Skip to main content

Quantum Dots and Fluorescent Protein FRET-Based Biosensors

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

There has been considerable recent interest in the creation of nanoparticle-biomolecule hybrid materials for uses such as in vitro and in vivo biosensing, biological imaging, and drug ­delivery. Nanoparticles have a high surface to volume ratio, making them capable of being decorated with ­various biomolecules on their surface which retain their biological activity. Techniques to bind these biomolecules to nanoparticle surfaces are also advancing rapidly. Here we demonstrate hybrid materials assembled around CdSe/ZnS core/shell semiconductor quantum dots (QDs). These intrinsically fluorescent materials are conjugated to the fluorescent proteins YFP, mCherry and the light harvesting complex b-phycoerythrin (b-PE). QDs have fluorescent properties that make them ideal as donor fluorophores for Förster resonance energy transfer (FRET) while the fluorescent proteins are able to act as FRET acceptors displaying many advantages over organic dyes. We examine FRET interactions between QDs and all three fluorescent proteins. Furthermore, we show QD-mCherry hybrid materials can be utilized for in vitro biosensing of caspase-3 enzymatic activity. We further show that QDs and fluorescent proteins can be conjugated together intracellularly with strong potential for live-cell imaging and biosensing applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alivisatos, A. P., Gu, W., et al. (2005). Quantum dots as cellular probes. Annual Review of Biomedical Engineering, 7, 55–76.

    Article  PubMed  CAS  Google Scholar 

  • Boeneman, K., Mei, B. C., et al. (2009). Sensing caspase 3 activity with quantum dot-fluorescent protein assemblies. Journal of the American Chemical Society, 131(11), 3828–3829.

    Article  PubMed  CAS  Google Scholar 

  • Boeneman, K., Delehanty, J. B., et al. (2010). Intracellular bioconjugation of targeted proteins with semiconductor quantum dots. Journal of the American Chemical Society, 132(17), 5975–5977.

    Article  PubMed  CAS  Google Scholar 

  • Clapp, A. R., Medintz, I. L., et al. (2004). Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. Journal of the American Chemical Society, 126(1), 301–310.

    Article  PubMed  CAS  Google Scholar 

  • Clapp, A. R., Goldman, E. R., et al. (2006). Capping of CdSe-ZnS quantum dots with DHLA and subsequent conjugation with proteins. Nature Protocols, 1(3), 1258–1266.

    Article  PubMed  CAS  Google Scholar 

  • Delehanty, J. B., Medintz, I. L., et al. (2006). Self-assembled quantum dot-peptide bioconjugates for selective intracellular delivery. Bioconjugate Chemistry, 17, 920–927.

    Article  PubMed  CAS  Google Scholar 

  • Delehanty, J. B., Mattoussi, H., et al. (2009a). Delivering quantum dots into cells: Strategies, progress and remaining issues. Analytical and Bioanalytical Chemistry, 393(4), 1091–1105.

    Article  PubMed  CAS  Google Scholar 

  • Delehanty, J. B., Boeneman, K., et al. (2009b). Quantum dots: A powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery. Expert Opinion on Drug Delivery, 6(10), 1091–1112.

    Article  PubMed  CAS  Google Scholar 

  • Delehanty, J. B., Bradburne, C. E., et al. (2010). Delivering quantum dot-peptide bioconjugates to the cellular cytosol: Escaping from the endolysosomal system. Integrative Biology, 2, 265–277.

    Article  PubMed  CAS  Google Scholar 

  • Dennis, A. M., & Bao, G. (2008). Quantum dot-fluorescent protein pairs as novel fluorescence resonance energy ­transfer probes. Nano Letters, 8(5), 1439–1445.

    Article  PubMed  CAS  Google Scholar 

  • Fehr, M., Frommer, W. B., et al. (2002). Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 99(15), 9846–9851.

    Article  PubMed  CAS  Google Scholar 

  • Frasco, M. F., & Chaniotakis, N. (2010). Bioconjugated quantum dots as fluorescent probes for bioanalytical applications. Analytical and Bioanalytical Chemistry, 396(1), 229–240.

    Article  PubMed  CAS  Google Scholar 

  • Klostranec, J. M., & Chan, W. C. W. (2006). Quantum dots in biological and biomedical research: Recent progress and present challenges. Advanced Materials, 18, 1953–1964.

    Article  CAS  Google Scholar 

  • Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. New York: Springer.

    Book  Google Scholar 

  • Li, J., Wu, D., et al. (2010). Preparation of quantum dot bioconjugates and their applications in bio-imaging. Current Pharmaceutical Biotechnology, 11(6), 662–671.

    Article  PubMed  CAS  Google Scholar 

  • Lidke, D. S., Nagy, P., et al. (2004). Quantum dot ligands provide new insights into erbB/HER receptor-mediated signal transduction. Nature Biotechnology, 22(2), 198–203.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., Clapp, A. R., et al. (2003). Self-assembled nanoscale biosensors based on quantum dot FRET donors. Nature Materials, 2(9), 630–638.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I., Uyeda, H., et al. (2005). Quantum dot bioconjugates for imaging, labeling and sensing. Nature Materials, 4, 435–446.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., Clapp, A. R., et al. (2006). Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates. Nature Materials, 5(7), 581–589.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., Pons, T., et al. (2008). Intracellular delivery of quantum dot-protein cargos mediated by cell penetrating peptides. Bioconjugate Chemistry, 19(9), 1785–1795.

    Article  PubMed  CAS  Google Scholar 

  • Medintz, I. L., Pons, T., et al. (2009). Resonance energy transfer between luminescent quantum dots and diverse fluorescent protein acceptors. Journal of Physical Chemistry C, 131, 18552–18561.

    Article  Google Scholar 

  • Michalet, X., Pinaud, F. F., et al. (2005). Quantum dots for live cells, in vivo imaging, and diagnostics. Science, 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Pons, T., Medintz, I. L., et al. (2006). Solution-phase single quantum dot fluorescence resonant energy transfer sensing. Journal of the American Chemical Society, 128, 15324–15331.

    Article  PubMed  CAS  Google Scholar 

  • Sapsford, K. E., Pons, T., et al. (2007). Kinetics of metal-affinity driven self-assembly between proteins or peptides and CdSe-ZnS quantum dots. Journal of Physical Chemistry C, 111, 11528–11538.

    Article  CAS  Google Scholar 

  • Shu, X., Shaner, N. C., et al. (2006). Novel chromophores and buried charges control color in mFruits. Biochemistry, 45(32), 9639–9647.

    Article  PubMed  CAS  Google Scholar 

  • Sperling, R. A., & Parak, W. J. (2010). “Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles”. Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, 368(1915), 1333–1383.

    Article  PubMed  CAS  Google Scholar 

  • Susumu, K., Uyeda, H. T., et al. (2007). Enhancing the stability and biological functionalities of quantum dots via compact multifunctional ligands. Journal of the American Chemical Society, 129, 13987–13996.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the NRL-NSI, ONR, and DTRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor L. Medintz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boeneman, K., Delehanty, J.B., Susumu, K., Stewart, M.H., Deschamps, J.R., Medintz, I.L. (2012). Quantum Dots and Fluorescent Protein FRET-Based Biosensors. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_7

Download citation

Publish with us

Policies and ethics