Skip to main content

The Prebiotic Chemistry of Nitrogen and the Origin of Life

  • Chapter
  • First Online:
Genesis - In The Beginning

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 22))

Abstract

This chapter provides a brief review of the major sources of prebiotic nitrogen for the origin of life. It considers the formation/delivery of reduced nitrogen, by terrestrial and exogenous processes, and considers how species such as amino acids and nucleobases might have become prebiotically available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anders E (1989) Pre-biotic organic matter from comets and asteroids. Nature 342:255–257

    Article  PubMed  CAS  Google Scholar 

  • Aubrey AD, Cleaves HJ, Bada JL (2009) The role of submarine hydrothermal systems in the synthesis of amino acids. Orig Life Evol Biosph 39:91–108

    Article  PubMed  CAS  Google Scholar 

  • Bar–Nun A, Chang S (1983) Photochemical reactions of water and carbon monoxide in Earth’s primitive atmosphere. J Geophys Res 88:6662–6672

    Article  Google Scholar 

  • Bar–Nun A, Hartman H (1978) Synthesis of organic compounds from carbon monoxide and water by UV photolysis. Orig Life 9:93–101

    Article  PubMed  Google Scholar 

  • Beukes NJ, Klein C (1992) 4.3 Models for iron-formation deposition. In: Schopf JW, Klein C (eds) The proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge, pp 147–151

    Google Scholar 

  • Borquez E, Cleaves HJ, Lazcano A, Miller SL (2005) An investigation of prebiotic purine synthesis from the hydrolysis of HCN polymers. Orig Life Evol Biosph 35:79–90

    Article  PubMed  CAS  Google Scholar 

  • Borucki WJ, Chameides WL (1984) Lightning: estimates of the rates of energy dissipation and nitrogen fixation. Rev Geophys Space Phys 22:363–372

    Article  CAS  Google Scholar 

  • Boyd ID (2000) Computation of atmospheric entry flow about a Leonid meteoroid. Earth Moon Planet 82–83:93–108

    Google Scholar 

  • Braterman PS, Cairns-Smith AG (1987) Iron photoprecipitation and the genesis of the banded iron-formations. In: Appel PWU, LaBerge GL (eds) Precambrian iron-formations. Theophrastus Publications, Athens, pp 215–245

    Google Scholar 

  • Braterman PS, Cairns-Smith AG, Sloper RW (1983) Photooxidation of hydrated Fe2+: the significance for banded iron formations. Nature 303:163–164

    Article  CAS  Google Scholar 

  • Brooks DJ, Fresco JR, Lesk AM, Singh M (2002) Evolution of amino acid frequencies in proteins over deep time: inferred order of introduction of amino acids into the genetic code. Mol Biol Evol 19:1645–1655

    Article  PubMed  CAS  Google Scholar 

  • Catling DC (2006) Comment on “a hydrogen-rich early earth atmosphere”. Science 311:38a

    Article  Google Scholar 

  • Chameides WL (1979) Effect of variable energy input on nitrogen fixation in instantaneous linear discharges. Nature 277:123–125

    Article  CAS  Google Scholar 

  • Chameides WL, Walker JCG (1981) Rates of fixation by lightning of carbon and nitrogen in possible primitive atmospheres. Orig Life 11:291–302

    Article  PubMed  CAS  Google Scholar 

  • Chang S, DesMarais D, Mack R, Miller SL, Strathearn GE (1983) Prebiotic organic synthesis and the origin of life. In: Shopf JW (ed) Earth’s earliest biosphere: its origin and evolution. Princeton University Press, Princeton, pp 53–92

    Google Scholar 

  • Chyba C, Sagan C (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: an inventory for the origins of life. Nature 355:125–132

    Article  PubMed  CAS  Google Scholar 

  • Chyba CF, Sagan C (1997) Comets as a source of prebiotic organic molecules for the early Earth. In: Thomas PJ, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, Berlin-Heidelberg, pp 147–173

    Google Scholar 

  • Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL (2008) A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. Orig Life Evol Biosph 38:105–115

    Article  PubMed  CAS  Google Scholar 

  • Cloud P (1973) Paleoecological significance of the banded iron-formation. Econ Geol 68:1135–1143

    Article  CAS  Google Scholar 

  • Cotton FA, Wilkinson G (1980) Advanced inorganic chemistry: a comprehensive text. Wiley, New York, pp 412–413, Chapter 13–3

    Google Scholar 

  • Delano JW (2001) Redox history of the Earth’s interior since 3900 Ma: implications for prebiotic molecules. Orig Life Evol Biosph 31:311–341

    Article  PubMed  CAS  Google Scholar 

  • Delsemme AH (1992) Cometary origin of carbon, nitrogen, and water on the Earth. Orig Life Evol Biosph 21:279–298

    Article  Google Scholar 

  • Derry LA, Jacobsen SB (1990) The chemical evolution of Precambrian seawater: evidence from REEs in banded iron formations. Geochem Cosmochem Acta 54:2965–2975

    Article  CAS  Google Scholar 

  • Dodd RT (1981) Chapter 2: The chondrites: chemistry and classification. In: Meteorites: a petrologic-chemical analysis. Cambridge University Press, Cambridge, pp 18–23

    Google Scholar 

  • Drever JI (1974) Geochemical model of the origin of Precambrian banded iron formations. Geol Soc Am Bull 85:1099–1106

    Article  CAS  Google Scholar 

  • Enders D, Shilvock JP (2000) Some recent applications of α-amino nitrile chemistry. Chem Soc Rev 29:359–373

    Article  CAS  Google Scholar 

  • Fegley B Jr, Prinn RG, Hartman H, Watkins GH (1986) Chemical effects of large impacts on the Earth’s primitive atmosphere. Nature 319:305–308

    Article  PubMed  CAS  Google Scholar 

  • Hansen HCB, Koch CB (1996) Reduction of nitrate to ammonium by sulphate green rust: activation energy and reaction mechanism. Clay Miner 33:87–101

    Article  Google Scholar 

  • Hansen HCB, Koch CB, Nancke-Krogh H, Borggaard OK, Sorensen J (1996) Abiotic nitrate reduction to ammonium: key role of green rust. Environ Sci Technol 30:2053–2056

    Article  CAS  Google Scholar 

  • Hayatsu R, Studier MH, Moore LP, Anders E (1975) Purines and triazines in the Murchison meteorite. Geochim Cosmochim Acta 39:471–488

    Article  CAS  Google Scholar 

  • Hill A, Orgel LE (2002) Synthesis of adenine from HCN tetramer and ammonium formate. Orig Life Evol Biosph 32:99–102

    Article  PubMed  CAS  Google Scholar 

  • Holland HD (1973) The oceans: a possible source of iron in iron-formations. Econ Geol 68:1169–1172

    Article  CAS  Google Scholar 

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, Princeton, pp 387–388, 396–397

    Google Scholar 

  • Holm NG, Andersson E (2005) Hydrothermal simulation experiments as a tool for studies of the ­origin of life on Earth and other terrestrial planets: a review. Astrobiology 5:444–460

    Article  PubMed  CAS  Google Scholar 

  • Hubbard JS, Hardy JP, Horowitz NH (1971) Photocatalytic productions of organic compounds from CO and H2O in a simulated Martian atmosphere. Proc Natl Acad Sci USA 68:574–578

    Article  PubMed  CAS  Google Scholar 

  • Hunten DM (1993) Atmospheric evolution of the terrestrial planets. Science 259:915–920

    CAS  Google Scholar 

  • Jebens DS, Lakkaraju HS, McKay CP, Borucki WJ (1992) Time resolved simulation of lighting by LIP. Geophys Res Lett 19:273–276

    Article  PubMed  CAS  Google Scholar 

  • Jenniskens P (2001) Meteors as a delivery vehicle for organic matter to the early earth. In: Proceedings of the Meteoroids 2001 conference. European Space Agency, ESA SP-495. Swedish Insititute of Space Physics, Kiruna, Sweden, pp 247–254

    Google Scholar 

  • Jenniskens P, Stenbaek-Nielsen HC (2004) Meteor wake in high frame-rate images—implications for the chemistry of ablated organic compounds. Astrobiology 4:95–108

    Article  PubMed  CAS  Google Scholar 

  • Jenniskens P, Wilson MA, Packan D, Laux CO, Krüget CH, Boyd ID, Popova OP, Fonda M (2000) Meteors: a delivery mechanism of organic matter to the early earth. Earth Moon Planet 82–83:57–70

    Google Scholar 

  • Jenniskens P, Schaller EL, Laux CO, Wilson MA, Schmidt G, Rairden RL (2004) Meteors do not break exogenous organic molecules into high yields of diatomics. Astrobiology 4:67–79

    Article  PubMed  CAS  Google Scholar 

  • Kasting JF (1990) Bolide impacts and the oxidation state of carbon in the Earth’s early atmosphere. Orig Life Evol Biosph 20:199–231

    Article  CAS  Google Scholar 

  • Kharecha P, Kasting J, Siefert J (2005) A coupled atmosphere–ecosystem model of the early Archean Earth. Geobiology 3:53–76

    Article  CAS  Google Scholar 

  • Kulikov YN, Lammer H, Lichtenegger HIM, Penz T, Breuer D, Spohn T, Lundin R, Biernat HK (2007) A comparative study of the influence of the active young Sun on the early atmospheres of Earth, Venus, and Mars. Space Sci Rev 129:207–243

    Article  CAS  Google Scholar 

  • Kung C-C, Clayton RN (1978) Nitrogen abundances and isotopic compositions in stony meteorites. Earth Planet Sci Lett 38:421–435

    Article  CAS  Google Scholar 

  • Lerner NR, Peterson E, Chang S (1993) The strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis. Geochim Cosmochim Acta 57:4713–4723

    Article  PubMed  CAS  Google Scholar 

  • Levy M, Miller SL, Oró J (1999) Production of guanine from NH4CN polymerizations. J Mol Evol 49:165–168

    Article  PubMed  CAS  Google Scholar 

  • Mancinelli RL, McKay CP (1988) The evolution of nitrogen cycling. Orig Life Evol Biosph 18:311–325

    Article  PubMed  CAS  Google Scholar 

  • Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartzg AW, Ehrenfreund P (2008) Extraterrestrial nucleobases in the Murchison meteorite. Earth Planet Sci Lett 270:130–136

    Article  CAS  Google Scholar 

  • Mattioli GS, Wood BJ (1986) Upper mantle oxygen fugacity recorded by spinel lherzolites. Nature 322:626–628

    Article  CAS  Google Scholar 

  • Maurette M, Duprat J, Engrand C, Gounelle M, Durat G, Matrajt G, Toppani A (2000) Accretion of neon, organics, CO2, nitrogen, and water from large interplanetary dust particles on the early Earth. Planet Space Sci 48:1117–1137

    Article  CAS  Google Scholar 

  • Miller SL (1957) The mechanism of synthesis of amino acids by electric discharges. Biochim Biophys Acta 23:480–487

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Schlesinger G (1983) The atmosphere of the primitive Earth and the prebiotic synthesis of organic compounds. Adv Space Res 3:47–53

    Article  PubMed  CAS  Google Scholar 

  • Miller SL, Schlesinger G (1984) Carbon and energy yields in prebiotic syntheses using atmospheres containing CH4, CO and CO2. Orig Life Evol Biosph 14:83–90

    Article  CAS  Google Scholar 

  • Miller SL, Trump JEV (1981) The Strecker Synthesis in the primitive ocean. In: Wolmann A (ed) Origins of life. D. Reidel Publishing, Dordrecht, pp 135–141

    Chapter  Google Scholar 

  • Miller SL, Urey HC (1959) Organic compound synthesis on the primitive Earth. Science 130:245–251

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Yamanashi H, Kobayashi K, Cleaves HJ, Miller SL (2002a) Prebiotic synthesis from CO atmospheres: implications for the origins of life. Proc Natl Acad Sci USA 99:14628–14631

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa S, Cleaves HJ, Miller SL (2002b) The cold origins of life: B. Implications based on pyrimidines and purines produced from frozen ammonium cyanide solutions. Orig Life Evol Biosph 32:209–218

    Article  PubMed  CAS  Google Scholar 

  • Navarro–González R, Molina MJ, Molina LT (1998) Nitrogen fixation by volcanic lightning in the early Earth. Geophys Res Lett 25:3123–3126

    Article  Google Scholar 

  • Navarro–González R, Ramires SI, de la Rosa JG, Coll P, Raulin F (2001a) Production of hydrocarbons and nitriles by electrical processes in titan’s atmosphere. Adv Space Res 27:271–282

    Article  PubMed  Google Scholar 

  • Navarro–González R, Villagran-Muniz M, Sobral H, Molina LT, Molina MJ (2001b) The physical mechanism of nitric oxide formation in simulated lightning. Geophys Res Lett 28:3867–3870

    Article  Google Scholar 

  • Nelson KE, Robertson MP, Levy M, Miller SL (2001) Concentration by evaporation and the prebiotic synthesis of cytosine. Orig Life Evol Biosph 31:221–229

    Article  PubMed  CAS  Google Scholar 

  • Nna Mvondo D, Navarro-Gonzgdez R, McKay CP, Coll P, Raulin F (2001) Production of nitrogen oxides by lightning and coronae discharges in simulated early Earth, Venus and Mars environments. Adv Space Res 27:217–223

    Article  PubMed  CAS  Google Scholar 

  • Nna-Mvondo D, Navarro-González R, Raulin F, Coll P (2005) Nitrogen fixation by corona discharge on the early Precambrian Earth. Orig Life Evol Biosph 35:401–409

    Article  PubMed  CAS  Google Scholar 

  • Orgel LE (2002) Is cyanoacetylene prebiotic? Orig Life Evol Biosph 32:279–281

    Article  PubMed  CAS  Google Scholar 

  • Orgel L (2004) Prebiotic chemistry and the origin of the RNA world. Crit Rev Biochem Mol Biol 39:99–123

    Article  PubMed  CAS  Google Scholar 

  • Ottley CJ, Davison W, Edmunds WM (1997) Chemical catalysis of nitrate reduction by iron (II). Geochim Cosmochim Acta 61:1819–1828

    Article  CAS  Google Scholar 

  • Pinto JP, Gladstone GR, Yung YL (1980) Photochemical production of formaldehyde in Earth’s primitive atmosphere. Science 210:183–185

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S (2004) Chemical evolution and meteorites: an update. Orig Life Evol Biosph 34:25–34

    Article  PubMed  CAS  Google Scholar 

  • Pizzarello S, Cooper GW, Flynn GJ (2006) The nature and distribution of the organic material in carbonaceous chondrites and interplanetary dush particles. In: Lauretta DS, McSween HY Jr (eds) Meteorites and the Early Solar System II. The University of Arizona Press, Tuscson, pp 625–651

    Google Scholar 

  • Plankensteiner K, Reiner H, Schranz B, Rode BM (2004) Prebiotic formation of amino acids in a neutral atmosphere by electric discharge. Angew Chem Int Ed 41:1886–1888

    Article  Google Scholar 

  • Powner MW, Gerland B, Sutherland JD (2009) Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459:239–242

    Article  PubMed  CAS  Google Scholar 

  • Prinn RG, Jr. Fegley B (1987) Bolide impacts, acid rain, and biospheric traumas at the Cretaceous-Tertiary Boundary. Earth Planet Sci Lett 83:1–15

    Article  CAS  Google Scholar 

  • Rakshit S, Motocha CJ, Hazier GR (2005) Nitrate reduction in the presence of wusite. J Environ Qual 34:1286–1292

    Article  PubMed  CAS  Google Scholar 

  • Rakshit S, Matocha CJ, Coyne MS (2008) Nitrite reduction by siderite. Soil Sci Am J 72:1070–1077

    Article  CAS  Google Scholar 

  • Rosing MT, Bird DK, Sleep NH, Bjerrum CJ (2010) No climate paradox under the feint young sun.Nature 464:744–747

    Google Scholar 

  • Saladino R, Crestini C, Costanzo G, Negri R, Mauro ED (2001) A possible prebiotic synthesis of purine, adenine, cytosine, and 4(3H)-pyrimidinone from formamide: implications for the origin of life. Bioinorg Med Chem 9:1249–1253

    Article  CAS  Google Scholar 

  • Scattergood TW, McKay CP, Borucki WJ, Giver LP, Van Ghyseghem H, Parris JE, Miller SL (1989) Production of organic compounds in plasmas: a comparison among electric sparks, laser-induced plasmas, and UV light. Icarus 81:413–428

    Article  PubMed  CAS  Google Scholar 

  • Schoonen MAA, Xu Y (2001) Nitrogen reduction under hydrothermal vent conditions: implications for the prebiotic synthesis of C-H-O-N compounds. Astrobiology 1:133–141

    Article  PubMed  CAS  Google Scholar 

  • Schrauzer GN, Strampach N, Hui LN, Palmer MR, Salehi J (1983) Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci 80:3873–3876

    Article  PubMed  CAS  Google Scholar 

  • Simoneit BRT (2004) Prebiotic organic synthesis under hydrothermal conditions: an overview. Adv Space Res 33:88–94

    Article  CAS  Google Scholar 

  • Smirnov A, Hausner D, Laffers R, Strongin DR, Schoonen MA (2008) Abiotic ammonium formation in the presence of Ni-Fe metals and alloys and its implications for the Hadean nitrogen cycle. Geochem Trans 9:5–25

    Article  PubMed  Google Scholar 

  • Sobral H, Villagràn-Muniz M, Navarro-Gonzàlez R, Raga AC (2000) Temporal evolution of the shock wave and hot core air in laser induced plasma. Appl Phys Lett 77:3158–3160

    Article  CAS  Google Scholar 

  • Stoks PG, Schwartz AW (1981) Nitrogen-heterocyclic compounds in meteorites: significance and mechanisms of formation. Geochim Cosmochim Acta 45:563–569

    Article  CAS  Google Scholar 

  • Summers DP (1999) Sources and sinks for ammonia and nitrite on the early Earth and the reaction of nitrite with ammonia. Orig Life Evol Biosph 29:33–46

    Article  PubMed  CAS  Google Scholar 

  • Summers DP (2005) Ammonia formation by the reduction of nitrite/nitrate by FeS: ammonia formation under acidic conditions. Orig Life Evol Biosph 35:299–312

    Article  PubMed  CAS  Google Scholar 

  • Summers DP, Chang S (1993) Prebiotic ammonia from reduction of nitrite by iron(II) on the early Earth. Nature 365:630–633

    Article  PubMed  CAS  Google Scholar 

  • Summers DP, Khare B (2007) Nitrogen fixation on early Mars and other terrestrial planets. Experimental demonstration of abiotic fixation reactions to nitrite and nitrate. Astrobiology 7:333–341

    Article  PubMed  CAS  Google Scholar 

  • Summers DP, Lerner N (1996) Strecker synthesis using ammonia from iron(II) reduction of nitrite: do iron(II) and cyanide interfere with each other? Orig Life Evol Biosph 26:221–222

    Article  Google Scholar 

  • Tian F, Toon OB, Pavlov AA, Sterck HD (2005) A hydrogen-rich early Earth atmosphere. Science 308:1014–1017

    Article  PubMed  CAS  Google Scholar 

  • Towe KM (1983) Precambrian atmospheric oxygen and banded iron formations: a delayed ocean model. Precambrain Res 20:161–170

    Article  CAS  Google Scholar 

  • van der Velden W, Schwartz AW (1977) Search for purines and pyrimidines in the Murchison meteorite. Geochim Cosmochim Acta 41:961–968

    Article  Google Scholar 

  • Veizer J (1978) Secular variations in the composition of sedimentary carbonate rocks, II. Fe, Mn, CA, Mg, Si and minor constituents. Precambrian Res 6:381–413

    Article  CAS  Google Scholar 

  • Walker JCG (1985) Carbon dioxide on the early Earth. Orig Life 16:117–127

    Article  CAS  Google Scholar 

  • Walker JCG, Brimblecombe P (1985) Iron and sulfur in the pre-biological ocean. Precambrian Res 28:205–222

    Article  PubMed  CAS  Google Scholar 

  • Weber AL (2010) Sugar-driven prebiotic synthesis of ammonia from nitrite. Orig Life Evol Biosph 40:245–252

    Article  PubMed  CAS  Google Scholar 

  • Wen J-S, Pinto JP, Yung YL (1989) Photochemistry of CO and H2O: analysis of laboratory experiments and applications to the prebiotic Earth’s atmosphere. J Geophys Res E Planet 94:14957–14970

    Article  CAS  Google Scholar 

  • Wood BJ, Vigo D (1989) Upper mantle oxidation state: ferric iron contents of lherzolite spinels by 57Fe Mossbauer spectroscopy and resultant oxygen fugacities. Geochim Cosmochim Acta 53:1277–1989

    Article  CAS  Google Scholar 

  • Yung YL, McElroy MB (1979) Fixation of nitrogen in the prebiotic atmosphere. Science 203:1002–1004

    Article  PubMed  CAS  Google Scholar 

  • Zahnle KJ (1990) Atmospheric chemistry by large impacts. In: Sharpton VL, Wards PD (eds) Global catastrophes in Earth history: an interdisciplinary conference on impacts, volcanism and mass mortality. Geological Society of America, Boulder, pp 271–287

    Google Scholar 

  • Zubay G, Mui T (2001) Prebiotic synthesis of nucleotides. Orig Life Evol Biosph 31:87–102

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David P. Summers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Summers, D.P. (2012). The Prebiotic Chemistry of Nitrogen and the Origin of Life. In: Seckbach, J. (eds) Genesis - In The Beginning. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2941-4_12

Download citation

Publish with us

Policies and ethics