Skip to main content

Nitric Oxide is a Bioproduct in Prokaryotes

  • Chapter
  • First Online:
The Biology of Subcellular Nitric Oxide
  • 877 Accesses

Abstract

It was known since the 1960’s that various denitrifying bacteria generate NO as an intermediate product of their dissimilatory NO3 metabolism (Mar Biol 1:136–139, 1967; J Bacteriol 106:356–361, 1971; Appl Environ Microbiol 31:504–508, 1976). Today several prokaryote species are known as NO producers; many of them synthesize NO by reduction of NO2 , while others contain NOS-like enzymes and show oxidative NO generation from L-arginine or Nω-hydroxy-L-arginine (Arch Microbiol 160:253–264, 1993; Trends Microbiol 17:212–218, 2009; Annu Rev Biochem 79:445–470, 2010). Various ecological niches house these NO producer prokaryotes: marine environments (Int J Syst Bacteriol 33:857–865, 1983; Int J Syst Evol Microbiol 55:919–924, 2005; Int J Syst Evol Microbiol 56:2153–2156, 2006; Mem Inst Oswaldo Cruz 104:678–682, 2009; Res Microbiol 161:604–612, 2010), poorly ventilated or flooded soils (Mol Biol Rev 61:533–616, 1997), contaminated and eutrophized waters (Shapleigh J The denitrifying prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The Prokaryotes. Springer, New York, pp. 769–792, 2006; Water Environ Res 79:2499–2509, 2007; Water Res 42:812–826, 2008), fermented meat or milk products (J Bacteriol 179:7812–7815, 1997; Eur Food Res Technol 223:35–38, 2006; Int J Food Microbiol 120:303–310, 2007) and the surface of mucosal barriers (New Horiz 3:352–364, 1995; Inflammation 21:443–450, 1997) are all colonized by NO synthesizing bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mitochondria of fungi also contain denitrifying enzymes.

  2. 2.

    The literature uses the “Nos” abbreviation to indicate nitrous oxide reductase. However we have reserved the “NOS” acronym for NO-synthase in this book. To avoid the confusion of these two distinct enzymes, we have applied the “N2OR” abbreviation for nitrous oxide reductase.

Bibliography

  • Agapie T, Suseno S, Woodward JJ, Stoll S, Britt RD, Marletta MA (2009) NO formation by a catalytically self-sufficient bacterial nitric oxide synthase from Sorangium cellulosum. Proc Natl Acad Sci USA 106:16221–16226

    Article  PubMed  CAS  Google Scholar 

  • Ahmed A, Lewis RS (2007) Fermentation of biomass-generated synthesis gas: effects of nitric oxide. Biotechnol Bioeng 97:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Asanuma K, Iijima K, Sugata H, Ohara S, Shimosegawa T, Yoshimura T (2005) Diffusion of cytotoxic concentrations of nitric oxide generated luminally at the gastro-oesophageal junction of rats. Gut 54:1072–1077

    Article  PubMed  CAS  Google Scholar 

  • Aurer A, Aleksic J, Ivic-Kardum M, Aurer J, Culo F (2001) Nitric oxide synthesis is decreased in periodontitis. J Clin Periodontol 28:565–568

    Article  PubMed  CAS  Google Scholar 

  • Balderston WL, Sherr B, Payne WJ (1976) Blockage by acetylene of nitrous oxide reduction in Pseudomonas perfectomarinus. Appl Environ Microbiol 31:504–508

    PubMed  CAS  Google Scholar 

  • Barbaree JM, Payne WJ (1967) Products of denitrification by a marine bacterium as revealed by gas chromatography. Mar Biol 1:136–139

    Article  CAS  Google Scholar 

  • Barbier B, Bertrand M, Boillot F, Chabin A, Chaput D, Henin O, Brack A (1998) Delivery of extraterrestrial amino acids to the primitive earth. Exposure experiments in earth orbit. Biol Sci Space 12:92–95

    Article  PubMed  CAS  Google Scholar 

  • Bartossek R, Nicol GW, Lanzen A, Klenk HP, Schleper C (2010) Homologues of nitrite reductases in ammonia-oxidizing archaea: diversity and genomic context. Environ Microbiol 12:1075–1088

    Article  PubMed  CAS  Google Scholar 

  • Bastian NR, Foster MJ, Pope JC (1995) Nitric oxide stabilizes the Mo(V) oxidation state of dimethyl sulfoxide reductase from Rhodobacter sphaeroides without inhibiting enzyme activity. Biofactors 5:5–10

    PubMed  CAS  Google Scholar 

  • Baumann P, Bowditch RD, Baumann L, Beamin B (1983) Taxonomy of marine Pseudomonas species: P. stanieri sp. nov., P. perfectomarina sp. nov., nom. rev.; P. nautica; and P. doudoroffii. Int J Syst Bacteriol 33:857–865

    Article  Google Scholar 

  • Baumgärtner M, Remde A, Bock E, Conrad R (1990) Release of nitric oxide from building stones into the atmosphere. Atmos Environ Part B: Urban Atmos 24:87–92

    Article  Google Scholar 

  • Bayindir YZ, Polat MF, Seven N (2005) Nitric oxide concentrations in saliva and dental plaque in relation to caries experience and oral hygiene. Caries Res 39:130–133

    Article  PubMed  CAS  Google Scholar 

  • Beaumont HJ, Hommes NG, Sayavedra-Soto LA, Arp DJ, Arciero DM, Hooper AB, Westerhoff HV, van Spanning RJ (2002) Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite. J Bacteriol 184:2557–2560

    Article  PubMed  CAS  Google Scholar 

  • Beaumont HJ, Lens SI, Reijnders WN, Westerhoff HV, van Spanning RJ (2004) Expression of nitrite reductase in Nitrosomonas europaea involves NsrR, a novel nitrite-sensitive transcription repressor. Mol Microbiol 54:148–158

    Article  PubMed  CAS  Google Scholar 

  • Beaumont HJ, Lens SI, Westerhoff HV, van Spanning RJ (2005) Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite. J Bacteriol 187:6849–6851

    Article  PubMed  CAS  Google Scholar 

  • Benjamin N, O’Driscoll F, Dougall H, Duncan C, Smith L, Golden M, McKenzie H (1994) Stomach NO synthesis. Nature 368:502

    Article  PubMed  CAS  Google Scholar 

  • Bock E (1987) Biologisch induzierte Korrosion von Natursteinstarker Befall mit Nitrifikanten. Bautenschutz Bausanierung 10(1):24–27

    CAS  Google Scholar 

  • Brantner C, Remsen C, Owen H, Buchholz L, Collins M (2002) Intracellular localization of the particulate methane monooxygenase and methanol dehydrogenase in Methylomicrobium album BG8. Arch Microbiol 178:59–64

    Article  PubMed  CAS  Google Scholar 

  • Busch A, Friedrich B, Cramm R (2002) Characterization of the norB gene, encoding nitric oxide reductase, in the nondenitrifying cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 68:668–672

    Article  PubMed  CAS  Google Scholar 

  • Cabello P, Roldan MD, Moreno-Vivian C (2004) Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:3527–3546

    Article  PubMed  CAS  Google Scholar 

  • Cantera JJ, Stein LY (2007a) Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. Environ Microbiol 9:765–776

    Article  CAS  Google Scholar 

  • Cantera JJ, Stein LY (2007b) Role of nitrite reductase in the ammonia-oxidizing pathway of Nitrosomonas europaea. Arch Microbiol 188:349–354

    Article  CAS  Google Scholar 

  • Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287

    Article  PubMed  CAS  Google Scholar 

  • Castello PR, Woo DK, Ball K, Wojcik J, Liu L, Poyton RO (2008) Oxygen-regulated isoforms of cytochrome c oxidase have differential effects on its nitric oxide production and on hypoxic signaling. Proc Natl Acad Sci USA 105:8203–8208

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rosazza JP (1994) A bacterial nitric oxide synthase from a Nocardia species. Biochem Biophys Res Commun 203:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Rosazza JP (1995) Purification and characterization of nitric oxide synthase (NOSNoc) from a Nocardia species. J Bacteriol 177:5122–5128

    PubMed  CAS  Google Scholar 

  • Choi DW, Oh HY, Hong SY, Han JW, Lee HW (2000) Identification and characterization of nitric oxide synthase in Salmonella typhimurium. Arch Pharm Res 23:407–412

    Article  PubMed  CAS  Google Scholar 

  • Choi PS, Naal Z, Moore C, Casado-Rivera E, Abruna HD, Helmann JD, Shapleigh JP (2006) Assessing the impact of denitrifier-produced nitric oxide on other bacteria. Appl Environ Microbiol 72:2200–2205

    Article  PubMed  CAS  Google Scholar 

  • Cohen MF, Yamasaki H (2003) Involvement of nitric oxide synthase in sucrose-enhanced hydrogen peroxide tolerance of Rhodococcus sp. strain APG1, a plant-colonizing bacterium. Nitric Oxide 9:1–9

    Article  PubMed  CAS  Google Scholar 

  • Coyne MS, Arunakumari A, Pankratz HS, Tiedje JM (1990) Localization of the cytochrome cd1 and copper nitrite reductases in denitrifying bacteria. J Bacteriol 172:2558–2562

    PubMed  CAS  Google Scholar 

  • Cramm R, Busch A, Strube K (2006) NO-dependent transcriptional activation of gene expression in Ralstonia eutropha H16. Biochem Soc Trans 34:182–184

    Article  PubMed  CAS  Google Scholar 

  • Crane BR, Sudhamsu J, Patel BA (2010) Bacterial nitric oxide synthases. Annu Rev Biochem 79:445–470

    Article  PubMed  CAS  Google Scholar 

  • Cross R, Lloyd D, Poole RK, Moir JW (2001) Enzymatic removal of nitric oxide catalyzed by cytochrome c′ in Rhodobacter capsulatus. J Bacteriol 183:3050–3054

    Article  PubMed  CAS  Google Scholar 

  • Cuzzolin L, Adami A, Crivellente F, Benoni G (1997) Role of endogenous and exogenous nitric oxide on intestinal mucosa and microflora in the rat. Inflammation 21:443–450

    Article  PubMed  CAS  Google Scholar 

  • de Sa Siqueira MA, Fischer RG, da Silva Figueredo CM, Brunini TM, Mendes-Ribeiro AC (2010) Nitric oxide and oral diseases: can we talk about it? Cardiovasc Hematol Agents Med Chem 8:104–112

    Article  CAS  Google Scholar 

  • Del Giudice J, Cam Y, Damiani I, Fung-Chat F, Meilhoc E, Bruand C, Brouquisse R, Puppo A, Boscari A (2011) Nitric oxide is required for an optimal establishment of the Medicago truncatula-Sinorhizobium meliloti symbiosis. New Phytol 191:405–417

    Article  PubMed  Google Scholar 

  • Doel JJ, Benjamin N, Hector MP, Rogers M, Allaker RP (2005) Evaluation of bacterial nitrate reduction in the human oral cavity. Eur J Oral Sci 113:14–19

    Article  PubMed  CAS  Google Scholar 

  • Dougall HT, Smith L, Duncan C, Benjamin N (1995) The effect of amoxycillin on salivary nitrite concentrations: an important mechanism of adverse reactions? Br J Clin Pharmacol 39:460–462

    Article  PubMed  CAS  Google Scholar 

  • Ducluzeau AL, van Lis R, Duval S, Schoepp-Cothenet B, Russell MJ, Nitschke W (2009) Was nitric oxide the first deep electron sink? Trends Biochem Sci 34:9–15

    Article  PubMed  CAS  Google Scholar 

  • Duncan C, Dougall H, Johnston P, Green S, Brogan R, Leifert C, Smith L, Golden M, Benjamin N (1995) Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat Med 1:546–551

    Article  PubMed  CAS  Google Scholar 

  • Engel HH, Macko SA (2001) The stereochemistry of amino acids in the Murchison meteorite. Precambrian Res 106:35–45

    Article  CAS  Google Scholar 

  • Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MMM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJCT, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJM, Janssen-Megens EM, Francoijs K-J, Stunnenberg H, Weissenbach J, Jetten MSM, Strous M (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548

    Article  PubMed  CAS  Google Scholar 

  • Forrester MT, Eyler CE, Rich JN (2011) Bacterial flavohemoglobin: a molecular tool to probe mammalian nitric oxide biology. Biotechniques 50:41–45

    Article  PubMed  CAS  Google Scholar 

  • Fritsch P, de Saint Blanquat G, Klein D (1985) Excretion of nitrates and nitrites in saliva and bile in the dog. Food Chem Toxicol 23:655–659

    Article  PubMed  CAS  Google Scholar 

  • Gao X, Liu Y, Zheng H, Liu Z (2010) Identification and characteristics of a marine aerobic denitrifying bacterium. Wei Sheng Wu Xue Bao 50:1164–1171

    PubMed  CAS  Google Scholar 

  • Gardner PR, Gardner AM, Martin LA, Salzman AL (1998) Nitric oxide dioxygenase: an enzymic function for flavohemoglobin. Proc Natl Acad Sci USA 95:10378–10383

    Article  PubMed  CAS  Google Scholar 

  • Genc MR, Delaney ML, Onderdonk AB, Witkin SS (2006) Vaginal nitric oxide in pregnant women with bacterial vaginosis. Am J Reprod Immunol 56:86–90

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez PJ, Correia C, Moura I, Brondino CD, Moura JJ (2006) Bacterial nitrate reductases: molecular and biological aspects of nitrate reduction. J Inorg Biochem 100:1015–1023

    Article  PubMed  CAS  Google Scholar 

  • Gotterup J, Olsen K, Knochel S, Tjener K, Stahnke LH, Moller JK (2007) Relationship between nitrate/nitrite reductase activities in meat associated staphylococci and nitrosylmyoglobin formation in a cured meat model system. Int J Food Microbiol 120:303–310

    Article  PubMed  CAS  Google Scholar 

  • Gündoğdu A, Karahan A, Çakmakç M (2006) Production of nitric oxide (NO) by lactic acid bacteria isolated from fermented products. Eur Food Res Technol 223:35–38

    Article  CAS  Google Scholar 

  • Gusarov I, Nudler E (2005) NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc Natl Acad Sci USA 102:13855–13860

    Article  PubMed  CAS  Google Scholar 

  • Gusarov I, Shatalin K, Starodubtseva M, Nudler E (2009) Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science 325:1380–1384

    Article  PubMed  CAS  Google Scholar 

  • Gyurko R, Boustany G, Huang PL, Kantarci A, Van Dyke TE, Genco CA, Gibson FC 3rd (2003) Mice lacking inducible nitric oxide synthase demonstrate impaired killing of Porphyromonas gingivalis. Infect Immun 71:4917–4924

    Article  PubMed  CAS  Google Scholar 

  • Hallin S, Lindgren P-E (1999) PCR detection of genes encoding nitrite reductase in denitrifying bacteria. Appl Environ Microbiol 65:1652–1657

    PubMed  CAS  Google Scholar 

  • Hausladen A, Gow AJ, Stamler JS (1998) Nitrosative stress: metabolic pathway involving the flavohemoglobin. Proc Natl Acad Sci USA 95:14100–14105

    Article  PubMed  CAS  Google Scholar 

  • He A, Rosazza JP (2003) GTP cyclohydrolase I: purification, characterization, and effects of inhibition on nitric oxide synthase in nocardia species. Appl Environ Microbiol 69:7507–7513

    Article  PubMed  CAS  Google Scholar 

  • Hecker M, Walsh DT, Vane JR (1991) On the substrate specificity of nitric oxide synthase. FEBS Lett 294:221–224

    Article  PubMed  CAS  Google Scholar 

  • Hendriks J, Gohlke U, Saraste M (1998) From NO to OO: nitric oxide and dioxygen in bacterial respiration. J Bioenerg Biomembr 30:15–24

    Article  PubMed  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 72:5181–5189

    Article  PubMed  CAS  Google Scholar 

  • Herrmann JM, Kauff F, Neuhaus HE (2009) Thiol oxidation in bacteria, mitochondria and chloroplasts: common principles but three unrelated machineries? Biochimica et Biophysica Acta (BBA)—Mol Cell Res 1793:71–77

    Article  CAS  Google Scholar 

  • Hill DR, Belbin TJ, Thorsteinsson MV, Bassam D, Brass S, Ernst A, Boger P, Paerl H, Mulligan ME, Potts M (1996) GlbN (cyanoglobin) is a peripheral membrane protein that is restricted to certain Nostoc spp. J Bacteriol 178:6587–6598

    PubMed  CAS  Google Scholar 

  • Hino T, Matsumoto Y, Nagano S, Sugimoto H, Fukumori Y, Murata T, Iwata S, Shiro Y (2010) Structural basis of biological N2O generation by bacterial nitric oxide reductase. Science 330:1666–1670

    Article  PubMed  CAS  Google Scholar 

  • Hird FJ (1986) The importance of arginine in evolution. Comp Biochem Physiol B 85:285–288

    PubMed  CAS  Google Scholar 

  • Horchani F, Prevot M, Boscari A, Evangelisti E, Meilhoc E, Bruand C, Raymond P, Boncompagni E, Aschi-Smiti S, Puppo A, Brouquisse R (2011) Both plant and bacterial nitrate reductases contribute to nitric oxide production in Medicago truncatula nitrogen-fixing nodules. Plant Physiol 155:1023–1036

    Article  PubMed  CAS  Google Scholar 

  • Hu Y, Xia W, Ge C (2007) Effect of mixed starter cultures fermentation on the characteristics of silver carp sausages. World J Microbiol Biotechnol 23:1021–1031

    Article  CAS  Google Scholar 

  • Jaegle L, Martin R, Chance K, Steinberger L, Kurosu L, Jacob J, Modi A, Yoboue V, Sigha-Nkamdjou L, Galy-Lacaux C (2004) Satellite mapping of rain-induced nitric oxide emissions from soils. J Geophys Res 109:14

    Article  CAS  Google Scholar 

  • Kampschreur MJ, Picioreanu C, Tan N, Kleerebezem R, Jetten MS, van Loosdrecht MC (2007) Unraveling the source of nitric oxide emission during nitrification. Water Environ Res 79:2499–2509

    Article  PubMed  CAS  Google Scholar 

  • Kampschreur MJ, Van Der Star WR, Wielders HA, Mulder JW, Jetten MS, van Loosdrecht MC (2008) Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res 42:812–826

    Article  PubMed  CAS  Google Scholar 

  • Kampschreur MJ, Poldermans R, Kleerebezem R, Van Der Star WR, Haarhuis R, Abma WR, Jetten MS, van Loosdrecht MC (2009) Emission of nitrous oxide and nitric oxide from a full-scale single-stage nitritation-anammox reactor. Water Sci Technol 60:3211–3217

    PubMed  CAS  Google Scholar 

  • Kappler U, Huston WM, McEwan AG (2002) Control of dimethylsulfoxide reductase expression in Rhodobacter capsulatus: the role of carbon metabolites and the response regulators DorR and RegA. Microbiology 148:605–614

    PubMed  CAS  Google Scholar 

  • Kartal B, Kuypers MM, Lavik G, Schalk J, Op den Camp HJ, Jetten MS, Strous M (2007) Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. Environ Microbiol 9:635–642

    Article  PubMed  CAS  Google Scholar 

  • Kartal B, Tan NC, Van de Biezen E, Kampschreur MJ, Van Loosdrecht MC, Jetten MS (2010) Effect of nitric oxide on anammox bacteria. Appl Environ Microbiol 76:6304–6306

    Article  PubMed  CAS  Google Scholar 

  • Khouw BT, McCurdy HD (1969) Tricarboxylic acid cycle enzymes and morphogenesis in Blastocladiella emersonii. J Bacteriol 99:197–205

    PubMed  CAS  Google Scholar 

  • Korner H, Mayer F (1992) Periplasmic location of nitrous oxide reductase and its apoform in denitrifying Pseudomonas stutzeri. Arch Microbiol 157:218–222

    Article  PubMed  CAS  Google Scholar 

  • Krämer M, Conrad R (1991) Influence of oxygen on production and consumption of nitric oxide in soil. Biol Fertil Soils 11:38–42

    Article  Google Scholar 

  • Kvenvolden K, Lawless J, Pering K, Peterson E, Flores J, Ponnamperuma C, Kaplan IR, Moore C (1970) Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite. Nature 228:923–926

    Article  PubMed  CAS  Google Scholar 

  • Lalucat J, Bennasar A, Bosch R, Garcia-Valdes E, Palleroni NJ (2006) Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 70:510–547

    Article  PubMed  CAS  Google Scholar 

  • Lam P, Lavik G, Jensen MM, van de Vossenberg J, Schmid M, Woebken D, Gutierrez D, Amann R, Jetten MS, Kuypers MM (2009) Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc Natl Acad Sci USA 106:4752–4757

    Article  PubMed  CAS  Google Scholar 

  • Lamm AS, Khare A, Conville P, Lau PC, Bergeron H, Rosazza JP (2009) Nocardia iowensis sp. nov., an organism rich in biocatalytically important enzymes and nitric oxide synthase. Int J Syst Evol Microbiol 59:2408–2414

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Bergeron H, Lau PC, Rosazza JP (2007) Thiols in nitric oxide synthase-containing Nocardia sp. strain NRRL 5646. Appl Environ Microbiol 73:3095–3097

    Article  PubMed  CAS  Google Scholar 

  • Li H, Duncan C, Townend J, Killham K, Smith LM, Johnston P, Dykhuizen R, Kelly D, Golden M, Benjamin N, Leifert C (1997) Nitrate-reducing bacteria on rat tongues. Appl Environ Microbiol 63:924–930

    PubMed  CAS  Google Scholar 

  • Liu MC, Payne WJ, Peck HD Jr, LeGall J (1983) Comparison of cytochromes from anaerobically and aerobically grown cells of Pseudomonas perfectomarinus. J Bacteriol 154:278–286

    PubMed  CAS  Google Scholar 

  • Marinho PR, Moreira AP, Pellegrino FL, Muricy G, Bastos Mdo C, Santos KR, Giambiagi-deMarval M, Laport MS (2009) Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria. Mem Inst Oswaldo Cruz 104:678–682

    Article  PubMed  Google Scholar 

  • Martinez-Espinosa RM, Cole JA, Richardson DJ, Watmough NJ (2011) Enzymology and ecology of the nitrogen cycle. Biochem Soc Trans 39:175–178

    Article  PubMed  CAS  Google Scholar 

  • Matsubara T, Zumft WG (1982) Identification of a copper protein as part of the nitrous oxide-reducing system in nitrite-respiring (denitrifying) pseudomonads. Arch Microbiol 132:322–328

    Article  CAS  Google Scholar 

  • Matthies C, Griesshammer A, Schmittroth M, Drake HL (1999) Evidence for involvement of gut-associated denitrifying bacteria in emission of nitrous oxide (N(2)O) by earthworms obtained from garden and forest soils. Appl Environ Microbiol 65:3599–3604

    PubMed  CAS  Google Scholar 

  • McDonald GD, Storrie-Lombardi MC (2010) Biochemical constraints in a protobiotic earth devoid of basic amino acids: the “BAA(-) world”. Astrobiology 10:989–1000

    Article  PubMed  CAS  Google Scholar 

  • McEwan AG, Ferguson SJ, Jackson JB (1991) Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. Biochem J 274(Pt 1):305–307

    PubMed  CAS  Google Scholar 

  • McKnight GM, Smith LM, Drummond RS, Duncan CW, Golden M, Benjamin N (1997) Chemical synthesis of nitric oxide in the stomach from dietary nitrate in humans. Gut 40:211–214

    PubMed  CAS  Google Scholar 

  • McNamara CJ, Perry TDt, Bearce KA, Hernandez-Duque G, Mitchell R (2006) Epilithic and endolithic bacterial communities in limestone from a Maya archaeological site. Microb Ecol 51:51–64

    Article  PubMed  Google Scholar 

  • Meiklejohn J (1950) The isolation of Nitrosomonas europaea in pure culture. J Gen Microbiol 4:185–191

    PubMed  CAS  Google Scholar 

  • Meincke M, Krieg E, Bock E (1989) Nitrosovibrio spp., the dominant ammonia-oxidizing bacteria in building sandstone. Appl Environ Microbiol 55:2108–2110

    PubMed  CAS  Google Scholar 

  • Miller SL (1986) Current status of the prebiotic synthesis of small molecules. Chem Scr 26B:5–11

    PubMed  CAS  Google Scholar 

  • Mitsui T, Kondo T (1998) Effects of mouth cleansing on the levels of exhaled nitrous oxide in young and older adults. Sci Total Environ 224:177–180

    Article  PubMed  CAS  Google Scholar 

  • Mitsui T, Kondo T (1999) Vegetables, high nitrate foods, increased breath nitrous oxide. Dig Dis Sci 44:1216–1219

    Article  PubMed  CAS  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Interact 21:1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Møller JKS, Jensen JS, Skibsted LH, Knöchel S (2003) Microbial formation of nitrite-cured pigment, nitrosylmyoglobin, from metmyoglobin in model systems and smoked fermented sausages by Lactobacillus fermentum strains and a commercial starter culture. Eur Food Res Technol 216:463–469

    Google Scholar 

  • Montgomery HJ, Dupont AL, Leivo HE, Guillemette JG (2010) Cloning, expression, and purification of a nitric oxide synthase-like protein from Bacillus cereus. Biochem Res Int 2010:489–892

    Google Scholar 

  • Moreno-Vivian C, Cabello P, Martinez-Luque M, Blasco R, Castillo F (1999) Prokaryotic nitrate reduction: molecular properties and functional distinction among bacterial nitrate reductases. J Bacteriol 181:6573–6584

    PubMed  CAS  Google Scholar 

  • Morita H, Yoshikawa H, Sakata R, Nagata Y, Tanaka H (1997) Synthesis of nitric oxide from the two equivalent guanidino nitrogens of L-arginine by Lactobacillus fermentum. J Bacteriol 179:7812–7815

    PubMed  CAS  Google Scholar 

  • Nakanishi Y, Zhou S, Kim SW, Fushinobu S, Maruyama J, Kitamoto K, Wakagi T, Shoun H (2010) A eukaryotic copper-containing nitrite reductase derived from a NirK homolog gene of Aspergillus oryzae. Biosci Biotechnol Biochem 74:984–991

    Article  PubMed  CAS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Ohashi M, Iwase M, Nagumo M (1999) Elevated production of salivary nitric oxide in oral mucosal diseases. J Oral Pathol Med 28:355–359

    Article  PubMed  CAS  Google Scholar 

  • Okutman Tas D, Pavlostathis S (2010) Microbial transformation of pentachloronitrobenzene under nitrate reducing conditions. Biodegradation 21:691–702

    Article  PubMed  CAS  Google Scholar 

  • Ormerod JO, Ashrafian H, Maher AR, Arif S, Steeples V, Born GV, Egginton S, Feelisch M, Watkins H, Frenneaux MP (2011) The role of vascular myoglobin in nitrite-mediated blood vessel relaxation. Cardiovasc Res 89:560–565

    Article  PubMed  CAS  Google Scholar 

  • Parwani S, Chitnis P, Parwani R (2011) Salivary nitric oxide levels in inflammatory periodontal disease—a case-control and interventional study. Int J Dent Hyg (in press)

    Google Scholar 

  • Payne WJ, Riley PS, Cox CD Jr (1971) Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus. J Bacteriol 106:356–361

    PubMed  CAS  Google Scholar 

  • Petrova L, Varshalomidze O, Shelud’ko A, Katsy E (2010) Localization of denitrification genes in plasmid DNA of bacteria Azospirillum brasilense Russ J Genet 46:801–807

    Article  CAS  Google Scholar 

  • Pohlmann A, Cramm R, Schmelz K, Friedrich B (2000) A novel NO-responding regulator controls the reduction of nitric oxide in Ralstonia eutropha. Mol Microbiol 38:626–638

    Article  PubMed  CAS  Google Scholar 

  • Poyton RO, Castello PR, Ball KA, Woo DK, Pan N (2009) Mitochondria and hypoxic signaling: a new view. Ann N Y Acad Sci 1177:48–56

    Article  PubMed  CAS  Google Scholar 

  • Prousek J (2007) Fenton chemistry in biology and medicine. Pure Appl Chem 79:13

    Article  CAS  Google Scholar 

  • Remde A, Conrad R (1990) Production of nitric oxide in Nitrosomonas europaea by reduction of nitrite. Arch Microbiol 154:187–191

    Article  CAS  Google Scholar 

  • Remde A, Conrad R (1991) Role of nitrification and denitrification for NO metabolism in soil. Biogeochemistry 12:189–205

    Article  CAS  Google Scholar 

  • Remde A, Ludwig J, Meixner FX, Conrad R (1993) A study to explain the emission of nitric oxide from a marsh soil. J Atmos Chem 17:249–275

    Article  CAS  Google Scholar 

  • Richardson DJ, Berks BC, Russell DA, Spiro S, Taylor CJ (2001) Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell Mol Life Sci 58:165–178

    Article  PubMed  CAS  Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MS, Op den Camp HJ, Derksen JW, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, Van Der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    Article  PubMed  CAS  Google Scholar 

  • Ritchie GA, Nicholas DJ (1974) The partial characterization of purified nitrite reductase and hydroxylamine oxidase from Nitrosomonas europaea. Biochem J 138:471–480

    PubMed  CAS  Google Scholar 

  • Romanenko LA, Uchino M, Falsen E, Frolova GM, Zhukova NV, Mikhailov VV (2005) Pseudomonas pachastrellae sp. nov., isolated from a marine sponge. Int J Syst Evol Microbiol 55:919–924

    Article  PubMed  CAS  Google Scholar 

  • Rőszer T, Kiss-Tóth É, Petkó M, Szentmiklósi AJ, Bánfalvi G (2006) Phe-met-arg-phe (FMRF)-amide is a substrate source of NO synthase in the gastropod nervous system. Cell Tissue Res 325:567–575

    Article  PubMed  CAS  Google Scholar 

  • Sabaty M, Schwintner C, Cahors S, Richaud P, Vermeglio A (1999) Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106. J Bacteriol 181:6028–6032

    PubMed  CAS  Google Scholar 

  • Salzman AL (1995) Nitric oxide in the gut. New Horiz 3:352–364

    PubMed  CAS  Google Scholar 

  • Sand W, Bock E (1991) Biodeterioration of mineral materials by microorganisms—biogenic sulfuric and nitric acid corrosion of concrete and natural stone. Geomicrobiol J 9(2,3):129–138

    Article  CAS  Google Scholar 

  • Santos OC, Pontes PV, Santos JF, Muricy G, Giambiagi-deMarval M, Laport MS (2010) Isolation, characterization and phylogeny of sponge-associated bacteria with antimicrobial activities from Brazil. Res Microbiol 161:604–612

    Article  PubMed  CAS  Google Scholar 

  • Sari MA, Moali C, Boucher JL, Jaouen M, Mansuy D (1998) Detection of a nitric oxide synthase possibly involved in the regulation of the Rhodococcus sp R312 nitrile hydratase. Biochem Biophys Res Commun 250:364–368

    Article  PubMed  CAS  Google Scholar 

  • Schmidt I, Hermelink C, van de Pas-Schoonen K, Strous M, op den Camp HJ, Kuenen JG, Jetten MS (2002) Anaerobic ammonia oxidation in the presence of nitrogen oxides (NO(x)) by two different lithotrophs. Appl Environ Microbiol 68:5351–5357

    Article  PubMed  CAS  Google Scholar 

  • Schreiber F, Polerecky L, de Beer D (2008) Nitric oxide microsensor for high spatial resolution measurements in biofilms and sediments. Anal Chem 80:1152–1158

    Article  PubMed  CAS  Google Scholar 

  • Shank JL, Silliker JH, Harper RH (1962) The effect of nitric oxide on bacteria. Appl Microbiol 10:185–189

    PubMed  CAS  Google Scholar 

  • Shapiro AD (2005) Nitric oxide signaling in plants. Vitam Horm 72:339–398

    Article  PubMed  CAS  Google Scholar 

  • Shapleigh J (2006) The denitrifying prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes. Springer, New York, pp 769–792

    Chapter  Google Scholar 

  • Shapleigh JP (2008) Dissimilatory and assimilatory nitrate reduction in the purple photosynthetic bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer, Netherlands, pp 623–642

    Google Scholar 

  • Sharma VS, Isaacson RA, John ME, Waterman MR, Chevion M (1983) Reaction of nitric oxide with heme proteins: studies on metmyoglobin, opossum methemoglobin, and microperoxidase. Biochemistry 22:3897–3902

    Article  PubMed  CAS  Google Scholar 

  • Shiva S, Rassaf T, Patel RP, Gladwin MT (2011) The detection of the nitrite reductase and NO-generating properties of haemoglobin by mitochondrial inhibition. Cardiovasc Res 89:566–573

    Article  PubMed  CAS  Google Scholar 

  • Simon J (2002) Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiol Rev 26:285–309

    Article  PubMed  CAS  Google Scholar 

  • Simpson PJL, Richardson DJ, Codd R (2010) The periplasmic nitrate reductase in Shewanella: the resolution, distribution and functional implications of two NAP isoforms, NapEDABC and NapDAGHB. Microbiology 156:302–312

    Article  PubMed  CAS  Google Scholar 

  • Skaleric U, Gaspirc B, McCartney-Francis N, Masera A, Wahl SM (2006) Proinflammatory and antimicrobial nitric oxide in gingival fluid of diabetic patients with periodontal disease. Infect Immun 74:7010–7013

    Article  PubMed  CAS  Google Scholar 

  • Smagghe BJ, Trent JT 3rd, Hargrove MS (2008) NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo. PLoS One 3:e2039

    Article  PubMed  CAS  Google Scholar 

  • Son JK, Rosazza JP (2000) Cyclic guanosine-3′,5′-monophosphate and biopteridine biosynthesis in Nocardia sp. J Bacteriol 182:3644–3648

    Article  PubMed  CAS  Google Scholar 

  • Starkenburg SR, Arp DJ, Bottomley PJ (2008) Expression of a putative nitrite reductase and the reversible inhibition of nitrite-dependent respiration by nitric oxide in Nitrobacter winogradskyi Nb-255. Environ Microbiol 10:3036–3042

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Pelletier E, Mangenot S, Rattei T, Lehner A, Taylor MW, Horn M, Daims H, Bartol-Mavel D, Wincker P, Barbe V, Fonknechten N, Vallenet D, Segurens B, Schenowitz-Truong C, Medigue C, Collingro A, Snel B, Dutilh BE, Op den Camp HJ, Van Der Drift C, Cirpus I, van de Pas-Schoonen KT, Harhangi HR, van Niftrik L, Schmid M, Keltjens J, van de Vossenberg J, Kartal B, Meier H, Frishman D, Huynen MA, Mewes HW, Weissenbach J, Jetten MS, Wagner M, Le Paslier D (2006) Deciphering the evolution and metabolism of an anammox bacterium from a community genome. Nature 440:790–794

    Article  PubMed  Google Scholar 

  • Sturms R, Dispirito AA, Hargrove MS (2011) Plant and cyanobacterial hemoglobins reduce nitrite to nitric oxide under anoxic conditions. Biochemistry 50:3873–3878

    Article  PubMed  CAS  Google Scholar 

  • Stüven R, Bock E (2001) Nitrification and denitrification as a source for NO and NO2 production in high-strength wastewater. Water Res 35:1905–1914

    Article  PubMed  Google Scholar 

  • Sudhamsu J, Crane BR (2009) Bacterial nitric oxide synthases: what are they good for? Trends Microbiol 17:212–218

    Article  PubMed  CAS  Google Scholar 

  • Sun W, Wu J, Lin L, Huang Y, Chen Q, Ji Y (2010) Porphyromonas gingivalis stimulates the release of nitric oxide by inducing expression of inducible nitric oxide synthases and inhibiting endothelial nitric oxide synthases. J Periodontal Res 45:381–388

    Article  PubMed  CAS  Google Scholar 

  • Tas DO, Pavlostathis SG (2008) Effect of nitrate reduction on the microbial reductive transformation of pentachloronitrobenzene. Environ Sci Technol 42:3234–3240

    Article  PubMed  CAS  Google Scholar 

  • Thorsteinsson MV, Bevan DR, Potts M, Dou Y, Eich RF, Hargrove MS, Gibson QH, Olson JS (1999) A cyanobacterial hemoglobin with unusual ligand binding kinetics and stability properties. Biochemistry 38:2117–2126

    Article  PubMed  CAS  Google Scholar 

  • Tiso M, Tejero J, Basu S, Azarov I, Wang X, Simplaceanu V, Frizzell S, Jayaraman T, Geary L, Shapiro C, Ho C, Shiva S, Kim-Shapiro DB, Gladwin MT (2011) Human neuroglobin functions as a redox-regulated nitrite reductase. J Biol Chem 286:18277–18289

    Article  PubMed  CAS  Google Scholar 

  • Tsai AL, Berka V, Martin F, Ma X, Van Den Akker F, Fabian M, Olson JS (2010) Is Nostoc H-NOX a NO sensor or redox switch? Biochemistry 49:6587–6599

    Article  PubMed  CAS  Google Scholar 

  • Van Der Star WR, van de Graaf MJ, Kartal B, Picioreanu C, Jetten MS, van Loosdrecht MC (2008) Response of anaerobic ammonium-oxidizing bacteria to hydroxylamine. Appl Environ Microbiol 74:4417–4426

    Article  PubMed  CAS  Google Scholar 

  • Vlaeminck SE, Hay AG, Maignien L, Verstraete W (2011) In quest of the nitrogen oxidizing prokaryotes of the early earth. Environ Microbiol 13:283–295

    Article  PubMed  CAS  Google Scholar 

  • Walters CL, Casselden RJ, Taylor AM (1967) Nitrite metabolism by skeletal muscle mitochondria in relation to haem pigments. Biochim Biophys Acta 143:310–318

    Article  PubMed  CAS  Google Scholar 

  • Weon H-Y, Kim B-Y, Yoo S-H, Baek Y-K, Lee S-Y, Kwon S-W, Go S-J, Stackebrandt E (2006) Pseudomonas pohangensis sp. nov., isolated from seashore sand in Korea. Int J Syst Evol Microbiol 56:2153–2156

    Article  PubMed  CAS  Google Scholar 

  • Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L (2011) A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem Soc Trans 39:243–248

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Labedan B, Glansdorff N (2007) Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. Microbiol Mol Biol Rev 71:36–47

    Article  PubMed  CAS  Google Scholar 

  • Xue L, Li S, Sheng H, Feng H, Xu S, An L (2007) Nitric oxide alleviates oxidative damage induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 55:294–301

    Article  PubMed  CAS  Google Scholar 

  • Zobell CE, Upham HC (1944) A list of marine bacteria including descriptions of sixty new species. Bull Univ Calif Scripps Inst Oceanogr 5:53

    Google Scholar 

  • Zumft WG (1993) The biological role of nitric oxide in bacteria. Arch Microbiol 160:253–264

    Article  PubMed  CAS  Google Scholar 

  • Zumft W (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    PubMed  CAS  Google Scholar 

  • Zumft WG, Frunzke K (1982) Discrimination of ascorbate-dependent nonenzymatic and enzymatic, membrane-bound reduction of nitric oxide in denitrifying Pseudomonas perfectomarinus. Biochim Biophys Acta 681:459–468

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rőszer, T. (2012). Nitric Oxide is a Bioproduct in Prokaryotes. In: The Biology of Subcellular Nitric Oxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2819-6_2

Download citation

Publish with us

Policies and ethics