Skip to main content

Translating Mammary Stem Cell and Cancer Stem Cell Biology to the Clinics

  • Chapter
  • First Online:
  • 1015 Accesses

Abstract

Breast cancer, one of the most deadly diseases in women, is a hierarchical entity comprising heterogeneous populations of cells with genetic or epigenetic alterations that allow them to grow as a tumor and subsequently cause metastasis. Since past 70 years, several classes of chemotherapeutic agents have been developed which are used widely for treatment of breast cancer, and yet the breast cancer has not been eradicated. In the past two decades, stem cells have become the holy grail of biomedical research because the biology of these cells has potential to contribute to a better understanding of the molecular basis of not only cancer but also several other diseases as well as to foster new avenues for the design and development of novel classes of drugs for the treatment of these diseases. Further, stem cells can be used as a vector for gene therapy to treat diseases like cancer because stem cells can migrate relatively long distances, not only to the sites of injury and infection, but also to initial sites of tumor. Identification of mammary stem cells and cancer stem cells raises new hopes for the treatment of breast cancer. Previous studies have shown that cancer stem cells have similar property to the normal stem cells, but have the characteristic feature of increased self-renewal compared to normal stem cells. Stem cells also play an important role in carcinogenesis; thus understanding the role of stem cells in malignant transformation will have far-reaching implications in our understanding of the molecular mechanisms of cancer as well as for the discovery of new treatment modalities to completely obliterate several human malignancies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Al-Ejeh F, Smart CE, Morrison BJ, Chenevix-Trench G, Lopez JA, Lakhani SR, Brown MP, Khanna KK (2011) Breast cancer stem cells: treatment resistance and therapeutic opportunities. Carcinogenesis 32:650–658

    PubMed  CAS  Google Scholar 

  2. Al-Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene 23:7274–7282

    PubMed  CAS  Google Scholar 

  3. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100:3983–3988

    PubMed  CAS  Google Scholar 

  4. Asselin-Labat ML, Vaillant F, Sheridan JM, Pal B, Wu D, Simpson ER, Yasuda H, Smyth GK, Martin TJ, Lindeman GJ, Visvader JE (2010) Control of mammary stem cell function by steroid hormone signalling. Nature 465:798–802

    PubMed  CAS  Google Scholar 

  5. Balbuena J, Pachon G, Lopez-Torrents G, Aran JM, Castresana JS, Petriz J (2011) ABCG2 is required to control the Sonic Hedgehog pathway in side population cells with stem-like properties. Cytometry A. doi:10.1002/cyto.a.21103

    Google Scholar 

  6. Balicki D (2007) Moving forward in human mammary stem cell biology and breast cancer prognostication using ALDH1. Cell Stem Cell 1:485–487

    CAS  Google Scholar 

  7. Bar EE, Chaudhry A, Farah MH, Eberhart CG (2007) Hedgehog signaling promotes medulloblastoma survival via Bc/II. Am J Pathol 170:347–355

    PubMed  CAS  Google Scholar 

  8. Bautch VL (2010) Cancer: tumour stem cells switch sides. Nature 468:770–771

    PubMed  CAS  Google Scholar 

  9. Berry DA, Cronin KA, Plevritis SK, Fryback DG, Clarke L, Zelen M, Mandelblatt JS, Yakovlev AY, Habbema JD, Feuer EJ (2005) Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353:1784–1792

    PubMed  CAS  Google Scholar 

  10. Bolos V, Blanco M, Medina V, Aparicio G, Diaz-Prado S, Grande E (2009) Notch signalling in cancer stem cells. Clin Transl Oncol 11:11–19

    PubMed  CAS  Google Scholar 

  11. Bolos V, Grego-Bessa J, de la Pompa JL (2007) Notch signaling in development and cancer. Endocr Rev 28:339–363

    PubMed  CAS  Google Scholar 

  12. Bouras T, Pal B, Vaillant F, Harburg G, Asselin-Labat ML, Oakes SR, Lindeman GJ, Visvader JE (2008) Notch signaling regulates mammary stem cell function and luminal cell-fate commitment. Cell Stem Cell 3:429–441

    PubMed  CAS  Google Scholar 

  13. Brekelmans CT, Tilanus-Linthorst MM, Seynaeve C, vd Ouweland A, Menke-Pluymers MB, Bartels CC, Kriege M, van Geel AN, Burger CW, Eggermont AM, Meijers-Heijboer H, Klijn JG (2007) Tumour characteristics, survival and prognostic factors of hereditary breast cancer from BRCA2-, BRCA1- and non-BRCA1/2 families as compared to sporadic breast cancer cases. Eur J Cancer 43:867–876

    PubMed  CAS  Google Scholar 

  14. Brown AM (2001) Wnt signaling in breast cancer: have we come full circle? Breast Cancer Res 3:351–355

    PubMed  CAS  Google Scholar 

  15. Bunting KD, Lindahl R, Townsend AJ (1994) Oxazaphosphorine-specific resistance in human MCF-7 breast carcinoma cell lines expressing transfected rat class 3 aldehyde dehydrogenase. J Biol Chem 269:23197–23203

    PubMed  CAS  Google Scholar 

  16. Cameron DA, Stein S (2008) Drug insight: intracellular inhibitors of HER2–clinical development of lapatinib in breast cancer. Nat Clin Pract Oncol 5:512–520

    PubMed  CAS  Google Scholar 

  17. Chang CC, Sun W, Cruz A, Saitoh M, Tai MH, Trosko JE (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155:201–207

    PubMed  CAS  Google Scholar 

  18. Chiang AC, Massague J (2008) Molecular basis of metastasis. N Engl J Med 359:2814–2823

    PubMed  CAS  Google Scholar 

  19. Chute JP, Muramoto GG, Whitesides J, Colvin M, Safi R, Chao NJ, McDonnell DP (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci USA 103:11707–11712

    PubMed  CAS  Google Scholar 

  20. Cicalese A, Bonizzi G, Pasi CE, Faretta M, Ronzoni S, Giulini B, Brisken C, Minucci S, Di Fiore PP, Pelicci PG (2009) The tumor suppressor p53 regulates polarity of self-renewing divisions in mammary stem cells. Cell 138:1083–1095

    PubMed  CAS  Google Scholar 

  21. Comen E, Norton L, Massague J (2011) Clinical implications of cancer self-seeding. Nat Rev Clin Oncol 8:369–377

    PubMed  Google Scholar 

  22. Cui Y, Parra I, Zhang M, Hilsenbeck SG, Tsimelzon A, Furukawa T, Horii A, Zhang ZY, Nicholson RI, Fuqua SA (2006) Elevated expression of mitogen-activated protein kinase phosphatase 3 in breast tumors: a mechanism of tamoxifen resistance. Cancer Res 66:5950–5959

    PubMed  CAS  Google Scholar 

  23. Dave B, Chang J (2009) Treatment resistance in stem cells and breast cancer. J Mammary Gland Biol Neoplasia 14:79–82

    PubMed  Google Scholar 

  24. Davies E, Hiscox S (2010) New therapeutic approaches in breast cancer. Maturitas 68:121–128

    PubMed  Google Scholar 

  25. Daya-Grosjean L, Couve-Privat S (2005) Sonic hedgehog signaling in basal cell carcinomas. Cancer Lett 225:181–192

    PubMed  CAS  Google Scholar 

  26. Dean M, Fojo T, Bates S (2005) Tumour stem cells and drug resistance. Nat Rev Cancer 5:275–284

    PubMed  CAS  Google Scholar 

  27. Deonarain MP, Kousparou CA, Epenetos AA (2009) Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1:12–25

    PubMed  Google Scholar 

  28. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112:4793–4807

    PubMed  CAS  Google Scholar 

  29. Dick JE (2009) Looking ahead in cancer stem cell research. Nat Biotechnol 27:44–46

    PubMed  CAS  Google Scholar 

  30. Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, Joshua B, Kaplan MJ, Wapnir I, Dirbas FM, Somlo G, Garberoglio C, Paz B, Shen J, Lau SK, Quake SR, Brown JM, Weissman IL, Clarke MF (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783

    PubMed  CAS  Google Scholar 

  31. Diehn M, Clarke MF (2006) Cancer stem cells and radiotherapy: new insights into tumor radioresistance. J Natl Cancer Inst 98:1755–1757

    PubMed  Google Scholar 

  32. Ding XW, Wu JH, Jiang CP (2010) ABCG2: a potential marker of stem cells and novel target in stem cell and cancer therapy. Life Sci 86:631–637

    PubMed  CAS  Google Scholar 

  33. Dinh P, de Azambuja E, Cardoso F, Piccart-Gebhart MJ (2008) Facts and controversies in the use of trastuzumab in the adjuvant setting. Nat Clin Pract Oncol 5:645–654

    PubMed  CAS  Google Scholar 

  34. Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS (2004) Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res 6:R605–R615

    PubMed  CAS  Google Scholar 

  35. Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, Hakkarainen T, Kanerva A, Desmond RA, Pesonen S, Hemminki A (2007) Oncolytic adenoviruses kill breast cancer initiating CD44  +  CD24-/low cells. Mol Ther 15:2088–2093

    PubMed  CAS  Google Scholar 

  36. Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD (2005) Metformin and reduced risk of cancer in diabetic patients. BMJ 330:1304–1305

    PubMed  Google Scholar 

  37. Frampton JE (2009) Lapatinib: a review of its use in the treatment of HER2-overexpressing, trastuzumab-refractory, advanced or metastatic breast cancer. Drugs 69:2125–2148

    PubMed  CAS  Google Scholar 

  38. Gage FH, Verma IM (2003) Stem cells at the dawn of the 21st century. Proc Natl Acad Sci USA 100(Suppl 1):11817–11818

    PubMed  CAS  Google Scholar 

  39. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    PubMed  CAS  Google Scholar 

  40. Gong C, Yao H, Liu Q, Chen J, Shi J, Su F, Song E (2010) Markers of tumor-initiating cells predict chemoresistance in breast cancer. PLoS One 5:e15630

    PubMed  CAS  Google Scholar 

  41. Gonzalez C (2007) Spindle orientation, asymmetric division and tumour suppression in Drosophila stem cells. Nat Rev Genet 8:462–472

    PubMed  CAS  Google Scholar 

  42. Goodell MA (2002) Multipotential stem cells and ‘side population’ cells. Cytotherapy 4:507–508

    PubMed  CAS  Google Scholar 

  43. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC (1996) Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 183:1797–1806

    PubMed  CAS  Google Scholar 

  44. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138:645–659

    PubMed  CAS  Google Scholar 

  45. Hao L, Rizzo P, Osipo C, Pannuti A, Wyatt D, Cheung LW, Sonenshein G, Osborne BA, Miele L (2009) Notch-1 activates estrogen receptor-alpha-dependent transcription via IKKalpha in breast cancer cells. Oncogene 29:201–213

    PubMed  Google Scholar 

  46. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406

    PubMed  CAS  Google Scholar 

  47. Hebbard L, Steffen A, Zawadzki V, Fieber C, Howells N, Moll J, Ponta H, Hofmann M, Sleeman J (2000) CD44 expression and regulation during mammary gland development and function. J Cell Sci 113(Pt 14):2619–2630

    PubMed  CAS  Google Scholar 

  48. Hirsch HA, Iliopoulos D, Tsichlis PN, Struhl K (2009) Metformin selectively targets cancer stem cells, and acts together with chemotherapy to block tumor growth and prolong remission. Cancer Res 69:7507–7511

    PubMed  CAS  Google Scholar 

  49. Hoey T, Yen WC, Axelrod F, Basi J, Donigian L, Dylla S, Fitch-Bruhns M, Lazetic S, Park IK, Sato A, Satyal S, Wang X, Clarke MF, Lewicki J, Gurney A (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177

    PubMed  CAS  Google Scholar 

  50. Hombach-Klonisch S, Panigrahi S, Rashedi I, Seifert A, Alberti E, Pocar P, Kurpisz M, Schulze-Osthoff K, Mackiewicz A, Los M (2008) Adult stem cells and their trans-differentiation potential–perspectives and therapeutic applications. J Mol Med (Berl) 86:1301–1314

    Google Scholar 

  51. Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H, Oshima M, Ikeda T, Asaba R, Yagi H, Masuko T, Shimizu T, Ishikawa T, Kai K, Takahashi E, Imamura Y, Baba Y, Ohmura M, Suematsu M, Baba H, Saya H (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400

    PubMed  CAS  Google Scholar 

  52. Jiralerspong S, Palla SL, Giordano SH, Meric-Bernstam F, Liedtke C, Barnett CM, Hsu L, Hung MC, Hortobagyi GN, Gonzalez-Angulo AM (2009) Metformin and pathologic complete responses to neoadjuvant chemotherapy in diabetic patients with breast cancer. J Clin Oncol 27:3297–3302

    PubMed  CAS  Google Scholar 

  53. Kakarala M, Wicha MS (2008) Implications of the cancer stem-cell hypothesis for breast cancer prevention and therapy. J Clin Oncol 26:2813–2820

    PubMed  Google Scholar 

  54. Kalirai H, Clarke RB (2006) Human breast epithelial stem cells and their regulation. J Pathol 208:7–16

    PubMed  CAS  Google Scholar 

  55. Kim M, Turnquist H, Jackson J, Sgagias M, Yan Y, Gong M, Dean M, Sharp JG, Cowan K (2002) The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 8:22–28

    PubMed  CAS  Google Scholar 

  56. Kondratyev M, Kreso A, Hallett RM, Girgis-Gabardo A, Barcelon ME, Ilieva D, Ware C, Majumder PK, Hassell JA (2011) Gamma-secretase inhibitors target tumor-initiating cells in a mouse model of ERBB2 breast cancer. Oncogene. doi:10.1038/onc.2011.212

    Google Scholar 

  57. Korkaya H, Paulson A, Iovino F, Wicha MS (2008) HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene 27:6120–6130

    PubMed  CAS  Google Scholar 

  58. Korkaya H, Wicha MS (2007) Selective targeting of cancer stem cells: a new concept in cancer therapeutics. BioDrugs 21:299–310

    PubMed  CAS  Google Scholar 

  59. Korkaya H, Wicha MS (2009) HER-2, notch, and breast cancer stem cells: targeting an axis of evil. Clin Cancer Res 15:1845–1847

    PubMed  CAS  Google Scholar 

  60. Kourelis TV, Siegel RD (2011) Metformin and cancer: new applications for an old drug. Med Oncol. doi:10.1007/s12032-011-9846-7

    Google Scholar 

  61. Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB, Rich JN (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432

    PubMed  CAS  Google Scholar 

  62. Lawson DA, Xin L, Lukacs RU, Cheng D, Witte ON (2007) Isolation and functional characterization of murine prostate stem cells. Proc Natl Acad Sci USA 104:181–186

    PubMed  CAS  Google Scholar 

  63. Li F, Tiede B, Massague J, Kang Y (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14

    PubMed  CAS  Google Scholar 

  64. Li X, Lewis MT, Huang J, Gutierrez C, Osborne CK, Wu MF, Hilsenbeck SG, Pavlick A, Zhang X, Chamness GC, Wong H, Rosen J, Chang JC (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679

    PubMed  CAS  Google Scholar 

  65. Li X, Pan YZ, Seigel GM, Hu ZH, Huang M, Yu AM (2011) Breast cancer resistance protein BCRP/ABCG2 regulatory microRNAs (hsa-miR-328, -519c and -520 h) and their differential expression in stem-like ABCG2+ cancer cells. Biochem Pharmacol 81:783–792

    PubMed  CAS  Google Scholar 

  66. Li Y, Rosen JM (2005) Stem/progenitor cells in mouse mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 10:17–24

    PubMed  Google Scholar 

  67. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F, Korkaya H, Heath A, Dutcher J, Kleer CG, Jung Y, Dontu G, Taichman R, Wicha MS (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71:614–624

    PubMed  CAS  Google Scholar 

  68. Liu S, Wicha MS (2010) Targeting breast cancer stem cells. J Clin Oncol 28:4006–4012

    PubMed  CAS  Google Scholar 

  69. Lobo NA, Shimono Y, Qian D, Clarke MF (2007) The biology of cancer stem cells. Annu Rev Cell Dev Biol 23:675–699

    PubMed  CAS  Google Scholar 

  70. Magnifico A, Albano L, Campaner S, Delia D, Castiglioni F, Gasparini P, Sozzi G, Fontanella E, Menard S, Tagliabue E (2009) Tumor-initiating cells of HER2-positive carcinoma cell lines express the highest oncoprotein levels and are sensitive to trastuzumab. Clin Cancer Res 15:2010–2021

    PubMed  CAS  Google Scholar 

  71. Marcato P, Dean CA, Pan D, Araslanova R, Gillis M, Joshi M, Helyer L, Pan L, Leidal A, Gujar S, Giacomantonio CA, Lee PW (2011) Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells 29:32–45

    PubMed  CAS  Google Scholar 

  72. Marhaba R, Zoller M (2004) CD44 in cancer progression: adhesion, migration and growth regulation. J Mol Histol 35:211–231

    PubMed  CAS  Google Scholar 

  73. Martin DR, Cox NR, Hathcock TL, Niemeyer GP, Baker HJ (2002) Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Exp Hematol 30:879–886

    PubMed  CAS  Google Scholar 

  74. Merchant AA, Matsui W (2010) Targeting Hedgehog–a cancer stem cell pathway. Clin Cancer Res 16:3130–3140

    PubMed  CAS  Google Scholar 

  75. Meyer MJ, Fleming JM, Lin AF, Hussnain SA, Ginsburg E, Vonderhaar BK (2010) CD44posCD49fhiCD133/2hi defines xenograft-initiating cells in estrogen receptor-negative breast cancer. Cancer Res 70:4624–4633

    PubMed  CAS  Google Scholar 

  76. Moore N, Lyle S (2010) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol 2011. doi:10.1155/2011/396076

    Google Scholar 

  77. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441:1068–1074

    PubMed  CAS  Google Scholar 

  78. Mullor JL, Sanchez P, Ruiz i Altaba A (2002) Pathways and consequences: hedgehog signaling in human disease. Trends Cell Biol 12:562–569

    PubMed  CAS  Google Scholar 

  79. Nalwoga H, Arnes JB, Wabinga H, Akslen LA (2009) Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br J Cancer 102:369–375

    PubMed  Google Scholar 

  80. Naujokat C, Fuchs D, Opelz G (2010) Salinomycin in cancer: a new mission for an old agent. Mol Med Rep 3:555–559

    CAS  Google Scholar 

  81. Neth P, Ries C, Karow M, Egea V, Ilmer M, Jochum M (2007) The Wnt signal transduction pathway in stem cells and cancer cells: influence on cellular invasion. Stem Cell Rev 3:18–29

    PubMed  CAS  Google Scholar 

  82. Nguyen NP, Almeida FS, Chi A, Nguyen LM, Cohen D, Karlsson U, Vinh-Hung V (2010) Molecular biology of breast cancer stem cells: potential clinical applications. Cancer Treat Rev 36:485–491

    PubMed  CAS  Google Scholar 

  83. O’Brien CS, Howell SJ, Farnie G, Clarke RB (2009) Resistance to endocrine therapy: are breast cancer stem cells the culprits? J Mammary Gland Biol Neoplasia 14:45–54

    PubMed  Google Scholar 

  84. Pajonk F, Vlashi E, McBride WH (2010) Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 28:639–648

    PubMed  CAS  Google Scholar 

  85. Pece S, Confalonieri S, Romano PR, Di Fiore PP (2010) NUMB-ing down cancer by more than just a NOTCH. Biochim Biophys Acta 1815:26–43

    PubMed  Google Scholar 

  86. Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140:62–73

    PubMed  CAS  Google Scholar 

  87. Petersen OW, Polyak K (2010) Stem cells in the human breast. Cold Spring Harb Perspect Biol 2:a003160

    PubMed  Google Scholar 

  88. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785

    PubMed  Google Scholar 

  89. Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA, Daidone MG (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

    PubMed  CAS  Google Scholar 

  90. Pradeep CR, Kostler WJ, Lauriola M, Granit RZ, Zhang F, Jacob-Hirsch J, Rechavi G, Nair HB, Hennessy BT, Gonzalez-Angulo AM, Tekmal RR, Ben-Porath I, Mills GB, Domany E, Yarden Y (2011) Modeling ductal carcinoma in situ: a HER2-Notch3 collaboration enables luminal filling. Oncogene. doi:10.1038/onc.2011.279

    Google Scholar 

  91. Presnell SC, Petersen B, Heidaran M (2002) Stem cells in adult tissues. Semin Cell Dev Biol 13:369–376

    PubMed  CAS  Google Scholar 

  92. Raouf A, Zhao Y, To K, Stingl J, Delaney A, Barbara M, Iscove N, Jones S, McKinney S, Emerman J, Aparicio S, Marra M, Eaves C (2008) Transcriptome analysis of the normal human mammary cell commitment and differentiation process. Cell Stem Cell 3:109–118

    PubMed  CAS  Google Scholar 

  93. Rennstam K, McMichael N, Berglund P, Honeth G, Hegardt C, Ryden L, Luts L, Bendahl PO, Hedenfalk I (2010) Numb protein expression correlates with a basal-like phenotype and cancer stem cell markers in primary breast cancer. Breast Cancer Res Treat 122:315–324

    PubMed  CAS  Google Scholar 

  94. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111

    PubMed  CAS  Google Scholar 

  95. Saxena M, Stephens MA, Pathak H, Rangarajan A (2011) Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug resistance by upregulating ABC transporters. Cell Death Dis 2:e179

    PubMed  CAS  Google Scholar 

  96. Scharenberg CW, Harkey MA, Torok-Storb B (2002) The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 99:507–512

    PubMed  CAS  Google Scholar 

  97. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77:491–502

    PubMed  CAS  Google Scholar 

  98. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ, Visvader JE (2006) Generation of a functional mammary gland from a single stem cell. Nature 439:84–88

    PubMed  CAS  Google Scholar 

  99. Sieburg HB, Rezner BD, Muller-Sieburg CE (2011) Predicting clonal self-renewal and extinction of hematopoietic stem cells. Proc Natl Acad Sci USA 108:4370–4375

    PubMed  CAS  Google Scholar 

  100. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    PubMed  CAS  Google Scholar 

  101. Smalley M, Ashworth A (2003) Stem cells and breast cancer: a field in transit. Nat Rev Cancer 3:832–844

    PubMed  CAS  Google Scholar 

  102. Smith GH (2002) Mammary cancer and epithelial stem cells: a problem or a solution? Breast Cancer Res 4:47–50

    PubMed  Google Scholar 

  103. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lonning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    PubMed  CAS  Google Scholar 

  104. Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A, Martiat P, Fox SB, Harris AL, Liu ET (2003) Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100:10393–10398

    PubMed  CAS  Google Scholar 

  105. Sottoriva A, Vermeulen L, Tavare S (2011) Modeling evolutionary dynamics of epigenetic mutations in hierarchically organized tumors. PLoS Comput Biol 7:e1001132

    PubMed  CAS  Google Scholar 

  106. Stingl J, Caldas C (2007) Molecular heterogeneity of breast carcinomas and the cancer stem cell hypothesis. Nat Rev Cancer 7:791–799

    PubMed  CAS  Google Scholar 

  107. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D, Li HI, Eaves CJ (2006) Purification and unique properties of mammary epithelial stem cells. Nature 439:993–997

    PubMed  CAS  Google Scholar 

  108. Stylianou S, Clarke RB, Brennan K (2006) Aberrant activation of notch signaling in human breast cancer. Cancer Res 66:1517–1525

    PubMed  CAS  Google Scholar 

  109. Sweeney CJ, Mehrotra S, Sadaria MR, Kumar S, Shortle NH, Roman Y, Sheridan C, Campbell RA, Murry DJ, Badve S, Nakshatri H (2005) The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 4:1004–1012

    PubMed  CAS  Google Scholar 

  110. Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, Tanaka M, Katano M (2009) The Hedgehog signaling pathway plays an essential role in maintaining the CD44  +  CD24-/low subpopulation and the side population of breast cancer cells. Anticancer Res 29:2147–2157

    PubMed  CAS  Google Scholar 

  111. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    PubMed  CAS  Google Scholar 

  112. Wang RH (2006) The new portrait of mammary gland stem cells. Int J Biol Sci 2:186–187

    PubMed  CAS  Google Scholar 

  113. Welte Y, Adjaye J, Lehrach HR, Regenbrecht CR (2010) Cancer stem cells in solid tumors: elusive or illusive? Cell Commun Signal 8:6

    PubMed  Google Scholar 

  114. Wicha MS (2006) Cancer stem cells and metastasis: lethal seeds. Clin Cancer Res 12:5606–5607

    PubMed  Google Scholar 

  115. Woodward WA, Chen MS, Behbod F, Rosen JM (2005) On mammary stem cells. J Cell Sci 118:3585–3594

    PubMed  CAS  Google Scholar 

  116. Zhan JF, Wu LP, Chen LH, Yuan YW, Xie GZ, Sun AM, Liu Y, Chen ZX (2011) Pharmacological inhibition of AKT sensitizes MCF-7 human breast cancer-initiating cells to radiation. Cell Oncol (Doedr) 34:451–456

    Google Scholar 

  117. Zhou BP, Hung MC (2003) Dysregulation of cellular signaling by HER2/neu in breast cancer. Semin Oncol 30:38–48

    PubMed  CAS  Google Scholar 

  118. Zhou J, Zhang H, Gu P, Bai J, Margolick JB, Zhang Y (2008) NF-kappaB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res Treat 111:419–427

    PubMed  CAS  Google Scholar 

  119. Zhou S, Morris JJ, Barnes Y, Lan L, Schuetz JD, Sorrentino BP (2002) Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc Natl Acad Sci USA 99:12339–12344

    PubMed  CAS  Google Scholar 

  120. Zhou S, Schuetz JD, Bunting KD, Colapietro AM, Sampath J, Morris JJ, Lagutina I, Grosveld GC, Osawa M, Nakauchi H, Sorrentino BP (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 7:1028–1034

    PubMed  CAS  Google Scholar 

  121. Zhou S, Zong Y, Lu T, Sorrentino BP (2003) Hematopoietic cells from mice that are deficient in both Bcrp1/Abcg2 and Mdr1a/1b develop normally but are sensitized to mitoxantrone. Biotechniques 35:1248–1252

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthusamy Thangaraju Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Pathania, R., Ganapathy, V., Thangaraju, M. (2012). Translating Mammary Stem Cell and Cancer Stem Cell Biology to the Clinics. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_19

Download citation

Publish with us

Policies and ethics