Skip to main content

The Role of Aβ and Tau Oligomers in the Pathogenesis of Alzheimer’s Disease

  • Chapter
  • First Online:

Abstract

Dense extracellular aggregates of amyloid β-protein (Aβ) in senile plaques (SPs) and intracellular aggregates of the hyperphosphorylated, microtubule-associated protein tau (MAPT) in neurofibrillary tangles (NFTs) within the brain are the key diagnostic hallmarks of Alzheimer’s disease (AD). While initial studies focused on SPs and NFTs as the key pathogenic proteinaceous species that could account for the clinical features of AD, increasing evidence suggests that the fibrils of Aβ and MAPT are unlikely to be the unique neurotoxic entities responsible for AD pathogenesis. Instead, more recent studies have implicated small, soluble oligomeric species of both Aβ and MAPT. Indeed, a wide variety of Aβ and tau ­oligomers have been described in both in vitro and in vivo systems that possess a diverse set of biological properties, including substantial synapto- and neurotoxicity. While many of these oligomers have been extensively characterized by novel biophysical, ­biochemical, and immunological techniques, attributing particular functions and dysfunctions to particular oligomer structures in vivo has proven enormously difficult, as the different proteinaceous species are present in equilibrium and likely are contained within unique intracellular and extracellular environments. Nevertheless, a number of therapeutic strategies have been developed that seek to target Aβ and tau oligomerization for AD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abraha A, Ghoshal N, Gamblin TC, Cryns V, Berry RW, Kuret J, Binder LI (2000) C-terminal ­inhibition of tau assembly in vitro and in Alzheimer’s disease. J Cell Sci 113(Pt 21):3737–3745

    PubMed  CAS  Google Scholar 

  • Akiyama H, Ikeda K, Kondo H, McGeer PL (1992) Thrombin accumulation in brains of patients with Alzheimer’s disease. Neurosci Lett 146:152–154

    PubMed  CAS  Google Scholar 

  • Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid β oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272

    PubMed  CAS  Google Scholar 

  • Alonso AD, Zaidi T, Novak M, Barra HS, Grundke-Iqbal I, Iqbal K (2001) Interaction of tau ­isoforms with Alzheimer’s disease abnormally hyperphosphorylated tau and in vitro phosphorylation into the disease-like protein. J Biol Chem 276:37967–37973

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allg. Z. Psychiatrie Psychisch-GerichtlMed 64:146–148

    Google Scholar 

  • Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161:41–54

    PubMed  CAS  Google Scholar 

  • Ando K, Leroy K, Heraud C, Kabova A, Yilmaz Z, Authelet M, Suain V, De Decker R, Brion JP (2010) Deletion of murine tau gene increases tau aggregation in a human mutant tau transgenic mouse model. Biochem Soc Trans 38:1001–1005

    PubMed  CAS  Google Scholar 

  • Andorfer C, Kress Y, Espinoza M, De Silva R, Tucker KL, Barde YA, Duff K, Davies P (2003) Hyperphosphorylation and aggregation of tau in mice expressing normal human tau isoforms. J Neurochem 86:582–590

    PubMed  CAS  Google Scholar 

  • Andorfer C, Acker CM, Kress Y, Hof PR, Duff K, Davies P (2005) Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 25:5446–5454

    PubMed  CAS  Google Scholar 

  • Andreadis A, Brown WM, Kosik KS (1992) Structure and novel exons of the human tau gene. Biochemistry 31:10626–10633

    PubMed  CAS  Google Scholar 

  • Arai T, Miklossy J, Klegeris A, Guo JP, McGeer PL (2006) Thrombin and prothrombin are expressed by neurons and glial cells and accumulate in neurofibrillary tangles in Alzheimer disease brain. J Neuropathol Exp Neurol 65:19–25

    PubMed  CAS  Google Scholar 

  • Arelin K, Kinoshita A, Whelan CM, Irizarry MC, Rebeck GW, Strickland DK, Hyman BT (2002) LRP and senile plaques in Alzheimer’s disease: colocalization with apolipoprotein E and with activated astrocytes. Brain Res Mol Brain Res 104:38–46

    PubMed  CAS  Google Scholar 

  • Arispe N, Diaz JC, Simakova O (2007) Aβ ion channels. Prospects for treating Alzheimer’s ­disease with Aβ channel blockers. Biochim Biophys Acta 1768:1952–1965

    PubMed  CAS  Google Scholar 

  • Arnaud L, Robakis NK, Figueiredo-Pereira ME (2006) It may take inflammation, phosphorylation and ubiquitination to ‘tangle’ in Alzheimer’s disease. Neurodegener Dis 3:313–319

    PubMed  Google Scholar 

  • Arrasate M, Perez M, Armas-Portela R, Avila J (1999) Polymerization of tau peptides into fibrillar structures. The effect of FTDP-17 mutations. FEBS Lett 446:199–202

    PubMed  CAS  Google Scholar 

  • Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645

    PubMed  CAS  Google Scholar 

  • Avila J, Perez M, Lucas JJ, Gomez-Ramos A, Santa Maria I, Moreno F, Smith M, Perry G, Hernandez F (2004) Assembly in vitro of tau protein and its implications in Alzheimer’s ­disease. Curr Alzheimer Res 1:97–101

    PubMed  CAS  Google Scholar 

  • Barghorn S, Zheng-Fischhofer Q, Ackmann M, Biernat J, Von Bergen M, Mandelkow EM, Mandelkow E (2000) Structure, microtubule interactions, and paired helical filament ­aggregation by tau mutants of frontotemporal dementias. Biochemistry 39:11714–11721

    PubMed  CAS  Google Scholar 

  • Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G, Volitakis I, Separovic F, Barrow CJ, Wade JD, Masters CL, Cherny RA, Curtain CC, Bush AI, Cappai R (2003) Neurotoxic, redox-competent Alzheimer’s β-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959–42965

    PubMed  CAS  Google Scholar 

  • Bastrikova N, Gardner GA, Reece JM, Jeromin A, Dudek SM (2008) Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci USA 105:3123–3127

    PubMed  CAS  Google Scholar 

  • Bednarski E, Lynch G (1996) Cytosolic proteolysis of tau by cathepsin D in hippocampus ­following suppression of cathepsins B and L. J Neurochem 67:1846–1855

    PubMed  CAS  Google Scholar 

  • Berg L, Mckeel DW Jr, Miller JP, Storandt M, Rubin EH, Morris JC, Baty J, Coats M, Norton J, Goate AM, Price JL, Gearing M, Mirra SS, Saunders AM (1998) Clinicopathologic studies in cognitively healthy aging and Alzheimer’s disease: relation of histologic markers to dementia severity, age, sex, and apolipoprotein E genotype. Arch Neurol 55:326–335

    PubMed  CAS  Google Scholar 

  • Berger Z, Roder H, Hanna A, Carlson A, Rangachari V, Yue M, Wszolek Z, Ashe K, Knight J, Dickson D, Andorfer C, Rosenberry TL, Lewis J, Hutton M, Janus C (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J Neurosci 27:3650–3662

    PubMed  CAS  Google Scholar 

  • Bertoni-Freddari C, Fattoretti P, Meier-Ruge W, Ulrich J (1989) Computer-assisted morphometry of synaptic plasticity during aging and dementia. Pathol Res Pract 185:799–802

    PubMed  CAS  Google Scholar 

  • Bhaskar K, Yen SH, Lee G (2005) Disease-related modifications in tau affect the interaction between Fyn and Tau. J Biol Chem 280:35119–35125

    PubMed  CAS  Google Scholar 

  • Bhaskar K, Miller M, Chludzinski A, Herrup K, Zagorski M, Lamb BT (2009) The PI3K-Akt–mTOR pathway regulates Aβ oligomer induced neuronal cell cycle events. Mol Neurodegener 4:14

    PubMed  Google Scholar 

  • Bhaskar K, Hobbs GA, Yen SH, Lee G (2010a) Tyrosine phosphorylation of tau accompanies disease progression in transgenic mouse models of tauopathy. Neuropathol Appl Neurobiol 36:462–477

    PubMed  CAS  Google Scholar 

  • Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT (2010b) Regulation of tau pathology by the microglial fractalkine receptor. Neuron 68:19–31

    PubMed  CAS  Google Scholar 

  • Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11:153–163

    PubMed  CAS  Google Scholar 

  • Billings LM, Green KN, Mcgaugh JL, Laferla FM (2007) Learning decreases Aβ*56 and tau pathology and ameliorates behavioral decline in 3×Tg-AD mice. J Neurosci 27:751–761

    PubMed  CAS  Google Scholar 

  • Binder LI, Frankfurter A, Rebhun LI (1985) The distribution of tau in the mammalian central nervous system. J Cell Biol 101:1371–1378

    PubMed  CAS  Google Scholar 

  • Bitan G, Kirkitadze MD, Lomakin A, Vollers SS, Benedek GB, Teplow DB (2003a) Amyloid β-protein (Aβ) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc Natl Acad Sci USA 100:330–335

    PubMed  CAS  Google Scholar 

  • Bitan G, Vollers SS, Teplow DB (2003b) Elucidation of primary structure elements controlling early amyloid β-protein oligomerization. J Biol Chem 278:34882–34889

    PubMed  CAS  Google Scholar 

  • Blurton-Jones M, Laferla FM (2006) Pathways by which Aβ facilitates tau pathology. Curr Alzheimer Res 3:437–448

    PubMed  CAS  Google Scholar 

  • Borchelt DR, Thinakaran G, Eckman CB, Lee MK, Davenport F, Ratovitsky T, Prada CM, Kim G, Seekins S, Yager D, Slunt HH, Wang R, Seeger M, Levey AI, Gandy SE, Copeland NG, Jenkins NA, Price DL, Younkin SG, Sisodia SS (1996) Familial Alzheimer’s disease-linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo. Neuron 17:1005–1013

    PubMed  CAS  Google Scholar 

  • Braak E, Braak H, Mandelkow EM (1994) A sequence of cytoskeleton changes related to the formation of neurofibrillary tangles and neuropil threads. Acta Neuropathol 87:554–567

    PubMed  CAS  Google Scholar 

  • Bretteville A, Planel E (2008) Tau aggregates: toxic, inert, or protective species? J Alzheimers Dis 14:431–436

    PubMed  Google Scholar 

  • Brion JP (2006) Immunological demonstration of tau protein in neurofibrillary tangles of Alzheimer’s disease. J Alzheimers Dis 9:177–185

    PubMed  CAS  Google Scholar 

  • Brion JP, Couck AM, Passareiro E, Flament-Durand J (1985) Neurofibrillary tangles of Alzheimer’s disease: an immunohistochemical study. J Submicrosc Cytol 17:89–96

    PubMed  CAS  Google Scholar 

  • Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR (2000) Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev 33:95–130

    PubMed  CAS  Google Scholar 

  • Buee-Scherrer V, Condamines O, Mourton-Gilles C, Jakes R, Goedert M, Pau B, Delacourte A (1996) AD2, a phosphorylation-dependent monoclonal antibody directed against tau proteins found in Alzheimer’s disease. Brain Res Mol Brain Res 39:79–88

    PubMed  CAS  Google Scholar 

  • Busciglio J, Lorenzo A, Yankner BA (1992) Methodological variables in the assessment of β amyloid neurotoxicity. Neurobiol Aging 13:609–612

    PubMed  CAS  Google Scholar 

  • Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115:717–730

    PubMed  CAS  Google Scholar 

  • Calabrese B, Shaked GM, Tabarean IV, Braga J, Koo EH, Halpain S (2007) Rapid, concurrent alterations in pre- and postsynaptic structure induced by naturally secreted amyloid-β protein. Mol Cell Neurosci 35:183–193

    PubMed  CAS  Google Scholar 

  • Cameron B, Landreth GE (2010) Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis 37:503–509

    PubMed  CAS  Google Scholar 

  • Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, Mckhann G, Yan SD (2005) Mitochondrial Aβ: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J 19:2040–2041

    PubMed  CAS  Google Scholar 

  • Cataldo AM, Petanceska S, Terio NB, Peterhoff CM, Durham R, Mercken M, Mehta PD, Buxbaum J, Haroutunian V, Nixon RA (2004) Aβ localization in abnormal endosomes: association with earliest Aβ elevations in AD and Down syndrome. Neurobiol Aging 25:1263–1272

    PubMed  CAS  Google Scholar 

  • Caughey B, Lansbury PT (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu Rev Neurosci 26:267–298

    PubMed  CAS  Google Scholar 

  • Chambers CB, Lee JM, Troncoso JC, Reich S, Muma NA (1999) Overexpression of four-repeat tau mRNA isoforms in progressive supranuclear palsy but not in Alzheimer’s disease. Ann Neurol 46:325–332

    PubMed  CAS  Google Scholar 

  • Chang L, Bakhos L, Wang Z, Venton DL, Klein WL (2003) Femtomole immunodetection of ­synthetic and endogenous amyloid-β oligomers and its application to Alzheimer’s disease drug candidate screening. J Mol Neurosci 20:305–313

    PubMed  CAS  Google Scholar 

  • Cheng IH, Scearce-Levie K, Legleiter J, Palop JJ, Gerstein H, Bien-Ly N, Puolivali J, Lesne S, Ashe KH, Muchowski PJ, Mucke L (2007) Accelerating amyloid-β fibrillization reduces ­oligomer levels and functional deficits in Alzheimer disease mouse models. J Biol Chem 282:23818–23828

    PubMed  CAS  Google Scholar 

  • Chirita CN, Congdon EE, Yin H, Kuret J (2005) Triggers of full-length tau aggregation: a role for partially folded intermediates. Biochemistry 44:5862–5872

    PubMed  CAS  Google Scholar 

  • Cho JH, Johnson GV (2004) Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules. J Neurochem 88:349–358

    PubMed  CAS  Google Scholar 

  • Citron M, Oltersdorf T, Haass C, Mcconlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer’s ­disease increases β-protein production. Nature 360:672–674

    PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D, Motter R, Sherrington R, Perry B, Yao H, Strome R, Lieberburg I, Rommens J, Kim S, Schenk D, Fraser P, St George Hyslop P, Selkoe DJ (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    PubMed  CAS  Google Scholar 

  • Cleary JP, Walsh DM, Hofmeister JJ, Shankar GM, Kuskowski MA, Selkoe DJ, Ashe KH (2005) Natural oligomers of the amyloid-β protein specifically disrupt cognitive function. Nat Neurosci 8:79–84

    PubMed  CAS  Google Scholar 

  • Cleveland DW, Hwo SY, Kirschner MW (1977) Purification of tau, a microtubule-associated ­protein that induces assembly of microtubules from purified tubulin. J Mol Biol 116:207–225

    PubMed  CAS  Google Scholar 

  • Congdon EE, Duff KE (2008) Is tau aggregation toxic or protective? J Alzheimers Dis 14:453–457

    PubMed  Google Scholar 

  • Constantinidis J, Richard J, Tissot R (1974) Pick’s disease. Histological and clinical correlations. Eur Neurol 11:208–217

    PubMed  CAS  Google Scholar 

  • Copani A, Condorelli F, Caruso A, Vancheri C, Sala A, Giuffrida Stella AM, Canonico PL, Nicoletti F, Sortino MA (1999) Mitotic signaling by β-amyloid causes neuronal death. FASEB J 13:2225–2234

    PubMed  CAS  Google Scholar 

  • Corey-Bloom J (2000) The natural history of Alzheimer’s disease. Arnold, London

    Google Scholar 

  • Couchie D, Mavilia C, Georgieff IS, Liem RK, Shelanski ML, Nunez J (1992) Primary structure of high molecular weight tau present in the peripheral nervous system. Proc Natl Acad Sci USA 89:4378–4381

    PubMed  CAS  Google Scholar 

  • Cowan CM, Bossing T, Page A, Shepherd D, Mudher A (2010) Soluble hyper-phosphorylated tau causes microtubule breakdown and functionally compromises normal tau in vivo. Acta Neuropathol 120:593–604

    PubMed  CAS  Google Scholar 

  • Coyle JT, Price DL, Delong MR (1983) Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science 219:1184–1190

    PubMed  CAS  Google Scholar 

  • Cummings BJ, Pike CJ, Shankle R, Cotman CW (1996) β-Amyloid deposition and other measures of neuropathology predict cognitive status in Alzheimer’s disease. Neurobiol Aging 17:921–933

    PubMed  CAS  Google Scholar 

  • Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-β binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473

    PubMed  CAS  Google Scholar 

  • David DC, Layfield R, Serpell L, Narain Y, Goedert M, Spillantini MG (2002) Proteasomal degradation of tau protein. J Neurochem 83:176–185

    PubMed  CAS  Google Scholar 

  • Davies CA, Mann DM, Sumpter PQ, Yates PO (1987) A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer’s disease. J Neurol Sci 78:151–164

    PubMed  CAS  Google Scholar 

  • Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM, Lynch JR, Laskowitz DT (2010) Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease. Neuroscience 169:516–531

    PubMed  CAS  Google Scholar 

  • De Barreda EG, Dawson HN, Vitek MP, Avila J (2010) Tau deficiency leads to the upregulation of BAF-57, a protein involved in neuron-specific gene repression. FEBS Lett 584:2265–2270

    PubMed  Google Scholar 

  • De Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, Hyman BT (2010) Caspase activation precedes and leads to tangles. Nature 464:1201–1204

    PubMed  Google Scholar 

  • De Felice FG, Wu D, Lambert MP, Fernandez SJ, Velasco PT, Lacor PN, Bigio EH, Jerecic J, Acton PJ, Shughrue PJ, Chen-Dodson E, Kinney GG, Klein WL (2008) Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by Aβ oligomers. Neurobiol Aging 29:1334–1347

    PubMed  Google Scholar 

  • De Felice FG, Vieira MN, Bomfim TR, Decker H, Velasco PT, Lambert MP, Viola KL, Zhao WQ, Ferreira ST, Klein WL (2009) Protection of synapses against Alzheimer’s-linked toxins: Insulin signaling prevents the pathogenic binding of Aβ oligomers. Proc Natl Acad Sci USA 106:1971–1976

    PubMed  Google Scholar 

  • Dekosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    PubMed  CAS  Google Scholar 

  • Delacourte A, Robitaille Y, Sergeant N, Buee L, Hof PR, Wattez A, Laroche-Cholette A, Mathieu J, Chagnon P, Gauvreau D (1996) Specific pathological Tau protein variants characterize Pick’s disease. J Neuropathol Exp Neurol 55:159–168

    PubMed  CAS  Google Scholar 

  • Delacourte A, David JP, Sergeant N, Buee L, Wattez A, Vermersch P, Ghozali F, Fallet-Bianco C, Pasquier F, Lebert F, Petit H, Di Menza C (1999) The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology 52:1158–1165

    PubMed  CAS  Google Scholar 

  • Delacourte A, Sergeant N, Champain D, Wattez A, Maurage CA, Lebert F, Pasquier F, David JP (2002) Nonoverlapping but synergetic tau and APP pathologies in sporadic Alzheimer’s disease. Neurology 59:398–407

    PubMed  CAS  Google Scholar 

  • Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    PubMed  CAS  Google Scholar 

  • Derkinderen P, Scales TM, Hanger DP, Leung KY, Byers HL, Ward MA, Lenz C, Price C, Bird IN, Perera T, Kellie S, Williamson R, Noble W, Van Etten RA, Leroy K, Brion JP, Reynolds CH, Anderton BH (2005) Tyrosine 394 is phosphorylated in Alzheimer’s paired helical filament tau and in fetal tau with c-Abl as the candidate tyrosine kinase. J Neurosci 25:6584–6593

    PubMed  CAS  Google Scholar 

  • Deshpande A, Mina E, Glabe C, Busciglio J (2006) Different conformations of amyloid β induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 26:6011–6018

    PubMed  CAS  Google Scholar 

  • Deshpande A, Kawai H, Metherate R, Glabe CG, Busciglio J (2009) A role for synaptic zinc in activity-dependent Aβ oligomer formation and accumulation at excitatory synapses. J Neurosci 29:4004–4015

    PubMed  CAS  Google Scholar 

  • Di Maria E, Tabaton M, Vigo T, Abbruzzese G, Bellone E, Donati C, Frasson E, Marchese R, Montagna P, Munoz DG, Pramstaller PP, Zanusso G, Ajmar F, Mandich P (2000) Corticobasal degeneration shares a common genetic background with progressive supranuclear palsy. Ann Neurol 47:374–377

    PubMed  Google Scholar 

  • Dickey CA, Yue M, Lin WL, Dickson DW, Dunmore JH, Lee WC, Zehr C, West G, Cao S, Clark AM, Caldwell GA, Caldwell KA, Eckman C, Patterson C, Hutton M, Petrucelli L (2006) Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species. J Neurosci 26:6985–6996

    PubMed  CAS  Google Scholar 

  • Dickson DW (1998) Pick’s disease: a modern approach. Brain Pathol 8:339–354

    PubMed  CAS  Google Scholar 

  • Dickson DW, Ksiezak-Reding H, Davies P, Yen SH (1987) A monoclonal antibody that recognizes a phosphorylated epitope in Alzheimer neurofibrillary tangles, neurofilaments and tau proteins immunostains granulovacuolar degeneration. Acta Neuropathol 73:254–258

    PubMed  CAS  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298, discussion 98–304

    PubMed  CAS  Google Scholar 

  • Dineley KT, Xia X, Bui D, Sweatt JD, Zheng H (2002) Accelerated plaque accumulation, associative learning deficits, and up-regulation of α7 nicotinic receptor protein in transgenic mice co–expressing mutant human presenilin 1 and amyloid precursor proteins. J Biol Chem 277:22768–22780

    PubMed  CAS  Google Scholar 

  • Dodart JC, Bales KR, Gannon KS, Greene SJ, Demattos RB, Mathis C, Delong CA, Wu S, Wu X, Holtzman DM, Paul SM (2002) Immunization reverses memory deficits without reducing brain Aβ burden in Alzheimer’s disease model. Nat Neurosci 5:452–457

    PubMed  CAS  Google Scholar 

  • Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal ­binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:2768–2773

    PubMed  CAS  Google Scholar 

  • Duff K, Planel E (2005) Untangling memory deficits. Nat Med 11:826–827

    PubMed  CAS  Google Scholar 

  • Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF (2009) Deletion of the α7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci 29:8805–8815

    PubMed  CAS  Google Scholar 

  • Eckermann K, Mocanu MM, Khlistunova I, Biernat J, Nissen A, Hofmann A, Schonig K, Bujard H, Haemisch A, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2007) The β-propensity of Tau determines aggregation and synaptic loss in inducible mouse models of tauopathy. J Biol Chem 282:31755–31765

    PubMed  CAS  Google Scholar 

  • Eckert A, Hauptmann S, Scherping I, Meinhardt J, Rhein V, Drose S, Brandt U, Fandrich M, Muller WE, Gotz J (2008a) Oligomeric and fibrillar species of β-amyloid (Aβ42) both impair mitochondrial function in P301L tau transgenic mice. J Mol Med 86:1255–1267

    PubMed  CAS  Google Scholar 

  • Eckert A, Hauptmann S, Scherping I, Rhein V, Muller-Spahn F, Gotz J, Muller WE (2008b) Soluble β-amyloid leads to mitochondrial defects in amyloid precursor protein and tau transgenic mice. Neurodegener Dis 5:157–159

    PubMed  CAS  Google Scholar 

  • Eikelenboom P, Veerhuis R, Scheper W, Rozemuller AJ, Van Gool WA, Hoozemans JJ (2006) The significance of neuroinflammation in understanding Alzheimer’s disease. J Neural Transm 113:1685–1695

    PubMed  CAS  Google Scholar 

  • Fagan AM, Holtzman DM (2010) Cerebrospinal fluid biomarkers of Alzheimer’s disease. Biomark Med 4:51–63

    PubMed  CAS  Google Scholar 

  • Fang CL, Wu WH, Liu Q, Sun X, Ma Y, Zhao YF, Li YM (2010) Dual functions of β-amyloid oligomer and fibril in Cu(II)-induced H2O2 production. Regul Pept 163:1–6

    PubMed  CAS  Google Scholar 

  • Fasulo L, Ugolini G, Cattaneo A (2005) Apoptotic effect of caspase-3 cleaved tau in hippocampal neurons and its potentiation by tau FTDP-mutation N279K. J Alzheimers Dis 7:3–13

    PubMed  CAS  Google Scholar 

  • Feany MB, Dickson DW (1995) Widespread cytoskeletal pathology characterizes corticobasal degeneration. Am J Pathol 146:1388–1396

    PubMed  CAS  Google Scholar 

  • Feany MB, Mattiace LA, Dickson DW (1996) Neuropathologic overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol Exp Neurol 55:53–67

    PubMed  CAS  Google Scholar 

  • Flament S, Delacourte A, Verny M, Hauw JJ, Javoy-Agid F (1991) Abnormal Tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol 81:591–596

    PubMed  CAS  Google Scholar 

  • Foster NL, Wilhelmsen K, Sima AA, Jones MZ, D’amato CJ, Gilman S (1997) Frontotemporal dementia and parkinsonism linked to chromosome 17: a consensus conference. Conference Participants. Ann Neurol 41:706–715

    PubMed  CAS  Google Scholar 

  • Frautschy SA, Yang F, Irrizarry M, Hyman B, Saido TC, Hsiao K, Cole GM (1998) Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol 152:307–317

    PubMed  CAS  Google Scholar 

  • Freir DB, Fedriani R, Scully D, Smith IM, Selkoe DJ, Walsh DM, Regan CM (2010) Aβ oligomers inhibit synapse remodelling necessary for memory consolidation. Neurobiol Aging, 32:2211–2218

    Google Scholar 

  • Friedrich RP, Tepper K, Ronicke R, Soom M, Westermann M, Reymann K, Kaether C, Fandrich M (2010) Mechanism of amyloid plaque formation suggests an intracellular basis of Aβ pathogenicity. Proc Natl Acad Sci USA 107:1942–1947

    PubMed  CAS  Google Scholar 

  • Gamblin TC, Chen F, Zambrano A, Abraha A, Lagalwar S, Guillozet AL, Lu M, Fu Y, Garcia-Sierra F, Lapointe N, Miller R, Berry RW, Binder LI, Cryns VL (2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proc Natl Acad Sci USA 100:10032–10037

    PubMed  CAS  Google Scholar 

  • Games D, Adams D, Alessandrini R, Barbour R, Berthelette P, Blackwell C, Carr T, Clemens J, Donaldson T, Gillespie F et al (1995) Alzheimer-type neuropathology in transgenic mice overexpressing V717F β-amyloid precursor protein. Nature 373:523–527

    PubMed  CAS  Google Scholar 

  • Garcia-Sierra F, Mondragon-Rodriguez S, Basurto-Islas G (2008) Truncation of tau protein and its pathological significance in Alzheimer’s disease. J Alzheimers Dis 14:401–409

    PubMed  Google Scholar 

  • Gebicke-Haerter PJ (2001) Microglia in neurodegeneration: molecular aspects. Microsc Res Tech 54:47–58

    PubMed  CAS  Google Scholar 

  • Geinisman Y (1999) Age-related decline in memory function: is it associated with a loss of ­synapses? Neurobiol Aging 20:353–356

    PubMed  CAS  Google Scholar 

  • Geinisman Y, Detoledo-Morrell L, Morrell F, Persina IS, Rossi M (1992) Structural synaptic plasticity associated with the induction of long-term potentiation is preserved in the dentate gyrus of aged rats. Hippocampus 2:445–456

    PubMed  CAS  Google Scholar 

  • Georganopoulou DG, Chang L, Nam JM, Thaxton CS, Mufson EJ, Klein WL, Mirkin CA (2005) Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc Natl Acad Sci USA 102:2273–2276

    PubMed  CAS  Google Scholar 

  • Gerhard A, Trender-Gerhard I, Turkheimer F, Quinn NP, Bhatia KP, Brooks DJ (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in progressive supranuclear palsy. Mov Disord 21:89–93

    PubMed  Google Scholar 

  • Geula C, Wu CK, Saroff D, Lorenzo A, Yuan M, Yankner BA (1998) Aging renders the brain vulnerable to amyloid β-protein neurotoxicity. Nat Med 4:827–831

    PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    PubMed  CAS  Google Scholar 

  • Goate A, Chartier-Harlin MC, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L et al (1991) Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706

    PubMed  CAS  Google Scholar 

  • Goedert M (1998) Neurofibrillary pathology of Alzheimer’s disease and other tauopathies. Prog Brain Res 117:287–306

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R (1990) Expression of separate isoforms of human tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization. EMBO J 9:4225–4230

    PubMed  CAS  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Cairns NJ, Crowther RA (1992) Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron 8:159–168

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Crowther RA, Vanmechelen E, Probst A, Gotz J, Burki K, Cohen P (1995) Molecular dissection of the paired helical filament. Neurobiol Aging 16:325–334

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated ­glycosaminoglycans. Nature 383:550–553

    PubMed  CAS  Google Scholar 

  • Goedert M, Jakes R, Crowther RA (1999) Effects of frontotemporal dementia FTDP-17 mutations on heparin-induced assembly of tau filaments. FEBS Lett 450:306–311

    PubMed  CAS  Google Scholar 

  • Goldbaum O, Richter-Landsberg C (2004) Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture. J Neurosci 24:5748–5757

    PubMed  CAS  Google Scholar 

  • Goldbaum O, Oppermann M, Handschuh M, Dabir D, Zhang B, Forman MS, Trojanowski JQ, Lee VM, Richter-Landsberg C (2003) Proteasome inhibition stabilizes tau inclusions in ­oligodendroglial cells that occur after treatment with okadaic acid. J Neurosci 23:8872–8880

    PubMed  CAS  Google Scholar 

  • Gomez De Barreda E, Perez M, Gomez Ramos P, De Cristobal J, Martin-Maestro P, Moran A, Dawson HN, Vitek MP, Lucas JJ, Hernandez F, Avila J (2010) Tau-knockout mice show reduced GSK3-induced hippocampal degeneration and learning deficits. Neurobiol Dis 37:622–629

    PubMed  CAS  Google Scholar 

  • Gomez-Ramos A, Diaz-Nido J, Smith MA, Perry G, Avila J (2003) Effect of the lipid peroxidation product acrolein on tau phosphorylation in neural cells. J Neurosci Res 71:863–870

    PubMed  CAS  Google Scholar 

  • Goode BL, Feinstein SC (1994) Identification of a novel microtubule binding and assembly domain in the developmentally regulated inter-repeat region of tau. J Cell Biol 124:769–782

    PubMed  CAS  Google Scholar 

  • Gotz J, Chen F, Van Dorpe J, Nitsch RM (2001) Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Aβ 42 fibrils. Science 293:1491–1495

    PubMed  CAS  Google Scholar 

  • Green JD, Kreplak L, Goldsbury C, Li Blatter X, Stolz M, Cooper GS, Seelig A, Kistler J, Aebi U (2004) Atomic force microscopy reveals defects within mica supported lipid bilayers induced by the amyloidogenic human amylin peptide. J Mol Biol 342:877–887

    PubMed  CAS  Google Scholar 

  • Greenamyre JT, Young AB (1989) Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 10:593–602

    PubMed  CAS  Google Scholar 

  • Greenberg SG, Davies P (1990) A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis. Proc Natl Acad Sci USA 87:5827–5831

    PubMed  CAS  Google Scholar 

  • Greenberg SG, Davies P, Schein JD, Binder LI (1992) Hydrofluoric acid-treated tau PHF proteins display the same biochemical properties as normal tau. J Biol Chem 267:564–569

    PubMed  CAS  Google Scholar 

  • Gronroos E, Hellman U, Heldin CH, Ericsson J (2002) Control of Smad7 stability by competition between acetylation and ubiquitination. Mol Cell 10:483–493

    PubMed  CAS  Google Scholar 

  • Grover A, England E, Baker M, Sahara N, Adamson J, Granger B, Houlden H, Passant U, Yen SH, Deture M, Hutton M (2003) A novel tau mutation in exon 9 (1260V) causes a four-repeat tauopathy. Exp Neurol 184:131–140

    PubMed  CAS  Google Scholar 

  • Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 83:4913–4917

    PubMed  CAS  Google Scholar 

  • Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ (1992) Targeting of cell-surface β-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 357:500–503

    PubMed  CAS  Google Scholar 

  • Hampel H, Blennow K, Shaw LM, Hoessler YC, Zetterberg H, Trojanowski JQ (2010) Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp Gerontol 45:30–40

    PubMed  CAS  Google Scholar 

  • Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15:112–119

    PubMed  CAS  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    PubMed  CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    PubMed  CAS  Google Scholar 

  • Harper JD, Lieber CM, Lansbury PT Jr (1997) Atomic force microscopic imaging of seeded fibril formation and fibril branching by the Alzheimer’s disease amyloid-β protein. Chem Biol 4:951–959

    PubMed  CAS  Google Scholar 

  • Hartley DM, Walsh DM, Ye CP, Diehl T, Vasquez S, Vassilev PM, Teplow DB, Selkoe DJ (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci 19:8876–8884

    PubMed  CAS  Google Scholar 

  • Hartley DM, Zhao C, Speier AC, Woodard GA, Li S, Li Z, Walz T (2008) Transglutaminase induces protofibril-like amyloid β-protein assemblies that are protease-resistant and inhibit long-term potentiation. J Biol Chem 283:16790–16800

    PubMed  CAS  Google Scholar 

  • Hauw JJ, Daniel SE, Dickson D, Horoupian DS, Jellinger K, Lantos PL, Mckee A, Tabaton M, Litvan I (1994) Preliminary NINDS neuropathologic criteria for Steele-Richardson-Olszewski syndrome (progressive supranuclear palsy). Neurology 44:2015–2019

    PubMed  CAS  Google Scholar 

  • Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, Kalbe E, Heiss WD (2004) In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 21:136–143

    PubMed  CAS  Google Scholar 

  • Hernandez F, Avila J (2007) Tauopathies. Cell Mol Life Sci 64:2219–2233

    PubMed  CAS  Google Scholar 

  • Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT (2010) Loss of α7 nicotinic receptors enhances β-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci 30:2442–2453

    PubMed  CAS  Google Scholar 

  • Herrup K, Yang Y (2007) Cell cycle regulation in the postmitotic neuron: oxymoron or new ­biology? Nat Rev Neurosci 8:368–378

    PubMed  CAS  Google Scholar 

  • Hewitt N, Rauk A (2009) Mechanism of hydrogen peroxide production by copper-bound amyloid β peptide: a theoretical study. J Phys Chem B 113:1202–1209

    PubMed  CAS  Google Scholar 

  • Hikosou R, Kurabayashi Y, Doumoto M, Hoshitoku K, Mizushima F, Minoura K, Tomoo K, Ishida T (2007) Effect of DNA on filament formation of tau microtubule-binding domain: structural dependence of DNA. Chem Pharm Bull (Tokyo) 55:1030–1033

    CAS  Google Scholar 

  • Himmler A, Drechsel D, Kirschner MW, Martin DW Jr (1989) Tau consists of a set of proteins with repeated C-terminal microtubule-binding domains and variable N-terminal domains. Mol Cell Biol 9:1381–1388

    PubMed  CAS  Google Scholar 

  • Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JA (2008) Long-term effects of Aβ42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet 372:216–223

    PubMed  CAS  Google Scholar 

  • Horn AH, Sticht H (2010) Amyloid-β42 oligomer structures from fibrils: a systematic molecular dynamics study. J Phys Chem B 114:2219–2226

    PubMed  CAS  Google Scholar 

  • Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, Sato K (2003) Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci USA 100:6370–6375

    PubMed  CAS  Google Scholar 

  • Hsiao K, Chapman P, Nilsen S, Eckman C, Harigaya Y, Younkin S, Yang F, Cole G (1996) Correlative memory deficits, Aβ elevation, and amyloid plaques in transgenic mice. Science 274:99–102

    PubMed  CAS  Google Scholar 

  • Hu X, Crick SL, Bu G, Frieden C, Pappu RV, Lee JM (2009) Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-β peptide. Proc Natl Acad Sci USA 106:20324–20329

    PubMed  CAS  Google Scholar 

  • Hua Q, He RQ (2003) Tau could protect DNA double helix structure. Biochim Biophys Acta 1645:205–211

    PubMed  CAS  Google Scholar 

  • Hyman BT, Tanzi RE (1992) Amyloid, dementia and Alzheimer’s disease. Curr Opin Neurol Neurosurg 5:88–93

    PubMed  CAS  Google Scholar 

  • Hyman BT, Van Hoesen GW, Kromer LJ, Damasio AR (1986) Perforant pathway changes and the memory impairment of Alzheimer’s disease. Ann Neurol 20:472–481

    PubMed  CAS  Google Scholar 

  • Ida N, Masters CL, Beyreuther K (1996) Rapid cellular uptake of Alzheimer amyloid βA4 peptide by cultured human neuroblastoma cells. FEBS Lett 394:174–178

    PubMed  CAS  Google Scholar 

  • Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–664

    PubMed  CAS  Google Scholar 

  • Ishizawa K, Dickson DW (2001) Microglial activation parallels system degeneration in progressive supranuclear palsy and corticobasal degeneration. J Neuropathol Exp Neurol 60:647–657

    PubMed  CAS  Google Scholar 

  • Ito A, Kawaguchi Y, Lai CH, Kovacs JJ, Higashimoto Y, Appella E, Yao TP (2002) MDM2-HDAC1-mediated deacetylation of p53 is required for its degradation. EMBO J 21:6236–6245

    PubMed  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, Van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA, Eckert A, Staufenbiel M, Hardeman E, Gotz J (2010) Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    PubMed  CAS  Google Scholar 

  • Iwatsubo T, Hasegawa M, Ihara Y (1994) Neuronal and glial tau-positive inclusions in diverse neurologic diseases share common phosphorylation characteristics. Acta Neuropathol 88:129–136

    PubMed  CAS  Google Scholar 

  • Jacobsen JS, Wu CC, Redwine JM, Comery TA, Arias R, Bowlby M, Martone R, Morrison JH, Pangalos MN, Reinhart PH, Bloom FE (2006) Early-onset behavioral and synaptic deficits in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 103:5161–5166

    PubMed  CAS  Google Scholar 

  • Jellinger K (1990) Morphology of Alzheimer’s disease and related disorders. Springer, Berlin

    Google Scholar 

  • Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Redox reactions of ­copper complexes formed with different β-amyloid peptides and their neuropathological [­correction of neuropathalogical] relevance. Biochemistry 46:9270–9282

    PubMed  CAS  Google Scholar 

  • Jiang D, Li X, Liu L, Yagnik GB, Zhou F (2010) Reaction rates and mechanism of the ascorbic acid oxidation by molecular oxygen facilitated by Cu(II)-containing amyloid-β complexes and aggregates. J Phys Chem B 114:4896–4903

    PubMed  CAS  Google Scholar 

  • Jin YH, Jeon EJ, Li QL, Lee YH, Choi JK, Kim WJ, Lee KY, Bae SC (2004) Transforming growth factor-β stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-­mediated degradation. J Biol Chem 279:29409–29417

    PubMed  CAS  Google Scholar 

  • Jinwal UK, Koren J 3rd, Borysov SI, Schmid AB, Abisambra JF, Blair LJ, Johnson AG, Jones JR, Shults CL, O’leary JC 3rd, Jin Y, Buchner J, Cox MB, Dickey CA (2010) The Hsp90 ­cochaperone, FKBP51, increases Tau stability and polymerizes microtubules. J Neurosci 30:591–599

    PubMed  CAS  Google Scholar 

  • Kampers T, Friedhoff P, Biernat J, Mandelkow EM, Mandelkow E (1996) RNA stimulates ­aggregation of microtubule-associated protein tau into Alzheimer-like paired helical filaments. FEBS Lett 399:344–349

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    PubMed  CAS  Google Scholar 

  • Kanski J, Aksenova M, Schoneich C, Butterfield DA (2002a) Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer’s amyloid β-peptide. Free Radic Biol Med 32:1205–1211

    PubMed  CAS  Google Scholar 

  • Kanski J, Varadarajan S, Aksenova M, Butterfield DA (2002b) Role of glycine-33 and ­methionine-35 in Alzheimer’s amyloid β-peptide 1–42-associated oxidative stress and neurotoxicity. Biochim Biophys Acta 1586:190–198

    PubMed  CAS  Google Scholar 

  • Kar S, Quirion R (2004) Amyloid β peptides and central cholinergic neurons: functional interrelationship and relevance to Alzheimer’s disease pathology. Prog Brain Res 145:261–274

    PubMed  CAS  Google Scholar 

  • Karsten SL, Sang TK, Gehman LT, Chatterjee S, Liu J, Lawless GM, Sengupta S, Berry RW, Pomakian J, Oh HS, Schulz C, Hui KS, Wiedau-Pazos M, Vinters HV, Binder LI, Geschwind DH, Jackson GR (2006) A genomic screen for modifiers of tauopathy identifies puromycin-sensitive aminopeptidase as an inhibitor of tau-induced neurodegeneration. Neuron 51:549–560

    PubMed  CAS  Google Scholar 

  • Kawarabayashi T, Shoji M, Younkin LH, Wen-Lang L, Dickson DW, Murakami T, Matsubara E, Abe K, Ashe KH, Younkin SG (2004) Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 24:3801–3809

    PubMed  CAS  Google Scholar 

  • Kayed R, Jackson GR (2009) Prefilament tau species as potential targets for immunotherapy for Alzheimer disease and related disorders. Curr Opin Immunol 21:359–363

    PubMed  CAS  Google Scholar 

  • Kayed R, Head E, Thompson JL, Mcintire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489

    PubMed  CAS  Google Scholar 

  • Kelly BL, Ferreira A (2006) β-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem 281:28079–28089

    PubMed  CAS  Google Scholar 

  • Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme ­cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem 69:2026–2038

    PubMed  CAS  Google Scholar 

  • Khachaturian ZS (1985) Diagnosis of Alzheimer’s disease. Arch Neurol 42:1097–1105

    PubMed  CAS  Google Scholar 

  • Khurana V, Elson-Schwab I, Fulga TA, Sharp KA, Loewen CA, Mulkearns E, Tyynela J, Scherzer CR, Feany MB (2010) Lysosomal dysfunction promotes cleavage and neurotoxicity of tau in vivo. PLoS Genet 6:e1001026

    PubMed  Google Scholar 

  • Kimura T, Yamashita S, Fukuda T, Park JM, Murayama M, Mizoroki T, Yoshiike Y, Sahara N, Takashima A (2007) Hyperphosphorylated tau in parahippocampal cortex impairs place ­learning in aged mice expressing wild-type human tau. EMBO J 26:5143–5152

    PubMed  CAS  Google Scholar 

  • King ME, Ahuja V, Binder LI, Kuret J (1999) Ligand-dependent tau filament formation: implications for Alzheimer’s disease progression. Biochemistry 38:14851–14859

    PubMed  CAS  Google Scholar 

  • Kitazawa M, Oddo S, Yamasaki TR, Green KN, Laferla FM (2005) Lipopolysaccharide-induced inflammation exacerbates tau pathology by a cyclin-dependent kinase 5-mediated pathway in a transgenic model of Alzheimer’s disease. J Neurosci 25:8843–8853

    PubMed  CAS  Google Scholar 

  • Kiyota T, Yamamoto M, Xiong H, Lambert MP, Klein WL, Gendelman HE, Ransohoff RM, Ikezu T (2009) CCL2 accelerates microglia-mediated Aβ oligomer formation and progression of neurocognitive dysfunction. PLoS One 4:e6197

    PubMed  Google Scholar 

  • Klyubin I, Betts V, Welzel AT, Blennow K, Zetterberg H, Wallin A, Lemere CA, Cullen WK, Peng Y, Wisniewski T, Selkoe DJ, Anwyl R, Walsh DM, Rowan MJ (2008) Amyloid β protein dimer-containing human CSF disrupts synaptic plasticity: prevention by systemic passive immunization. J Neurosci 28:4231–4237

    PubMed  CAS  Google Scholar 

  • Kokubo H, Kayed R, Glabe CG, Yamaguchi H (2005) Soluble Aβ oligomers ultrastructurally localize to cell processes and might be related to synaptic dysfunction in Alzheimer’s disease brain. Brain Res 1031:222–228

    PubMed  CAS  Google Scholar 

  • Kondo J, Honda T, Mori H, Hamada Y, Miura R, Ogawara M, Ihara Y (1988) The carboxyl third of tau is tightly bound to paired helical filaments. Neuron 1:827–834

    PubMed  CAS  Google Scholar 

  • Konno T, Oiki S, Hasegawa K, Naiki H (2004) Anionic contribution for fibrous maturation of protofibrillar assemblies of the human tau repeat domain in a fluoroalcohol solution. Biochemistry 43:13613–13620

    PubMed  CAS  Google Scholar 

  • Konzack S, Thies E, Marx A, Mandelkow EM, Mandelkow E (2007) Swimming against the tide: mobility of the microtubule-associated protein tau in neurons. J Neurosci 27:9916–9927

    PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Binder L, Trojanowski JQ, Lee VM, Lee G (1988) Epitopes that span the tau molecule are shared with paired helical filaments. Neuron 1:817–825

    PubMed  CAS  Google Scholar 

  • Kovacech B, Novak M (2010) Tau truncation is a productive posttranslational modification of neurofibrillary degeneration in Alzheimer’s disease. Curr Alzheimer Res 7:708–716

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Wall JS (2005) Characterization of paired helical filaments by scanning transmission electron microscopy. Microsc Res Tech 67:126–140

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Yen SH (1987) Two monoclonal antibodies recognize Alzheimer’s neurofibrillary tangles, neurofilament, and microtubule-associated proteins. J Neurochem 48:455–462

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Yen SH (1991) Structural stability of paired helical filaments requires ­microtubule-binding domains of tau: a model for self-association. Neuron 6:717–728

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Binder LI, Yen SH (1988) Immunochemical and biochemical characterization of tau proteins in normal and Alzheimer’s disease brains with Alz 50 and Tau-1. J Biol Chem 263:7948–7953

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Morgan K, Dickson DW (1994a) Tau immunoreactivity and SDS solubility of two populations of paired helical filaments that differ in morphology. Brain Res 649:185–196

    PubMed  CAS  Google Scholar 

  • Ksiezak-Reding H, Morgan K, Mattiace LA, Davies P, Liu WK, Yen SH, Weidenheim K, Dickson DW (1994b) Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am J Pathol 145:1496–1508

    PubMed  CAS  Google Scholar 

  • Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Roher AE (2001) Comparative analysis of amyloid-β chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s ­disease brains. J Biol Chem 276:12991–12998

    PubMed  CAS  Google Scholar 

  • Kuret J, Chirita CN, Congdon EE, Kannanayakal T, Li G, Necula M, Yin H, Zhong Q (2005a) Pathways of tau fibrillization. Biochim Biophys Acta 1739:167–178

    PubMed  CAS  Google Scholar 

  • Kuret J, Congdon EE, Li G, Yin H, Yu X, Zhong Q (2005b) Evaluating triggers and enhancers of tau fibrillization. Microsc Res Tech 67:141–155

    PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Chang L, Fernandez SJ, Gong Y, Viola KL, Lambert MP, Velasco PT, Bigio EH, Finch CE, Krafft GA, Klein WL (2004) Synaptic targeting by Alzheimer’s-related amyloid β oligomers. J Neurosci 24:10191–10200

    PubMed  CAS  Google Scholar 

  • Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola KL, Klein WL (2007) Aβ oligomer-induced aberrations in synapse composition, shape, and density provide a molecular basis for loss of connectivity in Alzheimer’s disease. J Neurosci 27:796–807

    PubMed  CAS  Google Scholar 

  • Lambert MP, Barlow AK, Chromy BA, Edwards C, Freed R, Liosatos M, Morgan TE, Rozovsky I, Trommer B, Viola KL, Wals P, Zhang C, Finch CE, Krafft GA, Klein WL (1998) Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system ­neurotoxins. Proc Natl Acad Sci USA 95:6448–6453

    PubMed  CAS  Google Scholar 

  • Lambert MP, Viola KL, Chromy BA, Chang L, Morgan TE, Yu J, Venton DL, Krafft GA, Finch CE, Klein WL (2001) Vaccination with soluble Aβ oligomers generates toxicity-neutralizing antibodies. J Neurochem 79:595–605

    PubMed  CAS  Google Scholar 

  • Lambert MP, Velasco PT, Chang L, Viola KL, Fernandez S, Lacor PN, Khuon D, Gong Y, Bigio EH, Shaw P, De Felice FG, Krafft GA, Klein WL (2007) Monoclonal antibodies that target pathological assemblies of Aβ. J Neurochem 100:23–35

    PubMed  CAS  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J Neurochem 78:413–416

    PubMed  CAS  Google Scholar 

  • Lee G, Neve RL, Kosik KS (1989) The microtubule binding domain of tau protein. Neuron 2:1615–1624

    PubMed  CAS  Google Scholar 

  • Lee VM, Balin BJ, Otvos L Jr, Trojanowski JQ (1991) A68: a major subunit of paired helical ­filaments and derivatized forms of normal Tau. Science 251:675–678

    PubMed  CAS  Google Scholar 

  • Lee G, Newman ST, Gard DL, Band H, Panchamoorthy G (1998) Tau interacts with src-family non-receptor tyrosine kinases. J Cell Sci 111(Pt 21):3167–3177

    PubMed  CAS  Google Scholar 

  • Lee VM, Goedert M, Trojanowski JQ (2001) Neurodegenerative tauopathies. Annu Rev Neurosci 24:1121–1159

    PubMed  CAS  Google Scholar 

  • Lee G, Thangavel R, Sharma VM, Litersky JM, Bhaskar K, Fang SM, Do LH, Andreadis A, Van Hoesen G, Ksiezak-Reding H (2004) Phosphorylation of tau by fyn: implications for Alzheimer’s disease. J Neurosci 24:2304–2312

    PubMed  CAS  Google Scholar 

  • Lee VM, Kenyon TK, Trojanowski JQ (2005) Transgenic animal models of tauopathies. Biochim Biophys Acta 1739:251–259

    PubMed  CAS  Google Scholar 

  • Lefterov I, Fitz NF, Cronican A, Lefterov P, Staufenbiel M, Koldamova R (2009) Memory deficits in APP23/ABCA1+/– mice correlate with the level of Aβ oligomers. ASN Neuro 1:pii: e00006

    Google Scholar 

  • Lehman NL (2009) The ubiquitin proteasome system in neuropathology. Acta Neuropathol 118:329–347

    PubMed  CAS  Google Scholar 

  • Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH (2006) A specific amyloid-β protein assembly in the brain impairs memory. Nature 440:352–357

    PubMed  Google Scholar 

  • Levy E, Carman MD, Fernandez-Madrid IJ, Power MD, Lieberburg I, Van Duinen SG, Bots GT, Luyendijk W, Frangione B (1990) Mutation of the Alzheimer’s disease amyloid gene in ­hereditary cerebral hemorrhage, Dutch type. Science 248:1124–1126

    PubMed  CAS  Google Scholar 

  • Lewis J, Dickson DW, Lin WL, Chisholm L, Corral A, Jones G, Yen SH, Sahara N, Skipper L, Yager D, Eckman C, Hardy J, Hutton M, Mcgowan E (2001) Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP. Science 293:1487–1491

    PubMed  CAS  Google Scholar 

  • Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe DJ (2009) Soluble oligomers of amyloid β protein facilitate hippocampal long-term depression by disrupting neuronal ­glutamate uptake. Neuron 62:788–801

    PubMed  CAS  Google Scholar 

  • Lieberman AP, Trojanowski JQ, Lee VM, Balin BJ, Ding XS, Greenberg J, Morrison D, Reivich M, Grossman M (1998) Cognitive, neuroimaging, and pathological studies in a patient with Pick’s disease. Ann Neurol 43:259–265

    PubMed  CAS  Google Scholar 

  • Lim F, Hernandez F, Lucas JJ, Gomez-Ramos P, Moran MA, Avila J (2001) FTDP-17 mutations in tau transgenic mice provoke lysosomal abnormalities and Tau filaments in forebrain. Mol Cell Neurosci 18:702–714

    PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid β protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    PubMed  CAS  Google Scholar 

  • Litvan I, Agid Y, Calne D, Campbell G, Dubois B, Duvoisin RC, Goetz CG, Golbe LI, Grafman J, Growdon JH, Hallett M, Jankovic J, Quinn NP, Tolosa E, Zee DS (1996) Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski ­syndrome): report of the NINDS-SPSP international workshop. Neurology 47:1–9

    PubMed  CAS  Google Scholar 

  • Liu YH, Wei W, Yin J, Liu GP, Wang Q, Cao FY, Wang JZ (2009) Proteasome inhibition increases tau accumulation independent of phosphorylation. Neurobiol Aging 30:1949–1961

    PubMed  CAS  Google Scholar 

  • Lomakin A, Chung DS, Benedek GB, Kirschner DA, Teplow DB (1996) On the nucleation and growth of amyloid β-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci USA 93:1125–1129

    PubMed  CAS  Google Scholar 

  • Lopresti P, Szuchet S, Papasozomenos SC, Zinkowski RP, Binder LI (1995) Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proc Natl Acad Sci USA 92:10369–10373

    PubMed  CAS  Google Scholar 

  • Lord A, Englund H, Soderberg L, Tucker S, Clausen F, Hillered L, Gordon M, Morgan D, Lannfelt L, Pettersson FE, Nilsson LN (2009) Amyloid-β protofibril levels correlate with spatial ­learning in Arctic Alzheimer’s disease transgenic mice. FEBS J 276:995–1006

    PubMed  CAS  Google Scholar 

  • Lorenzo A, Yankner BA (1994) β-Amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci USA 91:12243–12247

    PubMed  CAS  Google Scholar 

  • Lovell MA, Ehmann WD, Mattson MP, Markesbery WR (1997) Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging 18:457–461

    PubMed  CAS  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22:187–194

    PubMed  CAS  Google Scholar 

  • Lue LF, Kuo YM, Roher AE, Brachova L, Shen Y, Sue L, Beach T, Kurth JH, Rydel RE, Rogers J (1999) Soluble amyloid β peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol 155:853–862

    PubMed  CAS  Google Scholar 

  • Lund, Manchester-Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. The Lund and Manchester Groups. J Neurol Neurosurg Psychiatry 57:416–418

    Google Scholar 

  • Lynch MA (2004) Long-term potentiation and memory. Physiol Rev 84:87–136

    PubMed  CAS  Google Scholar 

  • Ma QL, Lim GP, Harris-White ME, Yang F, Ambegaokar SS, Ubeda OJ, Glabe CG, Teter B, Frautschy SA, Cole GM (2006) Antibodies against β-amyloid reduce Aβ oligomers, glycogen synthase kinase-3β activation and tau phosphorylation in vivo and in vitro. J Neurosci Res 83:374–384

    PubMed  CAS  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, Hudspeth B, Chen C, Zhao Y, Vinters HV, Frautschy SA, Cole GM (2009) β-Amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: ­suppression by omega-3 fatty acids and curcumin. J Neurosci 29:9078–9089

    PubMed  CAS  Google Scholar 

  • Maeda S, Sahara N, Saito Y, Murayama S, Ikai A, Takashima A (2006) Increased levels of granular tau oligomers: an early sign of brain aging and Alzheimer’s disease. Neurosci Res 54:197–201

    PubMed  CAS  Google Scholar 

  • Maeda S, Sahara N, Saito Y, Murayama M, Yoshiike Y, Kim H, Miyasaka T, Murayama S, Ikai A, Takashima A (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46:3856–3861

    PubMed  CAS  Google Scholar 

  • Mailliot C, Sergeant N, Bussiere T, Caillet-Boudin ML, Delacourte A, Buee L (1998) Phosphorylation of specific sets of tau isoforms reflects different neurofibrillary degeneration processes. FEBS Lett 433:201–204

    PubMed  CAS  Google Scholar 

  • Maloney MT, Minamide LS, Kinley AW, Boyle JA, Bamburg JR (2005) β-Secretase-cleaved amyloid precursor protein accumulates at actin inclusions induced in neurons by stress or amyloid β: a feedforward mechanism for Alzheimer’s disease. J Neurosci 25:11313–11321

    PubMed  CAS  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of Aβ accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Stamer K, Vogel R, Thies E, Mandelkow E (2003) Clogging of axons by tau, inhibition of axonal traffic and starvation of synapses. Neurobiol Aging 24:1079–1085

    PubMed  CAS  Google Scholar 

  • Mandelkow EM, Thies E, Trinczek B, Biernat J, Mandelkow E (2004) MARK/PAR1 kinase is a regulator of microtubule-dependent transport in axons. J Cell Biol 167:99–110

    PubMed  CAS  Google Scholar 

  • Mark RJ, Pang Z, Geddes JW, Uchida K, Mattson MP (1997) Amyloid β-peptide impairs glucose transport in hippocampal and cortical neurons: involvement of membrane lipid peroxidation. J Neurosci 17:1046–1054

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Lovell MA (1998) Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging 19:33–36

    PubMed  CAS  Google Scholar 

  • Martins IC, Kuperstein I, Wilkinson H, Maes E, Vanbrabant M, Jonckheere W, Van Gelder P, Hartmann D, D’hooge R, De Strooper B, Schymkowitz J, Rousseau F (2008) Lipids revert inert Aβ amyloid fibrils to neurotoxic protofibrils that affect learning in mice. EMBO J 27:224–233

    PubMed  CAS  Google Scholar 

  • Masliah E, Iimoto DS, Saitoh T, Hansen LA, Terry RD (1990) Increased immunoreactivity of brain spectrin in Alzheimer disease: a marker for synapse loss? Brain Res 531:36–44

    PubMed  CAS  Google Scholar 

  • Masliah E, Mallory M, Alford M, Deteresa R, Hansen LA, Mckeel DW Jr, Morris JC (2001) Altered expression of synaptic proteins occurs early during progression of Alzheimer’s disease. Neurology 56:127–129

    PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, Mcdonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    PubMed  CAS  Google Scholar 

  • Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766

    PubMed  CAS  Google Scholar 

  • Mattson MP, Fu W, Waeg G, Uchida K (1997) 4-Hydroxynonenal, a product of lipid peroxidation, inhibits dephosphorylation of the microtubule-associated protein tau. Neuroreport 8:2275–2281

    PubMed  CAS  Google Scholar 

  • Mcdonald DR, Bamberger ME, Combs CK, Landreth GE (1998) β-Amyloid fibrils activate ­parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci 18:4451–4460

    PubMed  CAS  Google Scholar 

  • Mckee AC, Kosik KS, Kowall NW (1991) Neuritic pathology and dementia in Alzheimer’s ­disease. Ann Neurol 30:156–165

    PubMed  CAS  Google Scholar 

  • Mckeel DW Jr, Ball MJ, Price JL, Smith DS, Miller JP, Berg L, Morris JC (1993) Interlaboratory histopathologic assessment of Alzheimer neuropathology: different methodologies yield comparable diagnostic results. Alzheimer Dis Assoc Disord 7:136–151

    PubMed  Google Scholar 

  • Mclaurin J, Franklin T, Zhang X, Deng J, Fraser PE (1999) Interactions of Alzheimer amyloid-β peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem 266:1101–1110

    PubMed  CAS  Google Scholar 

  • Mclean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Aβ amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866

    PubMed  CAS  Google Scholar 

  • Mesulam MM (1999) Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc Lond B Biol Sci 354:1325–1346

    PubMed  CAS  Google Scholar 

  • Min SW, Cho SH, Zhou Y, Schroeder S, Haroutunian V, Seeley WW, Huang EJ, Shen Y, Masliah E, Mukherjee C, Meyers D, Cole PA, Ott M, Gan L (2010) Acetylation of tau inhibits its degradation and contributes to tauopathy. Neuron 67:953–966

    PubMed  CAS  Google Scholar 

  • Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, Petrova O, Schonig K, Bujard H, Mandelkow E, Zhou L, Rune G, Mandelkow EM (2008) The potential for β-­structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci 28:737–748

    PubMed  CAS  Google Scholar 

  • Montine KS, Reich E, Neely MD, Sidell KR, Olson SJ, Markesbery WR, Montine TJ (1998) Distribution of reducible 4-hydroxynonenal adduct immunoreactivity in Alzheimer disease is associated with APOE genotype. J Neuropathol Exp Neurol 57:415–425

    PubMed  CAS  Google Scholar 

  • Mori H, Nishimura M, Namba Y, Oda M (1994) Corticobasal degeneration: a disease with ­widespread appearance of abnormal tau and neurofibrillary tangles, and its relation to ­progressive supranuclear palsy. Acta Neuropathol 88:113–121

    PubMed  CAS  Google Scholar 

  • Morishima-Kawashima M, Hasegawa M, Takio K, Suzuki M, Yoshida H, Watanabe A, Titani K, Ihara Y (1995) Hyperphosphorylation of tau in PHF. Neurobiol Aging 16:365–371

    PubMed  CAS  Google Scholar 

  • Morris RG (2003) Long-term potentiation and memory. Philos Trans R Soc Lond B Biol Sci 358:643–647

    PubMed  Google Scholar 

  • Morris JC, Rubin EH (1991) Clinical diagnosis and course of Alzheimer’s disease. Psychiatr Clin North Am 14:223–236

    PubMed  CAS  Google Scholar 

  • Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary ­tangles. J Neuropathol Exp Neurol 58:188–197

    PubMed  CAS  Google Scholar 

  • Mufson EJ, Ginsberg SD, Ikonomovic MD, Dekosky ST (2003) Human cholinergic basal ­forebrain: chemoanatomy and neurologic dysfunction. J Chem Neuroanat 26:233–242

    PubMed  CAS  Google Scholar 

  • Murrell J, Farlow M, Ghetti B, Benson MD (1991) A mutation in the amyloid precursor protein associated with hereditary Alzheimer’s disease. Science 254:97–99

    PubMed  CAS  Google Scholar 

  • Nacharaju P, Lewis J, Easson C, Yen S, Hackett J, Hutton M, Yen SH (1999) Accelerated filament formation from tau protein with specific FTDP-17 missense mutations. FEBS Lett 447:195–199

    PubMed  CAS  Google Scholar 

  • Nagele RG, D’andrea MR, Anderson WJ, Wang HY (2002) Intracellular accumulation of β-­amyloid(1–42) in neurons is facilitated by the α7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 110:199–211

    PubMed  CAS  Google Scholar 

  • Nakashima H, Ishihara T, Yokota O, Terada S, Trojanowski JQ, Lee VM, Kuroda S (2004) Effects of α-tocopherol on an animal model of tauopathies. Free Radic Biol Med 37:176–186

    PubMed  CAS  Google Scholar 

  • Näslund J, Schierhorn A, Hellman U, Lannfelt L, Roses AD, Tjernberg LO, Silberring J, Gandy SE, Winblad B, Greengard P et al (1994) Relative abundance of Alzheimer Aβ amyloid peptide variants in Alzheimer disease and normal aging. Proc Natl Acad Sci USA 91:8378–8382

    PubMed  Google Scholar 

  • Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD (2000) Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 283:1571–1577

    PubMed  Google Scholar 

  • Necula M, Chirita CN, Kuret J (2005) Cyanine dye N744 inhibits tau fibrillization by blocking ­filament extension: implications for the treatment of tauopathic neurodegenerative diseases. Biochemistry 44:10227–10237

    PubMed  CAS  Google Scholar 

  • Neumann M, Schulz-Schaeffer W, Crowther RA, Smith MJ, Spillantini MG, Goedert M, Kretzschmar HA (2001) Pick’s disease associated with the novel Tau gene mutation K369I. Ann Neurol 50:503–513

    PubMed  CAS  Google Scholar 

  • Neve RL, Harris P, Kosik KS, Kurnit DM, Donlon TA (1986) Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Brain Res 387:271–280

    PubMed  CAS  Google Scholar 

  • Nishitsuji K, Tomiyama T, Ishibashi K, Ito K, Teraoka R, Lambert MP, Klein WL, Mori H (2009) The E693Δ mutation in amyloid precursor protein increases intracellular accumulation of amyloid β oligomers and causes endoplasmic reticulum stress-induced apoptosis in cultured cells. Am J Pathol 174:957–969

    PubMed  CAS  Google Scholar 

  • Nunan J, Small DH (2000) Regulation of APP cleavage by α-, β- and γ-secretases. FEBS Lett 483:6–10

    PubMed  CAS  Google Scholar 

  • Nunomura A, Perry G, Pappolla MA, Friedland RP, Hirai K, Chiba S, Smith MA (2000) Neuronal oxidative stress precedes amyloid-β deposition in Down syndrome. J Neuropathol Exp Neurol 59:1011–1017

    PubMed  CAS  Google Scholar 

  • Nygaard HB, Strittmatter SM (2009) Cellular prion protein mediates the toxicity of β-amyloid oligomers: implications for Alzheimer disease. Arch Neurol 66:1325–1328

    PubMed  Google Scholar 

  • Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, Laferla FM (2003) Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39:409–421

    PubMed  CAS  Google Scholar 

  • Oddo S, Billings L, Kesslak JP, Cribbs DH, Laferla FM (2004) Aβ immunotherapy leads to ­clearance of early, but not late, hyperphosphorylated tau aggregates via the proteasome. Neuron 43:321–332

    PubMed  CAS  Google Scholar 

  • Park SY, Ferreira A (2005) The generation of a 17 kDa neurotoxic fragment: an alternative ­mechanism by which tau mediates β-amyloid-induced neurodegeneration. J Neurosci 25:5365–5375

    PubMed  CAS  Google Scholar 

  • Perez M, Arrasate M, Montejo De Garcini E, Munoz V, Avila J (2001) In vitro assembly of tau protein: mapping the regions involved in filament formation. Biochemistry 40:5983–5991

    PubMed  CAS  Google Scholar 

  • Pike CJ, Walencewicz AJ, Glabe CG, Cotman CW (1991) In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 563:311–314

    PubMed  CAS  Google Scholar 

  • Podlisny MB, Ostaszewski BL, Squazzo SL, Koo EH, Rydell RE, Teplow DB, Selkoe DJ (1995) Aggregation of secreted amyloid β-protein into sodium dodecyl sulfate-stable oligomers in cell culture. J Biol Chem 270:9564–9570

    PubMed  CAS  Google Scholar 

  • Poling A, Morgan-Paisley K, Panos JJ, Kim EM, O’hare E, Cleary JP, Lesné S, Ashe KH, Porritt M, Baker LE (2008) Oligomers of the amyloid-β protein disrupt working memory: confirmation with two behavioral procedures. Behav Brain Res 193:230–234

    PubMed  CAS  Google Scholar 

  • Pollock NJ, Mirra SS, Binder LI, Hansen LA, Wood JG (1986) Filamentous aggregates in Pick’s disease, progressive supranuclear palsy, and Alzheimer’s disease share antigenic determinants with microtubule-associated protein, tau. Lancet 2:1211

    PubMed  CAS  Google Scholar 

  • Polydoro M, Acker CM, Duff K, Castillo PE, Davies P (2009) Age-dependent impairment of ­cognitive and synaptic function in the htau mouse model of tau pathology. J Neurosci 29:10741–10749

    PubMed  CAS  Google Scholar 

  • Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, Butler AC (1998) Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol 43:380–383

    PubMed  CAS  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    PubMed  CAS  Google Scholar 

  • Quintanilla RA, Matthews-Roberson TA, Dolan PJ, Johnson GV (2009) Caspase-cleaved tau expression induces mitochondrial dysfunction in immortalized cortical neurons: implications for the pathogenesis of Alzheimer disease. J Biol Chem 284:18754–18766

    PubMed  CAS  Google Scholar 

  • Rauk A (2008) Why is the amyloid β peptide of Alzheimer’s disease neurotoxic? Dalton Trans 1273–1282

    Google Scholar 

  • Rauk A (2009) The chemistry of Alzheimer’s disease. Chem Soc Rev 38:2698–2715

    PubMed  CAS  Google Scholar 

  • Rebeiz JJ, Kolodny EH, Richardson EP Jr (1967) Corticodentatonigral degeneration with neuronal achromasia: a progressive disorder of late adult life. Trans Am Neurol Assoc 92:23–26

    PubMed  CAS  Google Scholar 

  • Rebeiz JJ, Kolodny EH, Richardson EP Jr (1968) Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol 18:20–33

    PubMed  CAS  Google Scholar 

  • Reddy PH, Mani G, Park BS, Jacques J, Murdoch G, Whetsell W Jr, Kaye J, Manczak M (2005) Differential loss of synaptic proteins in Alzheimer’s disease: implications for synaptic dysfunction. J Alzheimers Dis 7:103–117, discussion 73–80

    PubMed  CAS  Google Scholar 

  • Reed MN, Hofmeister JJ, Jungbauer L, Welzel AT, Yu C, Sherman MA, Lesne S, Ladu MJ, Walsh DM, Ashe KH, Cleary JP (2011) Cognitive effects of cell-derived and synthetically derived Aβ oligomers. Neurobiol Aging 32(10):1784–1794

    Google Scholar 

  • Reyes JF, Reynolds MR, Horowitz PM, Fu Y, Guillozet-Bongaarts AL, Berry R, Binder LI (2008) A possible link between astrocyte activation and tau nitration in Alzheimer’s disease. Neurobiol Dis 31:198–208

    PubMed  CAS  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2005) Site-specific nitration and oxidative dityrosine ­bridging of the tau protein by peroxynitrite: implications for Alzheimer’s disease. Biochemistry 44:1690–1700

    PubMed  CAS  Google Scholar 

  • Reynolds MR, Reyes JF, Fu Y, Bigio EH, Guillozet-Bongaarts AL, Berry RW, Binder LI (2006) Tau nitration occurs at tyrosine 29 in the fibrillar lesions of Alzheimer’s disease and other tauopathies. J Neurosci 26:10636–10645

    PubMed  CAS  Google Scholar 

  • Reynolds MR, Berry RW, Binder LI (2007) Nitration in neurodegeneration: deciphering the “Hows” “nYs”. Biochemistry 46:7325–7336

    PubMed  CAS  Google Scholar 

  • Rissman RA, Poon WW, Blurton-Jones M, Oddo S, Torp R, Vitek MP, Laferla FM, Rohn TT, Cotman CW (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J Clin Invest 114:121–130

    PubMed  CAS  Google Scholar 

  • Rizzini C, Goedert M, Hodges JR, Smith MJ, Jakes R, Hills R, Xuereb JH, Crowther RA, Spillantini MG (2000) Tau gene mutation K257T causes a tauopathy similar to Pick’s disease. J Neuropathol Exp Neurol 59:990–1001

    PubMed  CAS  Google Scholar 

  • Robakis NK, Ramakrishna N, Wolfe G, Wisniewski HM (1987) Molecular cloning and ­characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid ­peptides. Proc Natl Acad Sci USA 84:4190–4194

    PubMed  CAS  Google Scholar 

  • Roberson ED, Scearce-Levie K, Palop JJ, Yan F, Cheng IH, Wu T, Gerstein H, Yu GQ, Mucke L (2007) Reducing endogenous tau ameliorates amyloid β-induced deficits in an Alzheimer’s disease mouse model. Science 316:750–754

    PubMed  CAS  Google Scholar 

  • Rosen RF, Tomidokoro Y, Ghiso JA, Walker LC (2010) SDS-PAGE/immunoblot detection of Aβ multimers in human cortical tissue homogenates using antigen-epitope retrieval. J Vis Exp. 38, pii: 1916. doi:10.3791/1916

    Google Scholar 

  • Rosenberg KJ, Ross JL, Feinstein HE, Feinstein SC, Israelachvili J (2008) Complementary dimerization of microtubule-associated tau protein: implications for microtubule bundling and tau-mediated pathogenesis. Proc Natl Acad Sci USA 105:7445–7450

    PubMed  CAS  Google Scholar 

  • Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, Dumanchin C, Feuillette S, Brice A, Vercelletto M, Dubas F, Frebourg T, Campion D (2006) APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet 38:24–26

    PubMed  CAS  Google Scholar 

  • Roychaudhuri R, Yang M, Hoshi MM, Teplow DB (2009) Amyloid β-protein assembly and Alzheimer disease. J Biol Chem 284:4749–4753

    PubMed  CAS  Google Scholar 

  • Rui Y, Gu J, Yu K, Hartzell HC, Zheng JQ (2010) Inhibition of AMPA receptor trafficking at ­hippocampal synapses by β-amyloid oligomers: the mitochondrial contribution. Mol Brain 3:10

    PubMed  Google Scholar 

  • Sahara N, Maeda S, Murayama M, Suzuki T, Dohmae N, Yen SH, Takashima A (2007a) Assembly of two distinct dimers and higher-order oligomers from full-length tau. Eur J Neurosci 25:3020–3029

    PubMed  Google Scholar 

  • Sahara N, Maeda S, Yoshiike Y, Mizoroki T, Yamashita S, Murayama M, Park JM, Saito Y, Murayama S, Takashima A (2007b) Molecular chaperone-mediated tau protein metabolism counteracts the formation of granular tau oligomers in human brain. J Neurosci Res 85:3098–3108

    PubMed  CAS  Google Scholar 

  • Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, Guimaraes A, Deture M, Ramsden M, Mcgowan E, Forster C, Yue M, Orne J, Janus C, Mariash A, Kuskowski M, Hyman B, Hutton M, Ashe KH (2005) Tau suppression in a neurodegenerative mouse model improves memory function. Science 309:476–481

    PubMed  CAS  Google Scholar 

  • Santa-Maria I, Smith MA, Perry G, Hernandez F, Avila J, Moreno FJ (2005) Effect of quinones on microtubule polymerization: a link between oxidative stress and cytoskeletal alterations in Alzheimer’s disease. Biochim Biophys Acta 1740:472–480

    PubMed  CAS  Google Scholar 

  • Santa-Maria I, Hernandez F, Moreno FJ, Avila J (2007) Taurine, an inducer for tau polymerization and a weak inhibitor for amyloid-β-peptide aggregation. Neurosci Lett 429:91–94

    PubMed  CAS  Google Scholar 

  • Scheuner D, Eckman C, Jensen M, Song X, Citron M, Suzuki N, Bird TD, Hardy J, Hutton M, Kukull W, Larson E, Levy-Lahad E, Viitanen M, Peskind E, Poorkaj P, Schellenberg G, Tanzi R, Wasco W, Lannfelt L, Selkoe D, Younkin S (1996) Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat Med 2:864–870

    PubMed  CAS  Google Scholar 

  • Schneider A, Biernat J, Von Bergen M, Mandelkow E, Mandelkow EM (1999) Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38:3549–3558

    PubMed  CAS  Google Scholar 

  • Schoneich C, Williams TD (2002) Cu(II)-catalyzed oxidation of β-amyloid peptide targets His13 and His14 over His6: detection of 2-Oxo-histidine by HPLC-MS/MS. Chem Res Toxicol 15:717–722

    PubMed  Google Scholar 

  • Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21:4896–4905

    PubMed  CAS  Google Scholar 

  • Sekino Y, Tanaka S, Hanamura K, Yamazaki H, Sasagawa Y, Xue Y, Hayashi K, Shirao T (2006) Activation of N-methyl-D-aspartate receptor induces a shift of drebrin distribution: disappearance from dendritic spines and appearance in dendritic shafts. Mol Cell Neurosci 31:493–504

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1989) Amyloid β protein precursor and the pathogenesis of Alzheimer’s disease. Cell 58:611–612

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and treatments. Science 275:630–631

    PubMed  CAS  Google Scholar 

  • Sergeant N, David JP, Lefranc D, Vermersch P, Wattez A, Delacourte A (1997) Different ­distribution of phosphorylated tau protein isoforms in Alzheimer’s and Pick’s diseases. FEBS Lett 412:578–582

    PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, McCormack R, Wolfert R, Selkoe DJ, Lieberburg I, Schenk D (1992) Isolation and quantification of soluble Alzheimer’s β-peptide from biological fluids. Nature 359:325–327

    PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-β protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    PubMed  CAS  Google Scholar 

  • Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-β protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842

    PubMed  CAS  Google Scholar 

  • Shankar GM, Leissring MA, Adame A, Sun X, Spooner E, Masliah E, Selkoe DJ, Lemere CA, Walsh DM (2009) Biochemical and immunohistochemical analysis of an Alzheimer’s disease mouse model reveals the presence of multiple cerebral Aβ assembly forms throughout life. Neurobiol Dis 36:293–302

    PubMed  CAS  Google Scholar 

  • Sharma VM, Litersky JM, Bhaskar K, Lee G (2007) Tau impacts on growth-factor-stimulated actin remodeling. J Cell Sci 120:748–757

    PubMed  CAS  Google Scholar 

  • Sherrington R, Rogaev EI, Liang Y, Rogaeva EA, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375:754–760

    PubMed  CAS  Google Scholar 

  • Shin RW, Iwaki T, Kitamoto T, Tateishi J (1991) Hydrated autoclave pretreatment enhances tau immunoreactivity in formalin-fixed normal and Alzheimer’s disease brain tissues. Lab Invest 64:693–702

    PubMed  CAS  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid β peptide. Biochim Biophys Acta 1768:1976–1990

    PubMed  CAS  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK, Greengard P (2005) Regulation of NMDA receptor trafficking by amyloid-β. Nat Neurosci 8:1051–1058

    PubMed  CAS  Google Scholar 

  • Sokolov Y, Kozak JA, Kayed R, Chanturiya A, Glabe C, Hall JE (2006) Soluble amyloid oligomers increase bilayer conductance by altering dielectric structure. J Gen Physiol 128:637–647

    PubMed  CAS  Google Scholar 

  • Sondag CM, Dhawan G, Combs CK (2009) β Amyloid oligomers and fibrils stimulate differential activation of primary microglia. J Neuroinflammation 6:1

    PubMed  Google Scholar 

  • Spires TL, Orne JD, Santacruz K, Pitstick R, Carlson GA, Ashe KH, Hyman BT (2006) Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of ­tauopathy. Am J Pathol 168:1598–1607

    PubMed  CAS  Google Scholar 

  • Spires-Jones TL, De Calignon A, Matsui T, Zehr C, Pitstick R, Wu HY, Osetek JD, Jones PB, Bacskai BJ, Feany MB, Carlson GA, Ashe KH, Lewis J, Hyman BT (2008) In vivo imaging reveals dissociation between caspase activation and acute neuronal death in tangle-bearing neurons. J Neurosci 28:862–867

    PubMed  CAS  Google Scholar 

  • Spires-Jones TL, Stoothoff WH, De Calignon A, Jones PB, Hyman BT (2009) Tau ­pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159

    PubMed  CAS  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D et al (1987) The genetic defect causing familial Alzheimer’s ­disease maps on chromosome 21. Science 235:885–890

    PubMed  CAS  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of ­organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    PubMed  CAS  Google Scholar 

  • Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy. A heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Arch Neurol 10:333–359

    PubMed  CAS  Google Scholar 

  • Stoothoff WH, Johnson GV (2005) Tau phosphorylation: physiological and pathological ­consequences. Biochim Biophys Acta 1739:280–297

    PubMed  CAS  Google Scholar 

  • Sze CI, Troncoso JC, Kawas C, Mouton P, Price DL, Martin LJ (1997) Loss of the presynaptic vesicle protein synaptophysin in hippocampus correlates with cognitive decline in Alzheimer disease. J Neuropathol Exp Neurol 56:933–944

    PubMed  CAS  Google Scholar 

  • Tabaton M, Whitehouse PJ, Perry G, Davies P, Autilio-Gambetti L, Gambetti P (1988) Alz 50 recognizes abnormal filaments in Alzheimer’s disease and progressive supranuclear palsy. Ann Neurol 24:407–413

    PubMed  CAS  Google Scholar 

  • Takahashi RH, Almeida CG, Kearney PF, Yu F, Lin MT, Milner TA, Gouras GK (2004) Oligomerization of Alzheimer’s β-amyloid within processes and synapses of cultured neurons and brain. J Neurosci 24:3592–3599

    PubMed  CAS  Google Scholar 

  • Tamagno E, Bardini P, Guglielmotto M, Danni O, Tabaton M (2006) The various aggregation states of β-amyloid 1–42 mediate different effects on oxidative stress, neurodegeneration, and BACE-1 expression. Free Radic Biol Med 41:202–212

    PubMed  CAS  Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid β protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884

    PubMed  CAS  Google Scholar 

  • Tashima Y, Oe R, Lee S, Sugihara G, Chambers EJ, Takahashi M, Yamada T (2004) The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid β-­peptide from liposomes prepared from brain membrane-like lipids. J Biol Chem 279:17587–17595

    PubMed  CAS  Google Scholar 

  • Terry RD, Masliah E, Salmon DP, Butters N, Deteresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580

    PubMed  CAS  Google Scholar 

  • Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27:2896–2907

    PubMed  CAS  Google Scholar 

  • Tomiyama T, Nagata T, Shimada H, Teraoka R, Fukushima A, Kanemitsu H, Takuma H, Kuwano R, Imagawa M, Ataka S, Wada Y, Yoshioka E, Nishizaki T, Watanabe Y, Mori H (2008) A new amyloid β variant favoring oligomerization in Alzheimer’s-type dementia. Ann Neurol 63:377–387

    PubMed  CAS  Google Scholar 

  • Tomiyama T, Matsuyama S, Iso H, Umeda T, Takuma H, Ohnishi K, Ishibashi K, Teraoka R, Sakama N, Yamashita T, Nishitsuji K, Ito K, Shimada H, Lambert MP, Klein WL, Mori H (2010) A mouse model of amyloid β oligomers: their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 30:4845–4856

    PubMed  CAS  Google Scholar 

  • Townsend M, Shankar GM, Mehta T, Walsh DM, Selkoe DJ (2006) Effects of secreted oligomers of amyloid β-protein on hippocampal synaptic plasticity: a potent role for trimers. J Physiol 572:477–492

    PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Lee VM (1994) Phosphorylation of neuronal cytoskeletal proteins in Alzheimer’s disease and Lewy body dementias. Ann N Y Acad Sci 747:92–109

    PubMed  CAS  Google Scholar 

  • Van Broeckhoven C, Genthe AM, Vandenberghe A, Horsthemke B, Backhovens H, Raeymaekers P, Van Hul W, Wehnert A, Gheuens J, Cras P et al (1987) Failure of familial Alzheimer’s disease to segregate with the A4-amyloid gene in several European families. Nature 329:153–155

    PubMed  Google Scholar 

  • Van Broeckhoven C, Haan J, Bakker E, Hardy JA, Van Hul W, Wehnert A, Vegter-Van Der Vlis M, Roos RA (1990) Amyloid β protein precursor gene and hereditary cerebral hemorrhage with amyloidosis (Dutch). Science 248:1120–1122

    PubMed  Google Scholar 

  • Varadarajan S, Kanski J, Aksenova M, Lauderback C, Butterfield DA (2001) Different mechanisms of oxidative stress and neurotoxicity for Alzheimer’s Aβ(1–42) and Aβ(25–35). J Am Chem Soc 123:5625–5631

    PubMed  CAS  Google Scholar 

  • Varvel NH, Bhaskar K, Patil AR, Pimplikar SW, Herrup K, Lamb BT (2008) Aβ oligomers induce neuronal cell cycle events in Alzheimer’s disease. J Neurosci 28:10786–10793

    PubMed  CAS  Google Scholar 

  • Varvel NH, Bhaskar K, Kounnas MZ, Wagner SL, Yang Y, Lamb BT, Herrup K (2009) NSAIDs prevent, but do not reverse, neuronal cell cycle reentry in a mouse model of Alzheimer disease. J Clin Invest 119:3692–3702

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M (1999) β-Secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    PubMed  CAS  Google Scholar 

  • Vega IE, Cui L, Propst JA, Hutton ML, Lee G, Yen SH (2005) Increase in tau tyrosine phosphorylation correlates with the formation of tau aggregates. Brain Res Mol Brain Res 138:135–144

    PubMed  CAS  Google Scholar 

  • Verdier Y, Penke B (2004) Binding sites of amyloid β-peptide in cell plasma membrane and ­implications for Alzheimer’s disease. Curr Protein Pept Sci 5:19–31

    PubMed  CAS  Google Scholar 

  • Verdier Y, Zarandi M, Penke B (2004) Amyloid β-peptide interactions with neuronal and glial cell plasma membrane: binding sites and implications for Alzheimer’s disease. J Pept Sci 10:229–248

    PubMed  CAS  Google Scholar 

  • Vermersch P, Scheltens P, Barkhof F, Steinling M, Leys D (1994) Evidence for atrophy of the corpus callosum in Alzheimer’s disease. Eur Neurol 34:83–86

    PubMed  CAS  Google Scholar 

  • Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterization of β-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    PubMed  CAS  Google Scholar 

  • Von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming β structure. Proc Natl Acad Sci USA 97:5129–5134

    Google Scholar 

  • Walsh DM, Selkoe DJ (2007) Aβ oligomers—a decade of discovery. J Neurochem 101:1172–1184

    PubMed  CAS  Google Scholar 

  • Walsh DM, Lomakin A, Benedek GB, Condron MM, Teplow DB (1997) Amyloid β-protein ­fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 272:22364–22372

    PubMed  CAS  Google Scholar 

  • Walsh DM, Hartley DM, Kusumoto Y, Fezoui Y, Condron MM, Lomakin A, Benedek GB, Selkoe DJ, Teplow DB (1999) Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 274:25945–25952

    PubMed  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Fadeeva JV, Cullen WK, Anwyl R, Wolfe MS, Rowan MJ, Selkoe DJ (2002) Naturally secreted oligomers of amyloid β protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539

    PubMed  CAS  Google Scholar 

  • Walsh DM, Klyubin I, Shankar GM, Townsend M, Fadeeva JV, Betts V, Podlisny MB, Cleary JP, Ashe KH, Rowan MJ, Selkoe DJ (2005) The role of cell-derived oligomers of Aβ in Alzheimer’s disease and avenues for therapeutic intervention. Biochem Soc Trans 33:1087–1090

    PubMed  CAS  Google Scholar 

  • Wang J, Dickson DW, Trojanowski JQ, Lee VM (1999) The levels of soluble versus insoluble brain Aβ distinguish Alzheimer’s disease from normal and pathologic aging. Exp Neurol 158:328–337

    PubMed  CAS  Google Scholar 

  • Wang HY, Lee DH, D’andrea MR, Peterson PA, Shank RP, Reitz AB (2000) β-Amyloid(1–42) binds to α7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. J Biol Chem 275:5626–5632

    PubMed  CAS  Google Scholar 

  • Wang HW, Pasternak JF, Kuo H, Ristic H, Lambert MP, Chromy B, Viola KL, Klein WL, Stine WB, Krafft GA, Trommer BL (2002) Soluble oligomers of β amyloid (1–42) inhibit long-term potentiation but not long-term depression in rat dentate gyrus. Brain Res 924:133–140

    PubMed  CAS  Google Scholar 

  • Wang HY, Li W, Benedetti NJ, Lee DH (2003) α7 Nicotinic acetylcholine receptors mediate β-amyloid peptide-induced tau protein phosphorylation. J Biol Chem 278:31547–31553

    PubMed  CAS  Google Scholar 

  • Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid β-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J Neurosci 24:3370–3378

    PubMed  CAS  Google Scholar 

  • Wang JZ, Grundke-Iqbal I, Iqbal K (2007a) Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur J Neurosci 25:59–68

    PubMed  Google Scholar 

  • Wang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM (2007b) Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proc Natl Acad Sci U S A 104:10252–10257

    PubMed  CAS  Google Scholar 

  • Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    PubMed  CAS  Google Scholar 

  • Wang X, Perry G, Smith MA, Zhu X (2010) Amyloid-β-derived diffusible ligands cause impaired axonal transport of mitochondria in neurons. Neurodegener Dis 7:56–59

    PubMed  CAS  Google Scholar 

  • Watanabe A, Hong WK, Dohmae N, Takio K, Morishima-Kawashima M, Ihara Y (2004) Molecular aging of tau: disulfide-independent aggregation and non-enzymatic degradation in vitro and in vivo. J Neurochem 90:1302–1311

    PubMed  CAS  Google Scholar 

  • Wei Y, Qu MH, Wang XS, Chen L, Wang DL, Liu Y, Hua Q, He RQ (2008) Binding to the minor groove of the double-strand, tau protein prevents DNA from damage by peroxidation. PLoS One 3:e2600

    PubMed  Google Scholar 

  • Wei G, Jewett AI, Shea JE (2010) Structural diversity of dimers of the Alzheimer amyloid-β(25–35) peptide and polymorphism of the resulting fibrils. Phys Chem Chem Phys 12:3622–3629

    PubMed  CAS  Google Scholar 

  • Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW (1975) A protein factor essential for microtubule assembly. Proc Natl Acad Sci USA 72:1858–1862

    PubMed  CAS  Google Scholar 

  • Whalen BM, Selkoe DJ, Hartley DM (2005) Small non-fibrillar assemblies of amyloid β-protein bearing the Arctic mutation induce rapid neuritic degeneration. Neurobiol Dis 20:254–266

    PubMed  CAS  Google Scholar 

  • White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R (1999) The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19:9170–9179

    PubMed  CAS  Google Scholar 

  • Wischik CM, Novak M, Edwards PC, Klug A, Tichelaar W, Crowther RA (1988a) Structural characterization of the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4884–4888

    PubMed  CAS  Google Scholar 

  • Wischik CM, Novak M, Thogersen HC, Edwards PC, Runswick MJ, Jakes R, Walker JE, Milstein C, Roth M, Klug A (1988b) Isolation of a fragment of tau derived from the core of the paired helical filament of Alzheimer disease. Proc Natl Acad Sci USA 85:4506–4510

    PubMed  CAS  Google Scholar 

  • Wogulis M, Wright S, Cunningham D, Chilcote T, Powell K, Rydel RE (2005) Nucleation-dependent polymerization is an essential component of amyloid-mediated neuronal cell death. J Neurosci 25:1071–1080

    PubMed  CAS  Google Scholar 

  • Wolozin BL, Pruchnicki A, Dickson DW, Davies P (1986) A neuronal antigen in the brains of Alzheimer patients. Science 232:648–650

    PubMed  CAS  Google Scholar 

  • Woody RW, Clark DC, Roberts GC, Martin SR, Bayley PM (1983) Molecular flexibility in microtubule proteins: proton nuclear magnetic resonance characterization. Biochemistry 22:2186–2192

    PubMed  CAS  Google Scholar 

  • Wu CK, Thal L, Pizzo D, Hansen L, Masliah E, Geula C (2005) Apoptotic signals within the basal forebrain cholinergic neurons in Alzheimer’s disease. Exp Neurol 195:484–496

    PubMed  CAS  Google Scholar 

  • Xia W, Zhang J, Kholodenko D, Citron M, Podlisny MB, Teplow DB, Haass C, Seubert P, Koo EH, Selkoe DJ (1997) Enhanced production and oligomerization of the 42-residue amyloid β-­protein by Chinese hamster ovary cells stably expressing mutant presenilins. J Biol Chem 272:7977–7982

    PubMed  CAS  Google Scholar 

  • Xia W, Yang T, Shankar G, Smith IM, Shen Y, Walsh DM, Selkoe DJ (2009) A specific enzyme-linked immunosorbent assay for measuring β-amyloid protein oligomers in human plasma and brain tissue of patients with Alzheimer disease. Arch Neurol 66:190–199

    PubMed  Google Scholar 

  • Xie L, Helmerhorst E, Taddei K, Plewright B, Van Bronswijk W, Martins R (2002) Alzheimer’s β-amyloid peptides compete for insulin binding to the insulin receptor. J Neurosci 22:RC221

    PubMed  Google Scholar 

  • Yan SD, Chen X, Schmidt AM, Brett J, Godman G, Zou YS, Scott CW, Caputo C, Frappier T, Smith MA et al (1994) Glycated tau protein in Alzheimer disease: a mechanism for induction of oxidant stress. Proc Natl Acad Sci USA 91:7787–7791

    PubMed  CAS  Google Scholar 

  • Yan R, Bienkowski MJ, Shuck ME, Miao H, Tory MC, Pauley AM, Brashier JR, Stratman NC, Mathews WR, Buhl AE, Carter DB, Tomasselli AG, Parodi LA, Heinrikson RL, Gurney ME (1999) Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 402:533–537

    PubMed  CAS  Google Scholar 

  • Yang Y, Mufson EJ, Herrup K (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer’s disease. J Neurosci 23:2557–2563

    PubMed  CAS  Google Scholar 

  • Yang Y, Varvel NH, Lamb BT, Herrup K (2006) Ectopic cell cycle events link human Alzheimer’s disease and amyloid precursor protein transgenic mouse models. J Neurosci 26:775–784

    PubMed  CAS  Google Scholar 

  • Ye C, Walsh DM, Selkoe DJ, Hartley DM (2004) Amyloid β-protein induced electrophysiological changes are dependent on aggregation state: N-methyl-D-aspartate (NMDA) versus non-NMDA receptor/channel activation. Neurosci Lett 366:320–325

    PubMed  CAS  Google Scholar 

  • Yen S, Easson C, Nacharaju P, Hutton M, Yen SH (1999) FTDP-17 tau mutations decrease the susceptibility of tau to calpain I digestion. FEBS Lett 461:91–95

    PubMed  CAS  Google Scholar 

  • Yin H, Kuret J (2006) C-terminal truncation modulates both nucleation and extension phases of tau fibrillization. FEBS Lett 580:211–215

    PubMed  CAS  Google Scholar 

  • Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, Maeda J, Suhara T, Trojanowski JQ, Lee VM (2007) Synapse loss and microglial activation precede tangles in a P301S ­tauopathy mouse model. Neuron 53:337–351

    PubMed  CAS  Google Scholar 

  • Zhang YJ, Xu YF, Chen XQ, Wang XC, Wang JZ (2005) Nitration and oligomerization of tau induced by peroxynitrite inhibit its microtubule-binding activity. FEBS Lett 579:2421–2427

    PubMed  CAS  Google Scholar 

  • Zhao L, Ma QL, Calon F, Harris-White ME, Yang F, Lim GP, Morihara T, Ubeda OJ, Ambegaokar S, Hansen JE, Weisbart RH, Teter B, Frautschy SA, Cole GM (2006) Role of p21-activated kinase pathway defects in the cognitive deficits of Alzheimer disease. Nat Neurosci 9:234–242

    PubMed  CAS  Google Scholar 

  • Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid β oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    PubMed  CAS  Google Scholar 

  • Zhou Q, Poo MM (2004) Reversal and consolidation of activity-induced synaptic modifications. Trends Neurosci 27:378–383

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce T. Lamb Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Bhaskar, K., Lamb, B.T. (2012). The Role of Aβ and Tau Oligomers in the Pathogenesis of Alzheimer’s Disease. In: Rahimi, F., Bitan, G. (eds) Non-fibrillar Amyloidogenic Protein Assemblies - Common Cytotoxins Underlying Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2774-8_5

Download citation

Publish with us

Policies and ethics