Skip to main content

Simulation of Medical Linear Accelerators with PENELOPE

  • Chapter
  • First Online:
  • 1588 Accesses

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Monte Carlo simulation of clinical linear accelerators (linac) allows accurate estimation of the absorbed dose in a patient. However, its routine use in radiotherapy units has been hindered by the difficulties related to efficient programming of the simulation files and the usually long computation times required. penelope is a Monte Carlo general-purpose radiation transport code that describes the coupled transport of photons, electrons and positrons in arbitrary materials and complex geometries. Although penelope by itself is perfectly suited for the simulation of linacs, it nevertheless imposes a programming effort on the end users wishing to do so. In this chapter a brief review is given on several programs that facilitate the simulation of linacs and computerised tomographies using penelope as the Monte Carlo engine. Variance-reduction techniques implemented in these codes, which allow an efficient simulation of linacs, including multileaf collimators, are also described. The chapter ends with an example of a simulation with penelope of a linac irradiating a highly conformed small electron field used for the treatment of the conjunctival lymphoma of the eye. The example shows the simulation of a linac and a computerised tomography of a segmented eye.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Distributed at the OECD Nuclear Energy Agency Data Bank (http://www.nea.fr) and the Radiation Safety Information Computational Center (http://www-rsicc.ornl.gov).

  2. 2.

    The code can be downloaded from http://www.upc.es/inte/downloads/penEasy.htm.

  3. 3.

    The code can be downloaded from http://sites.google.com/site/penlinacusers/.

References

  1. C.J. Karzmark, C.S. Nunan, E. Tababe, Medical Electron Accelerators (McGraw-Hill, 1993)

    Google Scholar 

  2. M. Udale, Phys. Med. Biol. 33, 939 (1988)

    Article  Google Scholar 

  3. D. Rogers, B. Faddegon, G. Ding, C. Ma, J. Wei, et al., Med. Phys. 22, 503 (1995)

    Article  Google Scholar 

  4. I.J. Chetty, B. Curran, J.E. Cygler, J.J. Demarco, G. Ezzell, B.A. Faddegon, I. Kawrakow, P.J. Keall, H. Liu, C.M.C. Ma, D.W.O. Rogers, J. Seuntjens, D. Sheikh-Bagheri, J.V. Siebers, Med. Phys. 34, 4818 (2007)

    Article  Google Scholar 

  5. N. Reynaert, S.C. van der Marck, D.R. Schaart, W.V. der Zee, C.V. Vliet-Vroegindeweij, M. Tomsej, J. Jansen, B. Heijmen, M. Coghe, C.D. Wagter, Radiat. Phys. Chem. 76, 643 (2007)

    Article  ADS  Google Scholar 

  6. J. Sempau, A. Sanchez-Reyes, F. Salvat, H. ben Tahar, Phys. Med. Biol. 46, 1163 (2001)

    Google Scholar 

  7. V. Moskvin, C. DesRosiers, L. Papiez, R. Timmerman, M. Randall, P. DesRosiers, Phys. Med. Biol. 47, 1995 (2002)

    Article  Google Scholar 

  8. P. Carrasco, N. Jornet, M.A. Duch, L. Weber, M. Ginjaume, T. Eudaldo, D. Jurado, A. Ruiz, M. Ribas, Med. Phys. 31, 2899 (2004)

    Article  Google Scholar 

  9. L. Blazy, D. Baltes, J.M. Bordy, D. Cutarella, F. Delaunay, J. Gouriou, E. Leroy, A. Ostrowsky, S. Beaumont, Phys. Med. Biol. 51, 5951 (2006)

    Article  Google Scholar 

  10. E. Sterpin, F. Salvat, R. Cravens, K. Ruchala, Phys. Med. Biol. 53, 2161 (2008)

    Article  Google Scholar 

  11. S. García-Pareja, P. Galán, F. Manzano, L. Brualla, A.M. Lallena, Med. Phys. 37, 3782 (2010)

    Article  Google Scholar 

  12. F. Salvat, J.M. Fernández-Varea, J. Sempau, penelope—A code system for Monte Carlo simulation of electron and photon transport (OECD Nuclear Energy Agency, Issy-les-Moulineaux, France, 2008)

    Google Scholar 

  13. J. Sempau, E. Acosta, J. Baró, J.M. Fernández-Varea, F. Salvat, Nucl. Instrum. Meth. B 132, 377 (1997)

    Article  ADS  Google Scholar 

  14. A. Badal, J. Sempau, Comput. Phys. Commun. 175, 440 (2006)

    Article  ADS  Google Scholar 

  15. W. Schneider, T. Bortfeld, W. Schlegel, Phys. Med. Biol. 45, 459 (2000)

    Article  Google Scholar 

  16. L. Brualla, F. Salvat, R. Palanco-Zamora, Phys. Med. Biol. 54, 4131 (2009)

    Article  Google Scholar 

  17. R.Y. Rubinstein, Simulation and the Monte Carlo method (Wiley, New York, 1981)

    Book  MATH  Google Scholar 

  18. A.F. Bielajew, D.W.O. Rogers, in Monte Carlo tansport of electrons and photons, ed. by T.M. Jenkins, W.R. Nelson, A. Rindi (Plenum, New York, 1988), pp. 407–419

    Google Scholar 

  19. L. Brualla, W. Sauerwein, Radiat. Phys. Chem. 79, 929 (2010)

    Article  ADS  Google Scholar 

  20. D. Low, W. Harms, S. Mutic, J. Purdy, Med. Phys. 25, 656 (1998)

    Article  Google Scholar 

  21. A. Bakai, M. Alber, F. Nüsslin, Phys. Med. Biol. 48, 3543 (2003)

    Article  Google Scholar 

  22. S.E. Coupland, M. Hummel, H. Stein, Surv. Ophthalmol. 47, 470 (2002)

    Article  Google Scholar 

  23. L. Brualla, R. Palanco-Zamora, A. Wittig, J. Sempau, W. Sauerwein, Phys. Med. Biol. 54, 5469 (2009)

    Article  Google Scholar 

  24. R.E. Drzymala, R. Mohan, L. Brewster, J. Chu, M. Goitein, W. Harms, M. Urie, Int. J. Radiat. Oncol. 21, 71 (1991)

    Article  Google Scholar 

  25. I. Chetty, M. Rosu, M. Kessler, B. Fraass, R.T. Haken, F. Kong, D. McShan, Int. J. Radiat. Oncol. 65, 1249 (2006)

    Article  Google Scholar 

  26. J. Sempau, A. Badal, L. Brualla. Med. Phys. 38, 5887 (2011)

    Article  Google Scholar 

  27. M.L. Rodriguez. Phys. Med. Biol. 53, 4573 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to F. Salvat (Universitat de Barcelona), J. Sempau and M. Rodríguez (Universitat Politècnica de Catalunya) for their suggestions in relation to the codes described herein. W. Sauerwein (Universitätsklinikum Essen) and F.J. Zaragoza (Universitat Politècnica de Catalunya) are thanked for their collaboration in the example presented in section 19.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Brualla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brualla, L. (2012). Simulation of Medical Linear Accelerators with PENELOPE. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_19

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics