Skip to main content

The Reduction of Callus Formation During Bone Regeneration by BMP-2 and Human Adipose Derived Stem Cells

  • Chapter
  • First Online:
Stem Cells and Human Diseases

Abstract

Reconstructive medicine, trauma surgery and orthopaedics show an enormous increase in numbers of patients with degenerative diseases. Thus the demand for new therapeutic approaches is continuously growing. New technologies, the so called “Tissue Engineering” offers with the combination of the three components: cells, growth factor and matrix, new promising technologies.

In our studies, a 2 mm transcortical non-critical size drill hole in the middle of the femur shaft of male rats was applied as a small defect model that was used as a screening model for bone regeneration as well as the in vivo bone healing stimulation when the growth factor BMP-2 was embedded together with ASCs in a locally-applied fibrin matrix. After relatively short periods of times (2 and 4 weeks) our small animal model demonstrated that it is possible to get information about the osteogenetic potential and bone regeneration with little effort (no osteosynthesis). The most significant result of our scientific project with the help of micro-computer tomography and descriptive histology analysis is the fact that the combination of ASCs + BMP-2 in a fibrin matrix significantly reduces the callus reaction after 2 weeks. ASCs embedded alone in the fibrin matrix did not cause an increased bone regeneration. Consequently these stem cells rather prevented the osteoinductive reaction of BMP-2 and thereby less callus formation could be analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Axelrad TW, Kakar S, Einhorn TA (2007) New technologies for the enhancement of skeletal repair. Injury 38(Suppl 1):S49–S62

    Article  PubMed  Google Scholar 

  2. Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77:626–631

    Article  PubMed  Google Scholar 

  3. Stutzle H, Hallfeldt K, Mandelkow H, Kessler S et al (1998) Knochenneubildung durch Knochenersatzmaterial. Orthopade 27:118–125

    PubMed  CAS  Google Scholar 

  4. Rueger JM (1998) Knochenersatzmittel—heutiger Stand und Ausblick. Orthopade 27:72–79

    PubMed  CAS  Google Scholar 

  5. Schiebler TH (2000) Histologie. Springer, Heidelberg

    Google Scholar 

  6. Landry PS, Marino AA, Sadasivan KK, Albright JA (1996) Bone injury response. An animal model for testing theories of regulation. Clin Orthop Relat Res 332:260–273

    Article  PubMed  Google Scholar 

  7. Tscherne H, Oestern HJ (1982) Die Klassifizierung des Weichteilschadens bei offenen und geschlossenen Frakturen. Unfallheilkunde 85:111–115

    PubMed  CAS  Google Scholar 

  8. Rüter A, Trentz O, Wagner M (1995) Unfallchirurgie. Urban & Schwarzenberg, München/Wien/Baltimore

    Google Scholar 

  9. Boehler L (1944) Die Technik der Knochenbruchbehandlung im Frieden und im Kriege. III.Band. 5. – 8. Auflage. Verlag Wilhelm Maudrich, Wien

    Google Scholar 

  10. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res 355:S7–S21

    Article  PubMed  Google Scholar 

  11. Einhorn TA (1995) Enhancement of fracture-healing. J Bone Joint Surg Am 77:940–956

    PubMed  CAS  Google Scholar 

  12. Minuth WW, Strehl R, Schumacher K (2003) Zukunftstechnologie Tissue Engineering. Von der Zellbiologie zum künstlichen Gewebe. Wiley-VCH GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  13. Marzi I, Mutschler W (1999) Pathophysiologie des Traumas. In: Mutschler W, Haas N (eds) Praxis der Unfallchirurgie. Georg Thieme, Stuttgart/New York, pp 18–55

    Google Scholar 

  14. Schieker M, Seitz S, Gulkan H, Nentwich M et al (2004) Tissue Engineering von Knochen. Integration und Migration von humann mesenchymalen Stammzellen in besiedelten Konstrukten im Mausmodell. Orthopade 33:1354–1360

    Article  PubMed  CAS  Google Scholar 

  15. Minuth WW, Strehl R, Schumacher K (2002) Von der Zellkultur zum Tissue engineering. Pabst Science, Lengerich

    Google Scholar 

  16. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  17. Thomas ED (1999) Bone marrow transplantation: a review. Semin Hematol 36:95–103

    PubMed  CAS  Google Scholar 

  18. Wikipedia (2009) Geschichte der Stammzellforschung. http://wwwnabelschnurblut-wikide//indexphp?title=Geschichte_der_Stammzellforschung. Last update: 15 Apr 2009. Accessed 03 Dec 2009

  19. Gomillion CT, Burg KJ (2006) Stem cells and adipose tissue engineering. Biomaterials 27:6052–6063

    Article  PubMed  CAS  Google Scholar 

  20. Dicker A, Le Blanc K, Astrom G, van Harmelen V et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290

    Article  PubMed  CAS  Google Scholar 

  21. Patterson TE, Kumagai K, Griffith L, Muschler GF (2008) Cellular strategies for enhancement of fracture repair. J Bone Joint Surg Am 90(Suppl 1):111–119

    Article  PubMed  Google Scholar 

  22. Strem BM, Hicok KC, Zhu M, Wulur I et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54:132–141

    Article  PubMed  CAS  Google Scholar 

  23. Waese EY, Kandel RA, Stanford WL (2008) Application of stem cells in bone repair. Skeletal Radiol 37:601–608

    Article  PubMed  Google Scholar 

  24. Lendeckel S, Jodicke A, Christophis P, Heidinger K et al (2004) Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J Craniomaxillofac Surg 32:370–373

    Article  PubMed  Google Scholar 

  25. Bergel S (1907) Über Wirkungen des Fibrins. Deut Med Wochenschr 9:663–665

    Google Scholar 

  26. Redl H (2004) History of tissue adhesives. In: Saltz R, Toriumi DM (eds) Tissue glues in cosmetic surgery. Quality Medical Publishing, St. Louis, pp 1–27

    Google Scholar 

  27. Le Guehennec L, Layrolle P, Daculsi G (2004) A review of bioceramics and fibrin sealant. Eur Cell Mater 8:1–11

    PubMed  Google Scholar 

  28. Seelich T, Redl H (1980) Fibrinklebung 1. Theoretischer und experimenteller Teil. In: Kl S (ed) Fibrinogen, Fibrin und Fibrinkleber. Schattauer, Stuttgard/New York

    Google Scholar 

  29. Kaeser A, Dum N (1994) Wirkprinzip der Fibrinklebung. In: Manegold BC, Lange V, Salm R (eds) Technik der Fibrinklebung in der endoskopischen Chirurgie. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo/Hong Kong/Barcelona/Budapest, pp 3–11

    Chapter  Google Scholar 

  30. Oehler G (1992) Grundprinzip der Fibrinklebung – Anforderungen an die Qualität und Sicherheit. In: Freigang B, Weerda H (eds) Fibrinklebung in der Otorhinolaryngologie. Springer, Berlin/Lübeck, pp 3–6

    Chapter  Google Scholar 

  31. Gebhardt Ch (1992) Fibrinklebung in der Allgemein- und Unfallchirurgie, Orthopädie. Kinder- und Thoraxchirurgie. Springer, Nürnberg

    Book  Google Scholar 

  32. Bösch P, Nowotny Ch, Schwägerl W, Leber H (1980) Über die Wirkung des Fibrinklebesystems bei orthopädischen Operationen an Hämophilen und bei anderen Blutgerinnungsstörungen. In: Schimpf K (ed) Fibrinogen, Fibrin und Fibrinkleber. Schattauer, Stuttgart/New York, pp 274–283

    Google Scholar 

  33. Urist MR (1965) Bone: formation by autoinduction. Science 150:893–899

    Article  PubMed  CAS  Google Scholar 

  34. Li X, Cao X (2006) BMP signaling and skeletogenesis. Ann N Y Acad Sci 1068:26–40

    Article  PubMed  CAS  Google Scholar 

  35. Reddi AH (1998) Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nat Biotechnol 16:247–252

    Article  PubMed  CAS  Google Scholar 

  36. Reddi AH (1998) Initiation of fracture repair by bone morphogenetic proteins. Clin Orthop Relat Res 355:S66–S72

    Article  PubMed  Google Scholar 

  37. Rosen V (2006) BMP and BMP inhibitors in bone. Ann N Y Acad Sci 1068:19–25

    Article  PubMed  CAS  Google Scholar 

  38. Dragoo JL, Choi JY, Lieberman JR, Huang J et al (2003) Bone induction by BMP-2 transduced stem cells derived from human fat. J Orthop Res 21:622–629

    Article  PubMed  CAS  Google Scholar 

  39. Dragoo JL, Lieberman JR, Lee RS, Deugarte DA et al (2005) Tissue-engineered bone from BMP-2-transduced stem cells derived from human fat. Plast Reconstr Surg 115:1665–1673

    Article  PubMed  CAS  Google Scholar 

  40. Einhorn TA (2003) Clinical applications of recombinant human BMPs: early experience and future development. J Bone Joint Surg Am 85-A(Suppl 3):82–88

    PubMed  Google Scholar 

  41. Termaat MF, Den Boer FC, Bakker FC, Patka P et al (2005) Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 87:1367–1378

    Article  PubMed  CAS  Google Scholar 

  42. Keibl C, Fügl A, Zanoni G, Tangl S et al (2011) Human adipose derived stem cells reduce callus volume upon BMP-2 administration in bone regeneration. Injury 42:814–820

    Article  PubMed  Google Scholar 

  43. Wolbank S, Peterbauer A, Fahrner M, Hennerbichler S et al (2007) Dose-dependent immunomodulatory effect of human stem cells from amniotic membrane: a comparison with human mesenchymal stem cells from adipose tissue. Tissue Eng 13:1173–1183

    Article  PubMed  CAS  Google Scholar 

  44. Kalpakcioglu BB, Morshed S, Engelke K, Genant HK (2008) Advanced imaging of bone macrostructure and microstructure in bone fragility and fracture repair. J Bone Joint Surg Am 90(Suppl 1):68–78

    Article  PubMed  Google Scholar 

  45. Donath K (1988) Die Trenn-Dünnschliff-Technik zur Herstellung histologischer Präparate von nicht schneidbaren Geweben und Materialien. Der Präparator 34:197–206

    Google Scholar 

  46. Laczko J, Levai G (1975) A simple differential staining method for semi-thin sections of ossifying cartilage and bone tissues embedded in epoxy resin. Mikroskopie 31:1–4

    Google Scholar 

  47. Pereira AC, Fernandes RG, Carvalho YR, Balducci I et al (2007) Bone healing in drill hole defects in spontaneously hypertensive male and female rats’ femurs. A histological and histometric study. Arq Bras Cardiol 88:104–109

    Article  PubMed  Google Scholar 

  48. Schoch T (1994) Knochenregeneration mit frischen und sterilisierten Auto- und Allografts – Experimentelle Untersuchungen mit morphometrischer Methode. Dissertation, TU München

    Google Scholar 

  49. Bishop GB, Einhorn TA (2007) Current and future clinical applications of bone morphogenetic proteins in orthopaedic trauma surgery. Int Orthop 31:721–727

    Article  PubMed  Google Scholar 

  50. Pountos I, Corscadden D, Emery P, Giannoudis PV (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury 38(Suppl 4):S23–S33

    Article  PubMed  Google Scholar 

  51. Pountos I, Giannoudis PV (2005) Biology of mesenchymal stem cells. Injury 36(suppl 3):S8–S12

    Article  PubMed  Google Scholar 

  52. Tortelli F, Tasso R, Loiacono F, Cancedda R (2010) The development of tissue-engineered bone of different origin through endochondral and intramembranous ossification following the implantation of mesenchymal stem cells and osteoblasts in a murine model. Biomaterials 31:242–249

    Article  PubMed  CAS  Google Scholar 

  53. Tasso R, Fais F, Reverberi D, Tortelli F et al (2010) The recruitment of two consecutive and different waves of host stem/progenitor cells during the development of tissue-engineered bone in a murine model. Biomaterials 31:2121–2129

    Article  PubMed  CAS  Google Scholar 

  54. Li H, Dai K, Tang T, Zhang X et al (2007) Bone regeneration by implantation of adipose-derived stromal cells expressing BMP-2. Biochem Biophys Res Commun 356:836–842

    Article  PubMed  CAS  Google Scholar 

  55. Peterson B, Zhang J, Iglesias R, Kabo M et al (2005) Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Eng 11:120–129

    Article  PubMed  CAS  Google Scholar 

  56. McIntosh KR, Lopez MJ, Borneman JN, Spencer ND et al (2009) Immunogenicity of allogeneic adipose-derived stem cells in a rat spinal fusion model. Tissue Eng Part A 15:2677–2686

    Article  PubMed  CAS  Google Scholar 

  57. Niemeyer P, Fechner K, Milz S, Richter W et al (2010) Comparison of mesenchymal stem cell from bone marrow and adipose tissue for bone regeneration in a critical size defect of the sheep tibia and the influence of platelet-rich plasma. Biomaterials 31:3572–3579

    Article  PubMed  CAS  Google Scholar 

  58. Cancedda R, Bianchi G, Derubeis A, Quarto R (2003) Cell therapy for bone disease: a review of current status. Stem Cells 21:610–619

    Article  PubMed  CAS  Google Scholar 

  59. Runyan CM, Jones DC, Bove KE, Maercks RA et al (2010) Porcine allograft mandible revitalization using autologous adipose-derived stem cells, bone morphogenetic protein-2, and periosteum. Plast Reconstr Surg 125:1372–1382

    Article  PubMed  CAS  Google Scholar 

  60. Cowan CM, Shi YY, Aalami OO, Chou YF et al (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  PubMed  CAS  Google Scholar 

  61. Yoon E, Dhar S, Chun DE, Gharibjanian NA et al (2007) In vivo osteogenic potential of human adipose-derived stem cells/poly lactideco-glycolic acid constructs for bone regeneration in a rat critical-wized calvarial defect model. Tissue Eng 13:619–627

    Article  PubMed  CAS  Google Scholar 

  62. Shoji T, Ii M, Mifune Y, Matsumoto T et al (2010) Local transplantation of human multipotent adipose-derived stem cells accelerates fracture healing via enhanced osteogenesis and angiogenesis. Lab Invest 90:637–649

    Article  PubMed  Google Scholar 

  63. Quarto R, Mastrogiacomo MCR, Kutepov SM, Mukhachev V et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386

    Article  PubMed  CAS  Google Scholar 

  64. Horwitz EM, Gordon PL, Koo WK, Marx JC et al (2002) Isolated allogenic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfacta: implications for cell therapy of bone. Proc Natl Acad Sci USA 99:8932–8937

    Article  PubMed  CAS  Google Scholar 

  65. Mohyeddin Bonab M, Yazdanbakhsh S, Lotfi J, Alimoghaddom K et al (2007) Does mesenchymal stem cell therapy help multiple sclerosis patients? Report of a pilot study. Iran J Immunol 4:50–57

    PubMed  Google Scholar 

  66. Mohyeddin Bonab M, Mohamad-Hassani MR, Alimoghaddam K, Sanatkar M et al (2007) Autologous in vitro expanded mesenchymal stem cell therapy for human old myocardial infarction. Arch Iran Med 10:467–473

    PubMed  Google Scholar 

  67. Carlori GM, Donati D, DiBella C, Tagliabue L (2009) Bonemorphogenetic proteins and tissue engineering: future directions. Injury 40(Suppl 3):S67–S76

    Article  Google Scholar 

  68. Westerhuis RJ, van Bezooijen RL, Kloen P (2005) Use of bone morphogenetic proteins in traumatology. Injury 36:1405–1412

    Article  PubMed  CAS  Google Scholar 

  69. Hasharoni A, Zilberman Y, Turgeman G, Helm GA et al (2005) Murine spinal fusion induced by engineered mesenchymal stem cells that conditionally express bone morphogenetic protein-2. J Neurosurg Spine 3:47–52

    Article  PubMed  Google Scholar 

  70. Schmoekel HG, Weber FE, Schense JC, Gratz KW et al (2005) Bone repair with a form of BMP-2 engineered for incorporation into fibrin cell ingrowth matrices. Biotechnol Bioeng 89:253–262

    Article  PubMed  CAS  Google Scholar 

  71. Lane JM (2005) Bone morphogenic protein science and studies. J Orthop Trauma 19:S17–S22

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank our colleagues Karin Hahn, Christoph Castellani, Asmita Banerjee, Daniela Dopler, Tatjana Morton, Martina Moritz, Susanne Wolbank for their support during the completion of the project as well as Gerald Zanoni and Stefan Tangl.

We also want to express our gratefulness to Monika Großauer and Mohammad Jafamadar for their excellent help during the preparations of the book chapter, Ilse Jung for statistically analysing our data.

This work was carried out under the scope of the European NoE EXPERTISSUES (NMP3-CT-2004-500283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Keibl DVM .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Keibl, C., van Griensven, M. (2012). The Reduction of Callus Formation During Bone Regeneration by BMP-2 and Human Adipose Derived Stem Cells. In: Srivastava, R., Shankar, S. (eds) Stem Cells and Human Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2801-1_12

Download citation

Publish with us

Policies and ethics