee KB (1980) Proliferation of algae on buildings in Singapore. Int Biodeterior Bull 16:113–117

    Google Scholar 

  • Wetzel RG (2001) Limnology, 3rd edn. Academic, San Diego/London

    Google Scholar 

  • Whitton BA (1971) Terrestrial and freshwater algae of Aldabra. Philos Trans R Soc Lond B 260:249–255

    Article  Google Scholar 

  • Whitton BA (2011) Cyanobacteria. In: John DM, Whitton BA, Brook AJ (eds) The freshwater algal flora of the British Isles, 2nd edn. Cambridge University Press, Cambridge, pp 131–158

    Google Scholar 

  • Whitton BA, Diaz BM (1980) Chemistry and plants of streams and rivers with elevated zinc. Trace Subst Environ 14:457–463

    Google Scholar 

  • Whitton BA, Gale NL, Wixson BG (1981) Chemistry and plant ecology of zinc-rich wastes dominated by blue-green algae. Hydrobiologia 83:331–341

    Article  CAS  Google Scholar 

  • Woodhead N, Tweed RD (1954) The freshwater algae of Anglesey and Caernarvonshire. North West Nat 25:392–435

    Google Scholar 

  • Wujek DE, Cocuzza JM (1986) Morphology of hair of two- and three-toed sloths (Edentata: Brachypodidae). Rev Biol Trop 34:243–246

    PubMed  CAS  Google Scholar 

  • Wujek DE, Lincoln TA (1988) Ultrastructure and taxonomy of Oscillatoria pilicola, a new species of blue-green alga from sloth hair. Brenesis 29:1–6

    Google Scholar 

  • Wylie PA, Schlichting HE Jr (1974) A floristic survey of corticolous subaerial algae in North Carolina. J Elisha Mitch Sci Soc 89:179–183

    Google Scholar 

  • Zackrisson O, DeLuca TH, Nilsson M-C, Sellstedt A, Berglund L (2004) Nitrogen fixation increases with successional age in boreal forests. Ecology 85:327–3334

    Article  Google Scholar 

  • Zackrisson O, DeLuca TH, Gentili F, Sellstedt A, Jäderlund A (2009) Nitrogen fixation in mixed Hylocomium splendens moss communities. Oecologia 160(2):309–319

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann U (1969) Ökologische und physiologische Untersuchungen an der planktischen Blaualga Oscillatoria rubescens D.C. unter besonderer Berücksichtigung von Licht und Temperatur. Schweiz Z Hydrol 31:1–58

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Pentecost .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pentecost, A., Whitton, B.A. (2012). Subaerial Cyanobacteria. In: Whitton, B. (eds) Ecology of Cyanobacteria II. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-3855-3_10

Download citation

Publish with us

Policies and ethics