Skip to main content

Modern Porous Coatings in Orthopaedic Applications

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

The development of porous metals and coatings for orthopaedic applications has revolutionized the medical field. The ability to bond metallic implants to bone has spawned the advancements in total joint arthroplasty we have experienced over the last 4 decades. Early success was obtained as factors (pore size, coefficient of friction, modulus of elasticity) necessary for osseointegration were just being discovered. Despite good results, initial implant designs were fabricated utilizing traditional coatings (i.e. sintered beads, fiber metal, plasma spray), which have several inherent limitations, including relatively high moduli of elasticity, low coefficient of frictions and intermediate porosity. In order to improve upon these limitations and capitalize on modern techniques for implant fabrication several new porous metals have been recently introduced in orthopaedics. Tritanium (Stryker, Mahwah, NJ), Regenerex (Biomet, Warsaw, IN), StikTite (Smith and Nephew, Memphis, TN), Gription (Depuy, Warsaw, IN), Biofoam (Wright Medical, Arlington, TX), and Trabecular Metal (Zimmer, Warsaw, IN) are currently available for orthopaedic surgery applications. These materials have moved us into the era metallic foams that possess a characteristic appearance similar to cancellous bone. The open-cell internal structure of these metals afford several interesting biomaterial properties, including; high volumetric porosity (60–80 %), low modulus of elasticity and high surface frictional characteristics. The following chapter reviews the mode of fabrication, properties and applications in orthopaedic surgery for this new class of highly porous metals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Fernandez-Fairen M, Murcia A, Iglesias R, Sevilla P, Manero JM, Gil FJ. Analysis of tantalum implants used for avascular necrosis of the femoral head: a review of five retrieved specimens. J Appl Biomater Biomech. Mar 15 2012:0

    Google Scholar 

  2. Baad-Hansen, T., Kold, S., Olsen, N., Christensen, F., Soballe, K.: Excessive distal migration of fiber-mesh coated femoral stems. Acta Orthop 82(3), 308–314 (2011)

    Google Scholar 

  3. Oh, K.J., Pandher, D.S.: A new mode of clinical failure of porous tantalum rod. Indian J Orthop. 44(4), 464–467 (2010)

    Google Scholar 

  4. Meneghini, R.M., Meyer, C., Buckley, C.A., Hanssen, A.D., Lewallen, D.G.: Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty. J. Arthroplasty 25(3), 337–341 (2010)

    Google Scholar 

  5. Meneghini, R.M., Ford, K.S., McCollough, C.H., Hanssen, A.D., Lewallen, D.G.: Bone remodeling around porous metal cementless acetabular components. J. Arthroplasty 25(5), 741–747 (2010)

    Google Scholar 

  6. Macheras, G.A., Kateros, K., Koutsostathis, S.D., Tsakotos, G., Galanakos, S., Papadakis, S.A.: The trabecular metal monoblock acetabular component in patients with high congenital hip dislocation: A prospective study. J. Bone Joint Surg. Br. 92(5), 624–628 (2010)

    Google Scholar 

  7. Liu, G., Wang, J., Yang, S., Xu, W., Ye, S., Xia, T.: Effect of a porous tantalum rod on early and intermediate stages of necrosis of the femoral head. Biomed. Mater. 5(6), 065003 (2010)

    ADS  Google Scholar 

  8. Fernandez-Fairen, M., Murcia, A., Blanco, A., Merono, A., Murcia Jr, A., Ballester, J.: Revision of failed total hip arthroplasty acetabular cups to porous tantalum components: a 5-year follow-up study. J. Arthroplasty 25(6), 865–872 (2010)

    Google Scholar 

  9. Ramappa, M., Bajwa, A., Kulkarni, A., McMurtry, I., Port, A.: Early results of a new highly porous modular acetabular cup in revision arthroplasty. Hip Int. Jul-Sep 19(3), 239–244 (2009)

    Google Scholar 

  10. Macheras, G., Kateros, K., Kostakos, A., Koutsostathis, S., Danomaras, D., Papagelopoulos, P.J.: Eight- to ten-year clinical and radiographic outcome of a porous tantalum monoblock acetabular component. J. Arthroplasty 24(5), 705–709 (2009)

    Google Scholar 

  11. Tanzer, M., Bobyn, J.D., Krygier, J.J., Karabasz, D.: Histopathologic retrieval analysis of clinically failed porous tantalum osteonecrosis implants. J. Bone Joint Surg. Am. 90(6), 1282–1289 (2008)

    Google Scholar 

  12. Malizos, K.N., Bargiotas, K., Papatheodorou, L., Hantes, M., Karachalios, T.: Survivorship of monoblock trabecular metal cups in primary THA : Midterm results. Clin. Orthop. Relat. Res. 466(1), 159–166 (2008)

    Google Scholar 

  13. Kim, W.Y., Greidanus, N.V., Duncan, C.P., Masri, B.A., Garbuz, D.S.: Porous tantalum uncemented acetabular shells in revision total hip replacement: two to four year clinical and radiographic results. Hip Int. 18(1), 17–22 (2008)

    Google Scholar 

  14. Nadeau, M., Seguin, C., Theodoropoulos, J.S., Harvey, E.J.: Short term clinical outcome of a porous tantalum implant for the treatment of advanced osteonecrosis of the femoral head. Mcgill J Med. 10(1), 4–10 (2007)

    Google Scholar 

  15. Klika, A.K., Murray, T.G., Darwiche, H., Barsoum, W.K.: Options for acetabular fixation surfaces. J. Long Term Eff. Med. Implants 17(3), 187–192 (2007)

    Google Scholar 

  16. Grelsamer RP.: Applications of porous tantalum in total hip arthroplasty. J Am Acad Orthop Surg. 15(3):137; author reply 137–138

    Google Scholar 

  17. Veillette, C.J., Mehdian, H., Schemitsch, E.H., McKee, M.D.: Survivorship analysis and radiographic outcome following tantalum rod insertion for osteonecrosis of the femoral head. J. Bone Joint Surg. Am. 88(Suppl 3), 48–55 (2006)

    Google Scholar 

  18. Sporer, S.M., Paprosky, W.G.: The use of a trabecular metal acetabular component and trabecular metal augment for severe acetabular defects. J. Arthroplasty 21(6), 83–86 (2006). Suppl 2

    Google Scholar 

  19. Rose, P.S., Halasy, M., Trousdale, R.T., et al.: Preliminary results of tantalum acetabular components for THA after pelvic radiation. Clin. Orthop. Relat. Res. 453, 195–198 (2006)

    Google Scholar 

  20. Macheras, G.A., Papagelopoulos, P.J., Kateros, K., Kostakos, A.T., Baltas, D., Karachalios, T.S.: Radiological evaluation of the metal-bone interface of a porous tantalum monoblock acetabular component. J. Bone Joint Surg. Br. 88(3), 304–309 (2006)

    Google Scholar 

  21. Levine, B., Della Valle, C.J., Jacobs, J.J.: Applications of porous tantalum in total hip arthroplasty. J. Am. Acad. Orthop. Surg. 14(12), 646–655 (2006)

    Google Scholar 

  22. Unger, A.S., Lewis, R.J., Gruen, T.: Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J. Arthroplasty 20(8), 1002–1009 (2005)

    Google Scholar 

  23. Chalkin, B., Minter, J.: Limb salvage and abductor reattachment using a custom prosthesis with porous tantalum components. J. Arthroplasty 20(1), 127–130 (2005)

    Google Scholar 

  24. Frenkel, S.R., Jaffe, W.L., Dimaano, F., Iesaka, K., Hua, T.: Bone response to a novel highly porous surface in a canine implantable chamber. J. Biomed. Mater. Res. B Appl. Biomater. 71(2), 387–391 (2004)

    Google Scholar 

  25. Karrholm J, Anderberg C, Snorrason F, et al. Evaluation of a femoral stem with reduced stiffness. A randomized study with use of radiostereometry and bone densitometry. J Bone Joint Surg Am.;84-A(9), 1651–1658 (2002)

    Google Scholar 

  26. Christie, M.J.: Clinical applications of Trabecular Metal. Am J Orthop (Belle Mead NJ). 31(4), 219–220 (2002)

    MathSciNet  Google Scholar 

  27. Bobyn, J.D., Toh, K.K., Hacking, S.A., Tanzer, M., Krygier, J.J.: Tissue response to porous tantalum acetabular cups: A canine model. J. Arthroplasty 14(3), 347–354 (1999)

    Google Scholar 

  28. Karrholm, J., Herberts, P., Hultmark, P., Malchau, H., Nivbrant, B., Thanner, J.: Radiostereometry of hip prostheses. Review of methodology and clinical results. Clin. Orthop. Relat. Res. 344, 94–110 (1997)

    Google Scholar 

  29. Ciccotti, M.G., Rothman, R.H., Hozack, W.J., Moriarty, L.: Clinical and roentgenographic evaluation of hydroxyapatite-augmented and nonaugmented porous total hip arthroplasty. J. Arthroplasty 9(6), 631–639 (1994)

    Google Scholar 

  30. Kamath, A.F., Gee, A.O., Nelson, C.L., Garino, J.P., Lotke, P.A., Lee, G.C.: Porous tantalum patellar components in revision total knee arthroplasty minimum 5-year follow-up. J. Arthroplasty 27(1), 82–87 (2012)

    Google Scholar 

  31. Sambaziotis C, Lovy AJ, Koller KE, Bloebaum RD, Hirsh DM, Kim SJ. Histologic Retrieval Analysis of a Porous Tantalum Metal Implant in an Infected Primary Total Knee Arthroplasty. J Arthroplasty (2011)

    Google Scholar 

  32. Kamath, A.F., Lee, G.C., Sheth, N.P., Nelson, C.L., Garino, J.P., Israelite, C.L.: Prospective results of uncemented tantalum monoblock tibia in total knee arthroplasty: minimum 5-year follow-up in patients younger than 55 years. J. Arthroplasty 26(8), 1390–1395 (2011)

    Google Scholar 

  33. Howard, J.L., Kudera, J., Lewallen, D.G., Hanssen, A.D.: Early results of the use of tantalum femoral cones for revision total knee arthroplasty. J. Bone Joint Surg. Am. 93(5), 478–484 (2011)

    Google Scholar 

  34. Haidukewych, G.J., Hanssen, A., Jones, R.D.: Metaphyseal fixation in revision total knee arthroplasty: Indications and techniques. J. Am. Acad. Orthop. Surg. 19(6), 311–318 (2011)

    Google Scholar 

  35. O’Keefe, T.J., Winter, S., Lewallen, D.G., Robertson, D.D., Poggie, R.A.: Clinical and radiographic evaluation of a monoblock tibial component. J. Arthroplasty 25(5), 785–792 (2010)

    Google Scholar 

  36. Minoda, Y., Kobayashi, A., Iwaki, H., Ikebuchi, M., Inori, F., Takaoka, K.: Comparison of bone mineral density between porous tantalum and cemented tibial total knee arthroplasty components. J. Bone Joint Surg. Am. 92(3), 700–706 (2010)

    Google Scholar 

  37. Troyer, J., Levine, B.R.: Proximal tibia reconstruction with a porous tantalum cone in a patient with charcot arthropathy. Orthopedics. 32(5), 358 (2009)

    Google Scholar 

  38. Tigani, D., Sabbioni, G., Raimondi, A.: Early aseptic loosening of a porous tantalum knee prosthesis. Chir. Organi Mov. 93(3), 187–191 (2009)

    Google Scholar 

  39. Sheth, N.P., Lonner, J.H.: Clinical use of porous tantalum in complex primary total knee arthroplasty. Am J Orthop (Belle Mead NJ) 38(10), 526–530 (2009)

    Google Scholar 

  40. Meneghini RM, Lewallen DG, Hanssen AD. Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. Surgical technique. J Bone Joint Surg Am, 91(Pt 1), 131–138 (2009), Suppl 2

    Google Scholar 

  41. Long, W.J., Scuderi, G.R.: Porous tantalum cones for large metaphyseal tibial defects in revision total knee arthroplasty: A minimum 2-year follow-up. J. Arthroplasty 24(7), 1086–1092 (2009)

    Google Scholar 

  42. Meneghini, R.M., Lewallen, D.G., Hanssen, A.D.: Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. J. Bone Joint Surg. Am. 90(1), 78–84 (2008)

    Google Scholar 

  43. Klein, G.R., Levine, H.B., Hartzband, M.A.: Removal of a well-fixed trabecular metal monoblock tibial component. J. Arthroplasty 23(4), 619–622 (2008)

    Google Scholar 

  44. Lombardi Jr, A.V., Berasi, C.C., Berend, K.R.: Evolution of tibial fixation in total knee arthroplasty. J. Arthroplasty 22(4 Suppl 1), 25–29 (2007)

    Google Scholar 

  45. Levine, B., Sporer, S., Della Valle, C.J., Jacobs, J.J., Paprosky, W.: Porous tantalum in reconstructive surgery of the knee: A review. J Knee Surg. 20(3), 185–194 (2007)

    Google Scholar 

  46. Ries, M.D., Cabalo, A., Bozic, K.J., Anderson, M.: Porous tantalum patellar augmentation: The importance of residual bone stock. Clin. Orthop. Relat. Res. 452, 166–170 (2006)

    Google Scholar 

  47. Nasser, S., Poggie, R.A.: Revision and salvage patellar arthroplasty using a porous tantalum implant. J. Arthroplasty 19(5), 562–572 (2004)

    Google Scholar 

  48. Sinclair SK, Konz GJ, Dawson JM, Epperson RT, Bloebaum RD. Host bone response to polyetheretherketone versus porous tantalum implants for cervical spinal fusion in a goat model. Spine (Phila Pa). May 1 2012, 37(10):E571–580 (1976)

    Google Scholar 

  49. Fernandez-Fairen M, Murcia A, Torres A, Hernandez-Vaquero D, Menzie AM. Is anterior cervical fusion with a porous tantalum implant a cost-effective method to treat cervical disc disease with radiculopathy? Spine (Phila Pa 1976). Mar 29 2012

    Google Scholar 

  50. Kasliwal MK, Baskin DS, Traynelis VC. Failure of porous tantalum cervical interbody fusion devices: Two-year results from a prospective, randomized, multicenter clinical study. J Spinal Disord Tech. Dec 21 (2011)

    Google Scholar 

  51. Lofgren, H., Engquist, M., Hoffmann, P., Sigstedt, B., Vavruch, L.: Clinical and radiological evaluation of Trabecular Metal and the Smith-Robinson technique in anterior cervical fusion for degenerative disease: a prospective, randomized, controlled study with 2-year follow-up. Eur. Spine J. 19(3), 464–473 (2010)

    Google Scholar 

  52. Frigg, A., Dougall, H., Boyd, S., Nigg, B.: Can porous tantalum be used to achieve ankle and subtalar arthrodesis?: a pilot study. Clin. Orthop. Relat. Res. 468(1), 209–216 (2010)

    Google Scholar 

  53. Maccauro, G., Iommetti, P.R., Muratori, F., Raffaelli, L., Manicone, P.F., Fabbriciani, C.: An overview about biomedical applications of micron and nano size tantalum. Recent Pat. Biotechnol. 3(3), 157–165 (2009)

    Google Scholar 

  54. Guan, Y., Yoganandan, N., Maiman, D.J., Pintar, F.A.: Internal and external responses of anterior lumbar/lumbosacral fusion: Nonlinear finite element analysis. J Spinal Disord Tech. 21(4), 299–304 (2008)

    Google Scholar 

  55. Lin, C.Y., Wirtz, T., LaMarca, F., Hollister, S.J.: Structural and mechanical evaluations of a topology optimized titanium interbody fusion cage fabricated by selective laser melting process. J Biomed Mater Res A. 83(2), 272–279 (2007)

    Google Scholar 

  56. Zou, X., Li, H., Zou, L., Mygind, T., Lind, M., Bunger, C.: Porous tantalum trabecular metal scaffolds in combination with a novel marrow processing technique to replace autograft. Adv. Exp. Med. Biol. 585, 197–208 (2006)

    Google Scholar 

  57. Levine, B.R., Sporer, S., Poggie, R.A., Della Valle, C.J., Jacobs, J.J.: Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27(27), 4671–4681 (2006)

    Google Scholar 

  58. Bunger, M.H., Foss, M., Erlacher, K., et al.: Bone nanostructure near titanium and porous tantalum implants studied by scanning small angle X-ray scattering. Eur Cell Mater. 12, 81–91 (2006)

    Google Scholar 

  59. Zou X, Li H, Teng X, et al. Pedicle screw fixation enhances anterior lumbar interbody fusion with porous tantalum cages: an experimental study in pigs. Spine (Phila Pa 1976). Jul 15, 30(14):E392–399 (2005)

    Google Scholar 

  60. Zou, X., Li, H., Bunger, M., Egund, N., Lind, M., Bunger, C.: Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: An experimental study in pigs. Spine J. 4(1), 99–105 (2004)

    Google Scholar 

  61. Kokubo T. Metallic materials stimulating bone formation. Med J Malaysia. May 2004, 59 Suppl B:91–92 (2004)

    Google Scholar 

  62. Zou, X., Xue, Q., Li, H., Bunger, M., Lind, M., Bunge, C.: Effect of alendronate on bone ingrowth into porous tantalum and carbon fiber interbody devices: An experimental study on spinal fusion in pigs. Acta Orthop. Scand. 74(5), 596–603 (2003)

    Google Scholar 

  63. Zou, X., Li, H., Baatrup, A., Lind, M., Bunger, C.: Engineering of bone tissue with porcine bone marrow stem cells in three-dimensional trabecular metal: in vitro and in vivo studies. APMIS Suppl. 109, 127–132 (2003)

    Google Scholar 

  64. Wigfield, C., Robertson, J., Gill, S., Nelson, R.: Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial. Br. J. Neurosurg. 17(5), 418–425 (2003)

    Google Scholar 

  65. Sidhu, K.S., Prochnow, T.D., Schmitt, P., Fischgrund, J., Weisbrode, S., Herkowitz, H.N.: Anterior cervical interbody fusion with rhBMP-2 and tantalum in a goat model. Spine J. 1(5), 331–340 (2001)

    Google Scholar 

  66. Levi AD, Choi WG, Keller PJ, Heiserman JE, Sonntag VK, Dickman CA. The radiographic and imaging characteristics of porous tantalum implants within the human cervical spine. Spine (Phila Pa 1976). Jun 1, 23(11):1245–1250; discussion 1251 (1998)

    Google Scholar 

  67. Higuera, C.A., Inoue, N., Lim, J.S., et al.: Tendon reattachment to a metallic implant using an allogenic bone plate augmented with rhOP-1 vs. autogenous cancellous bone and marrow in a canine model. J. Orthop. Res. 23(5), 1091–1099 (2005)

    Google Scholar 

  68. Smith, L.: Ceramic-plastic material as a bone substitute. Arch. Surg. 87, 653–661 (1963)

    Google Scholar 

  69. Lueck, R.A., Galante, J., Rostoker, W., Ray, R.D.: Development of an open pore metallic implant to permit attachment to bone. Surg Forum. 20, 456–457 (1969)

    Google Scholar 

  70. Galante, J., Rostoker, W., Lueck, R., Ray, R.D.: Sintered fiber metal composites as a basis for attachment of implants to bone. J. Bone Joint Surg. Am. 53(1), 101–114 (1971)

    Google Scholar 

  71. Lembert, E., Galante, J., Rostoker, W.: Fixation of skeletal replacement by fiber metal composites. Clin. Orthop. Relat. Res. 87, 303–310 (1972)

    Google Scholar 

  72. Sumner, D.R., Kienapfel, H., Jacobs, J.J., Urban, R.M., Turner, T.M., Galante, J.O.: Bone ingrowth and wear debris in well-fixed cementless porous-coated tibial components removed from patients. J. Arthroplasty 10(2), 157–167 (1995)

    Google Scholar 

  73. Bobyn, J.D., Cameron, H.U., Abdulla, D., Pilliar, R.M., Weatherly, G.C.: Biologic fixation and bone modeling with an unconstrained canine total knee prosthesis. Clin. Orthop. Relat. Res. 166, 301–312 (1982)

    Google Scholar 

  74. Bobyn, J.D., Pilliar, R.M., Cameron, H.U., Weatherly, G.C.: The optimum pore size for the fixation of porous-surfaced metal implants by the ingrowth of bone. Clin Orthop Relat Res. Jul-Aug 150, 263–270 (1980)

    Google Scholar 

  75. Bobyn, J.D., Pilliar, R.M., Cameron, H.U., Weatherly, G.C.: Osteogenic phenomena across endosteal bone-implant spaces with porous surfaced intramedullary implants. Acta Orthop. Scand. 52(2), 145–153 (1981)

    Google Scholar 

  76. Bobyn, J.D., Pilliar, R.M., Cameron, H.U., Weatherly, G.C., Kent, G.M.: The effect of porous surface configuration on the tensile strength of fixation of implants by bone ingrowth. Clin. Orthop. Relat. Res. 149, 291–298 (1980)

    Google Scholar 

  77. Cameron, H., Macnab, I., Pilliar, R.: Porous surfaced vitallium staples. S. Afr. J. Surg. 10(2), 63–70 (1972)

    Google Scholar 

  78. Cameron, H.U., Macnab, I., Pilliar, R.M.: A porous metal system for joint replacement surgery. Int. J. Artif. Organs 1(2), 104–109 (1978)

    Google Scholar 

  79. Cameron, H.U., Pilliar, R.M., MacNab, I.: The effect of movement on the bonding of porous metal to bone. J. Biomed. Mater. Res. 7(4), 301–311 (1973)

    Google Scholar 

  80. Cameron, H.U., Pilliar, R.M., Macnab, I.: The rate of bone ingrowth into porous metal. J. Biomed. Mater. Res. 10(2), 295–302 (1976)

    Google Scholar 

  81. Cameron, H.U., Yoneda, B.T., Pilliar, R.M., Macnab, I.: The effect of early infection on bone ingrowth into porous metal implants. Acta Orthop Belg. 43(1), 71–74 (1977)

    Google Scholar 

  82. Hungerford, D.S., Kenna, R.V., Krackow, K.A.: The porous-coated anatomic total knee. Orthop. Clin. North Am. 13(1), 103–122 (1982)

    Google Scholar 

  83. Kienapfel, H., Martell, J., Rosenberg, A., Galante, J.: Cementless Gustilo-Kyle and BIAS total hip arthroplasty: 2- to 5-year results. Arch. Orthop. Trauma Surg. 110(4), 179–186 (1991)

    Google Scholar 

  84. Pilliar, R.M., Cameron, H.U., Binnington, A.G., Szivek, J., Macnab, I.: Bone ingrowth and stress shielding with a porous surface coated fracture fixation plate. J. Biomed. Mater. Res. 13(5), 799–810 (1979)

    Google Scholar 

  85. Pilliar, R.M., Cameron, H.U., Macnab, I.: Porous surface layered prosthetic devices. Biomed. Eng. 10(4), 126–131 (1975)

    Google Scholar 

  86. Welsh, R.P., Pilliar, R.M., Macnab, I.: Surgical implants. The role of surface porosity in fixation to bone and acrylic. J. Bone Joint Surg. Am. 53(5), 963–977 (1971)

    Google Scholar 

  87. Spector, M., Flemming, W.R., Kreutner, A.: Bone growth into porous high-density polyethylene. J. Biomed. Mater. Res. 10(4), 595–603 (1976)

    Google Scholar 

  88. Spector, M., Michno, M.J., Smarook, W.H., Kwiatkowski, G.T.: A high-modulus polymer for porous orthopedic implants: Biomechanical compatibility of porous implants. J. Biomed. Mater. Res. 12(5), 665–677 (1978)

    Google Scholar 

  89. Tullos, H.S., McCaskill, B.L., Dickey, R., Davidson, J.: Total hip arthroplasty with a low-modulus porous-coated femoral component. J. Bone Joint Surg. Am. 66(6), 888–898 (1984)

    Google Scholar 

  90. Bobyn, J.D., Stackpool, G.J., Hacking, S.A., Tanzer, M., Krygier, J.J.: Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 81(5), 907–914 (1999)

    Google Scholar 

  91. Smith, S.E., Estok 2nd, D.M., Harris, W.H.: Average 12-year outcome of a chrome-cobalt, beaded, bony ingrowth acetabular component. J. Arthroplasty 13(1), 50–60 (1998)

    Google Scholar 

  92. Mulroy Jr, R.D., Harris, W.H.: The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. J. Bone Joint Surg. Br. 72(5), 757–760 (1990)

    Google Scholar 

  93. Hennessy, D.W., Callaghan, J.J., Liu, S.S.: Second-generation extensively porous-coated THA stems at minimum 10-year followup. Clin. Orthop. Relat. Res. 467(9), 2290–2296 (2009)

    Google Scholar 

  94. Sakalkale, D.P., Eng, K., Hozack, W.J., Rothman, R.H.: Minimum 10-year results of a tapered cementless hip replacement. Clin. Orthop. Relat. Res. 362, 138–144 (1999)

    Google Scholar 

  95. Yoon, T.R., Rowe, S.M., Kim, M.S., Cho, S.G., Seon, J.K.: Fifteen- to 20-year results of uncemented tapered fully porous-coated cobalt-chrome stems. Int. Orthop. 32(3), 317–323 (2008)

    Google Scholar 

  96. Cook, S.D., Barrack, R.L., Thomas, K.A., Haddad Jr, R.J.: Quantitative analysis of tissue growth into human porous total hip components. J. Arthroplasty 3(3), 249–262 (1988)

    Google Scholar 

  97. Engh, G.A., Bobyn, J.D., Petersen, T.L.: Radiographic and histologic study of porous coated tibial component fixation in cementless total knee arthroplasty. Orthopedics 11(5), 725–731 (1988)

    Google Scholar 

  98. Vigorita, V.J., Minkowitz, B., Dichiara, J.F., Higham, P.A.: A histomorphometric and histologic analysis of the implant interface in five successful, autopsy-retrieved, noncemented porous-coated knee arthroplasties. Clin. Orthop. Relat. Res. 293, 211–218 (1993)

    Google Scholar 

  99. Spector, M.: Historical review of porous-coated implants. J. Arthroplasty 2(2), 163–177 (1987)

    MathSciNet  Google Scholar 

  100. Gustilo RB, Kyle RF. Revision of femoral component loosening with titanium ingrowth prosthesis and bone grafting. Hip, 342–346 (1984)

    Google Scholar 

  101. Landon, G.C., Galante, J.O., Maley, M.M.: Noncemented total knee arthroplasty. Clin. Orthop. Relat. Res. 205, 49–57 (1986)

    Google Scholar 

  102. Klein, G.R., Levine, H.B., Nafash, S.C., Lamothe, H.C., Hartzband, M.A.: Total hip arthroplasty with a collarless, tapered, fiber metal proximally coated femoral stem: minimum 5-year follow-up. J. Arthroplasty 24(4), 579–585 (2009)

    Google Scholar 

  103. Lachiewicz, P.F., Soileau, E.S., Bryant, P.: Second-generation proximally coated titanium femoral component: minimum 7-year results. Clin. Orthop. Relat. Res. 465, 117–121 (2007)

    Google Scholar 

  104. Anseth, S.D., Pulido, P.A., Adelson, W.S., Patil, S., Sandwell, J.C., Colwell Jr, C.W.: Fifteen-year to twenty-year results of cementless Harris-Galante porous femoral and Harris-Galante porous I and II acetabular components. J. Arthroplasty 25(5), 687–691 (2010)

    Google Scholar 

  105. Hamilton, W.G., Calendine, C.L., Beykirch, S.E., Hopper Jr, R.H., Engh, C.A.: Acetabular fixation options: first-generation modular cup curtain calls and caveats. J. Arthroplasty 22(4 Suppl 1), 75–81 (2007)

    Google Scholar 

  106. Della Valle CJ, Berger RA, Rosenberg AG, Galante JO. Cementless acetabular reconstruction in revision total hip arthroplasty. Clin Orthop Relat Res, (420), 96–100 (2004)

    Google Scholar 

  107. Jones CP, Lachiewicz PF. Factors influencing the longer-term survival of uncemented acetabular components used in total hip revisions. J Bone Joint Surg Am, 86-A(2), 342–347 (2004)

    Google Scholar 

  108. Leopold, S.S., Rosenberg, A.G., Bhatt, R.D., Sheinkop, M.B., Quigley, L.R., Galante, J.O.: Cementless acetabular revision. Evaluation at an average of 10.5 years. Clin. Orthop. Relat. Res. 369, 179–186 (1999)

    Google Scholar 

  109. Pidhorz, L.E., Urban, R.M., Jacobs, J.J., Sumner, D.R., Galante, J.O.: A quantitative study of bone and soft tissues in cementless porous-coated acetabular components retrieved at autopsy. J. Arthroplasty 8(2), 213–225 (1993)

    Google Scholar 

  110. Mayman, D.J., Gonzalez Della Valle, A., Lambert, E., et al.: Late fiber metal shedding of the first and second-generation Harris Galante acetabular component. A report of 5 cases. J. Arthroplasty 22(4), 624–629 (2007)

    Google Scholar 

  111. Udomkiat P, Dorr LD, Wan Z. Cementless hemispheric porous-coated sockets implanted with press-fit technique without screws: average ten-year follow-up. J Bone Joint Surg Am, 84-A(7), 1195–1200 (2002)

    Google Scholar 

  112. Hofmann, A.A., Feign, M.E., Klauser, W., VanGorp, C.C., Camargo, M.P.: Cementless primary total hip arthroplasty with a tapered, proximally porous-coated titanium prosthesis: A 4- to 8-year retrospective review. J. Arthroplasty 15(7), 833–839 (2000)

    Google Scholar 

  113. Luites, J.W., Spruit, M., Hellemondt, G.G., Horstmann, W.G., Valstar, E.R.: Failure of the uncoated titanium ProxiLock femoral hip prosthesis. Clin. Orthop. Relat. Res. 448, 79–86 (2006)

    Google Scholar 

  114. Hofmann, A.A., Evanich, J.D., Ferguson, R.P., Camargo, M.P.: Ten- to 14-year clinical followup of the cementless Natural Knee system. Clin. Orthop. Relat. Res. 388, 85–94 (2001)

    Google Scholar 

  115. Bloebaum, R.D., Bachus, K.N., Jensen, J.W., Hofmann, A.A.: Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. J. Arthroplasty 12(8), 920–929 (1997)

    Google Scholar 

  116. Bloebaum, R.D., Rhodes, D.M., Rubman, M.H., Hofmann, A.A.: Bilateral tibial components of different cementless designs and materials. Microradiographic, backscattered imaging, and histologic analysis. Clin. Orthop. Relat. Res. 268, 179–187 (1991)

    Google Scholar 

  117. Hahn, H., Palich, W.: Preliminary evaluation of porous metal surfaced titanium for orthopedic implants. J. Biomed. Mater. Res. 4(4), 571–577 (1970)

    Google Scholar 

  118. Turner, T.M., Sumner, D.R., Urban, R.M., Rivero, D.P., Galante, J.O.: A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. J. Bone Joint Surg. Am. 68(9), 1396–1409 (1986)

    Google Scholar 

  119. Bourne, R.B., Rorabeck, C.H., Burkart, B.C., Kirk, P.G.: Ingrowth surfaces. Plasma spray coating to titanium alloy hip replacements. Clin. Orthop. Relat. Res. 298, 37–46 (1994)

    Google Scholar 

  120. Lombardi Jr, A.V., Berend, K.R., Mallory, T.H., Skeels, M.D., Adams, J.B.: Survivorship of 2000 tapered titanium porous plasma-sprayed femoral components. Clin. Orthop. Relat. Res. 467(1), 146–154 (2009)

    Google Scholar 

  121. Karageorgiou, V., Kaplan, D.: Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials 26(27), 5474–5491 (2005)

    Google Scholar 

  122. Bourne RB, McCalden RW, Naudie D, Charron KD, Yuan X, Holdsworth DW. The next generation of acetabular shell design and bearing surfaces. Orthopedics, ,31 (12 Suppl 2) (2008)

    Google Scholar 

  123. Zardiackas, L.D., Parsell, D.E., Dillon, L.D., Mitchell, D.W., Nunnery, L.A., Poggie, R.: Structure, metallurgy, and mechanical properties of a porous tantalum foam. J. Biomed. Mater. Res. 58(2), 180–187 (2001)

    Google Scholar 

  124. Hacking, S.A., Bobyn, J.D., Toh, K., Tanzer, M., Krygier, J.J.: Fibrous tissue ingrowth and attachment to porous tantalum. J. Biomed. Mater. Res. 52(4), 631–638 (2000)

    Google Scholar 

  125. Levine, B.: A new era in porous metals: Applications in orthopaedics. Adv. Eng. Mater. 10(9), 788–792 (2008)

    Google Scholar 

  126. Gordon, W.J., Conzemius, M.G., Birdsall, E., et al.: Chondroconductive potential of tantalum trabecular metal. J. Biomed. Mater. Res. B Appl. Biomater. 75(2), 229–233 (2005)

    Google Scholar 

  127. Mardones, R.M., Reinholz, G.G., Fitzsimmons, J.S., et al.: Development of a biologic prosthetic composite for cartilage repair. Tissue Eng. 11(9–10), 1368–1378 (2005)

    Google Scholar 

  128. Paprosky, W.G., O’Rourke, M., Sporer, S.M.: The treatment of acetabular bone defects with an associated pelvic discontinuity. Clin. Orthop. Relat. Res. 441, 216–220 (2005)

    Google Scholar 

  129. Paprosky, W.G., Sporer, S.S., Murphy, B.P.: Addressing severe bone deficiency: What a cage will not do. J. Arthroplasty 22(4 Suppl 1), 111–115 (2007)

    Google Scholar 

  130. Sporer, S.M., O’Rourke, M., Paprosky, W.G.: The treatment of pelvic discontinuity during acetabular revision. J. Arthroplasty 20(4), 79–84 (2005). Suppl 2

    Google Scholar 

  131. Weeden, S.H., Schmidt, R.H.: The use of tantalum porous metal implants for Paprosky 3A and 3B defects. J. Arthroplasty 22(6 Suppl 2), 151–155 (2007)

    Google Scholar 

  132. Lewis RJ, O’Keefe TJ, Unger AS. A monoblock trabecular metal acetabulum; two to five year results. 70th AAOS Annual Meeting. Dallas, TX (2005)

    Google Scholar 

  133. Gruen, T.A., Poggie, R.A., Lewallen, D.G., et al.: Radiographic evaluation of a monoblock acetabular component: A multicenter study with 2- to 5-year results. J. Arthroplasty 20(3), 369–378 (2005)

    Google Scholar 

  134. Bargiotas K, Konstantinos M, Karachalios T, Hantes M, Varitimidis SE. Total Hip Arthroplasty using trabecular metal acetabular component: middle term results. 72nd Annual AAOS Meeting. Washington, DC (2005)

    Google Scholar 

  135. Moen, T.C., Ghate, R., Salaz, N., Ghodasra, J., Stulberg, S.D.: A monoblock porous tantalum acetabular cup has no osteolysis on CT at 10 years. Clin. Orthop. Relat. Res. 469(2), 382–386 (2011)

    Google Scholar 

  136. Nakashima Y, Mashima N, Imai H, et al. Clinical and radiographic evaluation of total hip arthroplasties using porous tantalum modular acetabular components: 5-year follow-up of clinical trial. Modern rheumatology/the Japan Rheumatism Association. Mar 7 (2012)

    Google Scholar 

  137. Sporer S, Paprosky W. Acetabular revision using a trabecular metal acetabular component for severe acetabular bone loss associated with a pelvic discontinuity. 15th Annual AAHKS Meeting. Dallas, TX (2005)

    Google Scholar 

  138. Sporer, S.M., Paprosky, W.G.: Acetabular revision using a trabecular metal acetabular component for severe acetabular bone loss associated with a pelvic discontinuity. J. Arthroplasty 21(6 Suppl 2), 87–90 (2006)

    Google Scholar 

  139. Mardones R, Talac R, Hanssen A, Lewallen DG. Use of a porous tantalum revision shell in revision total hip arthroplasty. 72nd Annual AAOS Meeting. Dallas, TX (2005)

    Google Scholar 

  140. Bobyn JD, Poggie RA, Krygier JJ, et al. Clinical validation of a structural porous tantalum biomaterial for adult reconstruction. J Bone Joint Surg Am, 86-A Suppl 2, 123–129 (2004)

    Google Scholar 

  141. Malkani AL, Crawford C, Baker D. Acetabular component revision using a trabecular metal implant. 72nd Annual AAOS Meeting. Washington, DC (2005)

    Google Scholar 

  142. Radnay, C.S., Scuderi, G.R.: Management of bone loss: Augments, cones, offset stems. Clin. Orthop. Relat. Res. 446, 83–92 (2006)

    Google Scholar 

  143. Stulberg SD. The use of porous tantalum components in revision tka—A five year follow-up study. 71st AAOS Annual Meeting. San Francisco, CA (2004)

    Google Scholar 

  144. Nelson, C.L., Lonner, J.H., Lahiji, A., Kim, J., Lotke, P.A.: Use of a trabecular metal patella for marked patella bone loss during revision total knee arthroplasty. J. Arthroplasty 18(7 Suppl 1), 37–41 (2003)

    Google Scholar 

  145. Shuler, M.S., Rooks, M.D., Roberson, J.R.: Porous tantalum implant in early osteonecrosis of the hip: preliminary report on operative, survival, and outcomes results. J. Arthroplasty 22(1), 26–31 (2007)

    Google Scholar 

  146. Tsao, A.K., Roberson, J.R., Christie, M.J., et al.: Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis. J. Bone Joint Surg. Am. 87(Suppl 2), 22–27 (2005)

    Google Scholar 

  147. Fung, D.A., Frey, S., Menkowitz, M., Mark, A.: Subtrochanteric fracture in a patient with trabecular metal osteonecrosis intervention implant. Orthopedics 31(6), 614 (2008)

    Google Scholar 

  148. Pandit H, Glyn-Jones S, McLardy-Smith P, et al. Pseudotumours associated with metal-on-metal hip resurfacings. The Journal of bone and joint surgery. British volume, 90(7), 847–851, (2008)

    Google Scholar 

  149. Hallab N, Merritt K, Jacobs JJ. Metal sensitivity in patients with orthopaedic implants. The Journal of bone and joint surgery. American volume, 001, 83-A(3), 428–436 (2001)

    Google Scholar 

  150. Hallab, N.J., Mikecz, K., Vermes, C., Skipor, A., Jacobs, J.J.: Orthopaedic implant related metal toxicity in terms of human lymphocyte reactivity to metal-protein complexes produced from cobalt-base and titanium-base implant alloy degradation. Mol. Cell. Biochem. 222(1–2), 127–136 (2001)

    Google Scholar 

  151. Jacobs, J.J., Skipor, A.K., Campbell, P.A., Hallab, N.J., Urban, R.M., Amstutz, H.C.: Can metal levels be used to monitor metal-on-metal hip arthroplasties? The Journal of arthroplasty 19(8), 59–65 (2004). Suppl 3

    Google Scholar 

  152. Savarino, L., Granchi, D., Ciapetti, G., et al.: Effects of metal ions on white blood cells of patients with failed total joint arthroplasties. J. Biomed. Mater. Res. 47(4), 543–550 (1999)

    Google Scholar 

  153. Jacobs JJ, Skipor AK, Doorn PF, et al. Cobalt and chromium concentrations in patients with metal on metal total hip replacements. Clinical orthopaedics and related research (329 Suppl), S256–263 (1996)

    Google Scholar 

  154. Antoniou J, Zukor DJ, Mwale F, Minarik W, Petit A, Huk OL. Metal ion levels in the blood of patients after hip resurfacing: a comparison between twenty-eight and thirty-six-millimeter-head metal-on-metal prostheses. The Journal of bone and joint surgery. American volume, 90, 142–148 (2008), Suppl 3

    Google Scholar 

  155. Bernstein M, Desy NM, Petit A, Zukor DJ, Huk OL, Antoniou J. Long-term follow-up and metal ion trend of patients with metal-on-metal total hip arthroplasty. International orthopaedics. Jun 9 (2012)

    Google Scholar 

  156. Nikolaou, V.S., Petit, A., Debiparshad, K., Huk, O.L., Zukor, D.J., Antoniou, J.: Metal-on-metal total hip arthroplasty—five- to 11-year follow-up. Bulletin of the NYU hospital for joint diseases 69(Suppl 1), S77–S83 (2011)

    Google Scholar 

  157. Tkaczyk, C., Petit, A., Antoniou, J., Zukor, D.J., Tabrizian, M., Huk, O.L.: Significance of elevated blood metal ion levels in patients with metal-on-metal prostheses: An evaluation of oxidative stress markers. The Open Orthopaedics Journal 4, 221–227 (2010)

    Google Scholar 

  158. Bernstein, M., Walsh, A., Petit, A., Zukor, D.J., Huk, O.L., Antoniou, J.: Femoral head size does not affect ion values in metal-on-metal total hips. Clin. Orthop. Relat. Res. 469(6), 1642–1650 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett R. Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Frank, R.M., Fabi, D., Levine, B.R. (2013). Modern Porous Coatings in Orthopaedic Applications. In: Nazarpour, S. (eds) Thin Films and Coatings in Biology. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2592-8_3

Download citation

Publish with us

Policies and ethics