Skip to main content

Influence of Microbubble Shell Chemistry on the Destruction Threshold of Ultrasound Contrast Agent Microbubbles

  • Conference paper
  • First Online:
Acoustical Imaging

Part of the book series: Acoustical Imaging ((ACIM,volume 31))

Abstract

The destruction threshold of ultrasound contrast agents is an important parameter for safety and applications in targeted drug delivery. Since this threshold is a function of the chemical composition of lipid-shelled microbubbles, adjustment of this composition may allow tuning of the destruction threshold. To attain this goal, this study presents a framework for the analysis of the destruction threshold. A method for the theoretical determination of this threshold is presented. Theoretical results are subsequently validated by experiments, yielding a linear dependence between shell viscosity and elasticity and DSPE-PEG2000 concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epstein, P.S., Plesset, M.S.: On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505–1509 (1950)

    Article  ADS  Google Scholar 

  2. Borden, M.A., Kruse, D.E., Caskey, C., Zhao, S., Dayton, P.A., Ferrara, K.W.: Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 52(11), 1992–2002 (2005)

    Article  Google Scholar 

  3. Apfel, R.E., Holland, C.K.: Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol. 17(2), 179–185 (1991)

    Article  Google Scholar 

  4. Church, C.: Frequency, pulse length, and the mechanical index. Acoust. Res. Lett. Online 6(3), 162–168 (2005)

    Article  MathSciNet  Google Scholar 

  5. Ammi, A. Y., Mamou, J., Wang, G. I., Cleveland, R. O., Bridal, S. L., O’Brien, W. D.: Determining thresholds for contrast agent collapse. Proc. IEEE Ultrason. Symp., 346–349 (2004)

    Google Scholar 

  6. Ammi, A.Y., Cleveland, R.O., Mamou, J., Wang, G.I., Bridal, S.L., O’Brien, W.D.: Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 126–136 (2006)

    Article  Google Scholar 

  7. Forbes, M., O’Brien, W. D.: The role of inertial cavitation of ultrasound contrast agents in producing sonoporation [sic]. Proc. IEEE Ultrason. Symp., 424–427 (2007)

    Google Scholar 

  8. Hallow, D.M., Mahajan, A., McCutchen, T., Prausnitz, M.R.: Measurement and correlation of acoustic cavitation with cellular bioeffects. Ultrasound Med. Biol. 32(7), 1111–1122 (2006)

    Article  Google Scholar 

  9. Hensel, K., Siepmann, M., Schmitz, G., Maghnouj, A., Hahn, S.: Monitoring and modeling of microbubble behavior during ultrasound mediated transfection of cell monolayers. Proc. IEEE Ultrason. Symp., 1671–1674 (2008)

    Google Scholar 

  10. Chou, T., Chu, I.: Behavior of DSPC/DSPE-PEG2000 mixed monolayers at the air/water interface. Colloid Surf. A 211(2–3), 267–274 (2002)

    Article  ADS  Google Scholar 

  11. Klibanov, A.L.: Ligand-carrying gas-filled microbubbles: ultrasound contrast agents for targeted molecular imaging. Bioconjug. Chem. 16(1), 9–17 (2005)

    Article  Google Scholar 

  12. Wrenn, S.P., Mleczko, M., Schmitz, G.: Phospholipid-stabilized microbubbles: influence of shell chemistry on cavitation threshold and binding to giant uni-lamellar vesicles. Appl. Acoust. 70(10), 1313–1322 (2009)

    Article  Google Scholar 

  13. Flynn, H.G.: Cavitation dynamics. I. A mathematical formulation. J. Acoust. Soc. Am. 57, 1379 (1975)

    Article  ADS  MATH  Google Scholar 

  14. Flynn, H.G.: Cavitation dynamics: II. Free pulsations and models for cavitation bubbles. J. Acoust. Soc. Am. 58, 1160 (1975)

    Article  ADS  Google Scholar 

  15. Leighton, T.G.: The Acoustic Bubble. Academic, London (1997)

    Google Scholar 

  16. Vaughan, P. Leeman, S.: Sonoluminescence: violent light or gentle glow? Proc. IEEE Ultrason. Symp., 989–992 (1986)

    Google Scholar 

  17. Morgan, K.E., Allen, J.S., Dayton, P.A., Chomas, J.E., Klibanov, A.L., Ferrara, K.W.: Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1494–1509 (2000)

    Article  Google Scholar 

  18. Mleczko, M., Schmitz, G.: An experimental setup for the determination of the inertial cavitation threshold of ultrasound contrast agents. Proc. IEEE Int. Ultrason. Symp., 1686–1689 (2008)

    Google Scholar 

  19. Simpson, D.H., Chin, C.T., Burns, P.N.: Pulse inversion Doppler: a new method for detecting nonlinear echoes from microbubble contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(2), 372–382 (1999)

    Article  Google Scholar 

  20. Evans, E., Rawicz, W.: Elasticity of “fuzzy” biomembranes. Phys. Rev. Lett. 79(12), 2379–2382 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Mleczko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Mleczko, M., Dicker, S.M., Wrenn, S.P., Schmitz, G. (2012). Influence of Microbubble Shell Chemistry on the Destruction Threshold of Ultrasound Contrast Agent Microbubbles. In: Nowicki, A., Litniewski, J., Kujawska, T. (eds) Acoustical Imaging. Acoustical Imaging, vol 31. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2619-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2619-2_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2618-5

  • Online ISBN: 978-94-007-2619-2

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics