Skip to main content

Molecular and Signaling Pathways That Modulate Mesenchymal Stem Cell Self-renewal

  • Chapter
  • First Online:

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 6))

Abstract

Mesenchymal stem cells are multipotent stem cells that have the ability to multiply and maintain themselves while retaining the potential to differentiate into multiple lineages. This unique attribute of MSCs makes them attractive candidates for tissue repair. MSCs have been utilized in several preclinical and clinical models, but with limited progress in the translation of preclinical observations to clinical success. Inadequate survival of implanted cells in the host tissue is a substantial impediment in the progress of stem cell therapy. It is therefore a big task for the scientific community to understand and exploit the molecular signals that regulate the self-renewal and other properties that may regulate tissue engraftment of MSCs. Several published reports have examined the molecular mediators involved in MSC self-renewal and this chapter assembles the findings. Multiple developmentally conserved pathways have appeared as essential components that modulate MSC fate, including Wnt, BMP, Notch, and Hedgehog pathways. MSCs are introduced into complex microenvironments that provide competitive signals controlling self-renewal and differentiation. An understanding of the interplay between these signals provides a valuable insight into MSC regulation. Concomitantly, we have also reviewed the effects of growth factors, epigenetic modifications and telomerase activity that modulate MSC biology during self-renewal and differentiation. Particularly, we emphasize the involvement of key regulators, such as sFRP2, in maintaining MSC biology during self-renewal. This review will encompass the integration of extrinsic and intrinsic factors that determine the fate of MSCs and will highlight the major scientific developments in understanding the molecular regulators of MSC self-renewal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alfaro MP, Pagni M, Vincent A, Atkinson J, Hill MF, Cates J, Davidson JM, Rottman J, Lee E, Young PP (2008) A Wnt modulator sFRP2 enhances mesenchymal stem cell engraftment, granulation tissue formation and myocardial repair. Proc Natl Acad Sci USA 105:18366–18371

    Article  PubMed  CAS  Google Scholar 

  • Alfaro MP, Vincent A, Saraswati S, Thorne CA, Hong CC, Lee E, Young PP (2010) sFRP2 Suppression of Bone Morphogenic Protein (BMP) and Wnt signaling mediates Mesenchymal Stem Cell (MSC) self-renewal promoting engraftment and myocardial repair. J Biol Chem 285:35645–35653

    Article  PubMed  CAS  Google Scholar 

  • Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider CW, Harley CB (1992) Telomere length predicts replicative capacity of human fibroblasts. Proc Natl Acad Sci USA 89:10114–10118

    Article  PubMed  CAS  Google Scholar 

  • Bae S, Ahn JH, Park CW, Son HK, Kim KS, Lim NK, Jeon CJ, Kim H (2009) Gene and microRNA expression signatures of human mesenchymal stromal cells in comparison to fibroblasts. Cell Tissue Res 335:565–573

    Article  PubMed  CAS  Google Scholar 

  • Cho HH, Kim YJ, Kim SJ, Kim JH, Bae YC, Ba B, Jung JS (2006) Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12:111–121

    Article  PubMed  CAS  Google Scholar 

  • Collas P (2010) Programming differentiation potential in mesenchymal stem cells. Epigenetics 5:476–482

    Article  PubMed  CAS  Google Scholar 

  • Coutu DL, Francois M, Galipeau J (2011) Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood 117:6801–6812

    Article  PubMed  CAS  Google Scholar 

  • De Boer J, Wang HJ, Van Blitterswijk C (2004) Effects of Wnt signaling on proliferation and differentiation of human mesenchymal stem cells. Tissue Eng 10:393–401

    Article  PubMed  Google Scholar 

  • Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

    Article  PubMed  CAS  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    Article  PubMed  CAS  Google Scholar 

  • Gregory CA, Harpreet S, Perry AS, Prockop DJ (2003) The wnt signalling inhibitor Dickkopf-1 is required for reentry into the cell cycle of human adult stem cells from bone marrow. J Biol Chem 278:28067–28078

    Article  PubMed  CAS  Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024

    Article  PubMed  CAS  Google Scholar 

  • Karpowicz P, Morshead C, Kam A, Jervis E, Ramunas J, Cheng V, van der Kooy D (2005) Support for the immortal strand hypothesis: neural stem cells partition DNA asymmetrically in vitro. J Cell Biol 170:721–732

    Article  PubMed  CAS  Google Scholar 

  • Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204

    Article  PubMed  Google Scholar 

  • Lacadie SA, Zon LI (2011) The ERGonomics of hematopoietic stem cell self-renewal. Genes Dev 25:289–293

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Liu C, Xie Z, Song P, Zhao RC, Guo L, Liu Z, Wu Y (2011) Epigenetic dysregulation in mesenchymal stem cell aging and spontaneous differentiation. PLoS One 6:e20526

    Article  PubMed  CAS  Google Scholar 

  • Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lu ZZ, Wu ZZ, Zhang QW, Wang H, Jia XX, Duan HF, Wang LS (2004) Notch signaling stimulates osteogenic differentiation of human bone marrow-derived mesenchymal stem cells. Chin Sci Bull 49:815–818

    CAS  Google Scholar 

  • Metcalf D (2003) The unsolved enigmas of leukemia inhibitory factor. Stem Cells 21:5–14

    Article  PubMed  CAS  Google Scholar 

  • Mirotsou M, Zhang Z, Deb A, Zhang L, Gnecchi M, Noiseux N, Mu H, Pachori A, Dzau V (2007) Secreted frizzled related protein 2 (sFRP2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proc Natl Acad Sci USA 104:1643–1648

    Article  PubMed  CAS  Google Scholar 

  • Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsuka Y, Suda T, Katagiri T, Fukuda T, Maruyama M, Okuda A, Amemiya T, Kondoh Y, Tashiro H, Okazaki Y (2008) miR-125b inhibits osteoblastic differentiation by down-regulation of cell proliferation. Biochem Biophys Res Commun 368:267–272

    Article  PubMed  CAS  Google Scholar 

  • Plaisant M, Fontaine C, Cousin W, Rochet N, Dani C, Peraldi P (2009) Activation of hedgehog signaling inhibits osteoblast differentiation of human mesenchymal stem cells. Stem Cells 27:703–713

    Article  PubMed  CAS  Google Scholar 

  • Plaisant M, Giorgetti-Peraldi S, Gabrielson M, Loubat A, Dani C, Peraldi P (2011) Inhibition of hedgehog signaling decreases proliferation and clonogenicity of human mesenchymal stem cells. PLoS One 6:e16798

    Article  PubMed  CAS  Google Scholar 

  • Qiu W, Andersen TE, Bollerslev J, Mandrup S, Abdallah BM, Kassem M (2007) Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res 22:1720–1731

    Article  PubMed  CAS  Google Scholar 

  • Salem HK, Thiemermann C (2010) Mesenchymal stromal cells: current understanding and clinical status. Stem Cells 28:585–596

    PubMed  CAS  Google Scholar 

  • Serakinci N, Graakjaer J, Kolvraa S (2008) Telomere stability and telomerase in mesenchymal stem cells. Biochimie 90:33–40

    Article  PubMed  CAS  Google Scholar 

  • Song L, Webb NE, Song Y, Tuan RS (2006) Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells 24:1707–1718

    Article  PubMed  Google Scholar 

  • Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK (2011) Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 112:804–817

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Huang H, Huang W, Li L, Guo J, Huang B, Lu J (2008) The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells. J Genet Genomics 35:585–593

    Article  PubMed  CAS  Google Scholar 

  • Tome M, Lopez-Romero P, Albo C, Sepulveda JC, Fernandez-Gutierrez B, Dopazo A, Bernad A, Gonzalez MA (2011) miR-335 orchestrates cell proliferation, migration and differentiation in human mesenchymal stem cells. Cell Death Differ 18:985–995

    Article  PubMed  CAS  Google Scholar 

  • Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, Hung SC (2011) Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood 117:459–469

    Article  PubMed  CAS  Google Scholar 

  • Varga AC, Wrana JL (2005) The disparate role of BMP in stem cell biology. Oncogene 24:5713–5721

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R (2007) DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet 39:380–385

    Article  PubMed  CAS  Google Scholar 

  • Warzecha J, Gottig S, Bruning C, Lindhorst E, Arabmothlagh M, Kurth A (2006) Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro. J Orthop Sci 11:491–496

    Article  PubMed  CAS  Google Scholar 

  • Westwood C, Clements MO (2008) The biology of human mesenchymal stem cells. In: Levičar N, Habib NA, Gordon MY, Dimarakis I (eds) Stem cell repair and regeneration, vol 3. World Scientific, London, pp 1–19

    Chapter  Google Scholar 

  • Whitney MJ, Lee A, Ylostalo J, Zeitouni S, Tucker A, Gregory CA (2009) Leukemia inhibitory factor secretion is a predictor and indicator of early progenitor status in adult bone marrow stromal cells. Tissue Eng Part A 15:33–44

    Article  PubMed  CAS  Google Scholar 

  • Xiao YT, Xiang LX, Shao JZ (2007) Bone morphogenetic protein. Biochem Biophys Res Commun 362:550–553

    Article  PubMed  CAS  Google Scholar 

  • Zhang DY, Wang HJ, Tan YZ (2011) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through the DNA damage response and the p53/p21 pathway. PLoS One 6:e21397

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pampee P. Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Saraswati, S., Bastakoty, D., Young, P.P. (2012). Molecular and Signaling Pathways That Modulate Mesenchymal Stem Cell Self-renewal. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 6. Stem Cells and Cancer Stem Cells, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2993-3_12

Download citation

Publish with us

Policies and ethics