Skip to main content

Applications of Excilamps in Microbiological and Medical Investigations

  • Conference paper
  • First Online:

Abstract

In a course long-term and comparative studies it has been shown, that the DBD XeBr-excilamps looks as a good choice for various microorganisms inactivation. The first data about bacteriophage inactivation by XeBr-excilamp has been obtained. Radiant modules for industrial treatment on contaminated water have been developed. The XeCl-excilamp for treatment of skin diseases has been created and tested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kogelschatz U (2004) Excimer lamps: history, discharge physics and industrial applications. Proc SPIE 5483:272–286

    Article  ADS  Google Scholar 

  2. Baum G, Oppenländer T (1995) VUV-oxidation of chloroorganic compounds in an excimer flow through photoreactor. Chemosphere 30:1781–1790

    Article  Google Scholar 

  3. Lomaev MI, Skakun VS, Sosnin EA, Tarasenko VF, Shitts DV, Erofeev MV (2003) Excilamps: efficient sources of spontaneous UV and VUV radiation. Phys Usp 46:193–210

    Article  ADS  Google Scholar 

  4. Sosnin EA, Oppenländer T, Tarasenko VF (2006) Applications of capacitive and barrier ­discharge excilamps in photoscience. J Photochem Photobiol C Photochem Rev 7:145–163

    Article  Google Scholar 

  5. Lomaev MI, Sosnin EA, Tarasenko VF, Shits DV, Skakun VS, Erofeev MV, Lisenko AA (2006) Capacitive and barrier discharge excilamps and their applications. Instrum Exp Tech 49:595–616

    Article  Google Scholar 

  6. Sosnin EA, Sokolova IV, Tarasenko VF (2008) Development and applications of novel UV and VUV excimer and exciplex lamps for the experiments in photochemistry. In: Sanchez A, Gutierrez SJ (eds) Photochemistry research progress. Nova, New York, pp 225–269

    Google Scholar 

  7. Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  Google Scholar 

  8. Sosnin EA, Erofeev MV, Lisenko AA, Tarasenko VF, Shits DV (2002) Study of the service characteristics of a capacitive-discharge excilamp. J Opt Technol 69:509–511

    Article  Google Scholar 

  9. Avdeev SM, Sosnin ÉA, Tarasenko VF (2010) Factors that limit the service life of sealed chlorine-containing barrier-discharge exciplex lamps. J Opt Technol 77:42–44

    Article  Google Scholar 

  10. Shits DV, Avdeev SM, Skakun VS, Sosnin EA, Tarasenko VF (2011) Powerful portable module fpr UV irradiation based on inert gas-halogen mixtures. Russ Phys J 53:109–112 (in print)

    Google Scholar 

  11. Sosnin EA, Lavrent’eva LV, Yusupov MR, Masterova YV, Tarasenko VF (2002) Inactivation of Escherichia coli using capacitive discharge excilamps. In: Proceedings of the 2nd international workshop on biological effects of electromagnetic fields, Rhodes, Greece, pp 953–957, 7–11 Oct

    Google Scholar 

  12. Oppenländer T, Baum G (1996) Wasseraufbereitung mit Vakuum-UV/UV-Excimer-Durchflussphotoreaktoren. Wasser-Abwasser 137:321–325

    Google Scholar 

  13. Lavren’eva LV, Sosnin EA, Masterova YaV (2003) UV inactivation of microorganisms: comparative analysis of methods. Bull Tomsk State Univ Biol Sci 30:163–176

    Google Scholar 

  14. Laroussi M (2002) 2002. Non-thermal decontamination of biological media by atmospheric pressure plasmas: review, analysis and prospects. IEEE Trans Plasma Sci 30:1409–1415

    Article  ADS  Google Scholar 

  15. Avdeev SM, Sosnin EA, Velichevskaya KYu, Lavrent’eva LV (2008) Comparative study of UV radiation action of XeBr-excilamp and conventional low-pressure mercury lamp on bacteria. Proc SPIE 6938:693813

    Article  Google Scholar 

  16. Kalisvaart BF (2004) Re-use of wastewater: preventing the recovery of pathogens by using medium-pressure UV lamp technology. Water Sci Technol 50:337–344

    Google Scholar 

  17. Avdeev SM, Velichevskaya KYu, Sosnin EA, Tarsenko VF, Lavret’eva LV (2008) Analysis of germicidal action of UV radiation of excimer and exciplex lamps. Light Eng 16:32–38

    Google Scholar 

  18. Guidance P (2004) Using of bactericidal UV radiation for air decontamination in a housing, Ministry of Public Health of Russian Federation. 28 p, 3.5.1904–04

    Google Scholar 

  19. Zhdanova OS, Sosnin EA, Krasnoszhenov EP, Tarasenko VF, Avdeev SM, Gritsuta AV (2010) Hospital infections agents sensitivity to XeBr excilamp irradiation. J Infect Pathol 17:62–64

    Google Scholar 

  20. Gratia A (1936) Des relations numericues entre bacteries lysogenes at particules de bacteriophage. Ann Inst Pasteur 57:652–694

    Google Scholar 

  21. Krutmann JJ (1998) Therapeutic photoimmunology: photoimmunological mechanisms in photo(chemo)therapy. Photochem Photobiol B. 44:159–164

    Google Scholar 

  22. Hönigsmann H (2001) Phototherapy for psoriasis. Clin Dermatol 26:343–350

    Article  Google Scholar 

  23. Parrish JA, Jaencke KF (1981) Action spectrum for phototherapy of psoriasis. J Invest Dermatol 76:359–362

    Article  Google Scholar 

  24. Oppenländer T (1994) Novel incoherent excimer UV irradiation units for the application in photochemistry, photobiology, photomedicine and for waste water treatment. Eur Photochem Assoc Newslett 50:2–8

    Google Scholar 

  25. Dmitruck VS, Sosnin EA, Obgol’tz IA (2006) The first attempt of XeCl-excilamp application in complex psoriasis curing. Proc SPIE 6263:316–321

    Google Scholar 

  26. Sosnin EA, Erofeev MV, Tarasenko VF, Skakun VS, Shitz DV, Mersey T, Meilhac L (2006) Radiation source. Patent RU2 271590. Priority date 15 Mar 2004

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Federal Target Program “The scientific and scientific-pedagogical personnel of Innovative Russia”, State contract No. 02.740.11.0562. Discussions with L.V. Lavrent’eva, U. Kogelschatz, T. Oppenläender and technical assistance of S.M. Avdeev, A.V. Gritzyta, M.V. Erofeev, D.V. Schitz, V.S. Skakun are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor F. Tarasenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Tarasenko, V.F., Sosnin, E.A., Zhdanova, O.S., Krasnozhenov, E.P. (2012). Applications of Excilamps in Microbiological and Medical Investigations. In: Machala, Z., Hensel, K., Akishev, Y. (eds) Plasma for Bio-Decontamination, Medicine and Food Security. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2852-3_19

Download citation

Publish with us

Policies and ethics