Skip to main content

Application of Nanoparticles for the Detection and Sorting of Pathogenic Bacteria by Flow-Cytometry

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 733))

Abstract

In this paper we will describe a new developed contribution of fluorescence nano-crystal (q-dots) as a fluorescence label for detecting pathogenic bacteria by flow cytometry (FCM) and the use of nano-magnetic particles to improve bacterial sorting by Flow cytometry cell sorting (FACS).

FCM or FACS systems are based upon single cell detection by light scatter and Immunofluorescence labeling signals. The common FACS systems are based upon single or dual excitation as excitation source both for light scatter parameters and for several fluorescence detectors. Hence, for multi-labeling detection, there is a need for fluorophores with broad excitation wave length and sharp emission bands. Moreover, such fluorophores should be with high fluorescence efficiency, stable, and available for bio-molecules conjugation. Q-dots benefit from practical features which meet those ­criteria. We will describe the use of q-dots as fluorescence labels for specific conjugates against Bacillus anthracis spores and Yersinia pestis bacteria, which enable the specific detection of the different species. A specific and sensitive multiplex analysis procedure for both pathogens was achieved, with high sensitivity down to 103 bacteria per ml in the sample.

Sorting bacteria by FACS has a tremendous advantage for sensitive and selective analysis and sorting of sub-populations. However it has always been a difficult task due to the fact that bacteria are small particles (usually 1–3 μm). For such small particles, light scatter signal is on the threshold level, and many positive events may be lost. Here we will present the development of a procedure for sorting of the gram negative bacteria Y. pestis from environment samples. We will show that the application of nano-magnetic particles, as a tool for the immunomagnetic labeling and separation of the bacteria, enables fast sorting in high and low bacterial concentration down to 10  5 cfu/ml. The nano-metric physical size of the immunospecific labeling particles disguises them from the FACS detectors; hence the bacterial population becomes the major population as opposed to being “rare events population” when using standard micro-magnetic beads for pre-enrichment.

The procedure of separation and collection of bacteria enables sensitive detection and characterization methods of bacteria from complex samples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bartek, R., Venkatapathi, M., Ragheb, K., Banada, P. P., Hirleman, E. D., Larry, T., & Robinson, J. P. (2008). Automated classification of bacterial particles in flow cytometry by multiangle scatter measurement and support vector machine classifier. Cytometry, 73A, 369–379.

    Article  Google Scholar 

  • Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  • Chattopadhyay, P. K., Price, D. A., Hatper, T. F., Betts, M. R., Yu, J., Gostick, E., Perfetto, S. P., Goepfert, P., Koup, R. A., de Rosa, S. C., Bruchez, M. P., & Roederer, M. (2006). Quantum dot semiconductor nanocrystals for immunophenotyping by polychromatic flow cytometry. Nature Medicine, 12, 972–977.

    Article  PubMed  CAS  Google Scholar 

  • Falcioni, T., Manti, A., Boi, P., Canonico, B., Balsamo, M., & Papa, S. (2006). Comparison of disruption procedures for enumeration of activated sludge FLoc bacteria by flow cytomery. Clinical Cytometry, 70B, 149–153.

    Article  Google Scholar 

  • Fisher, M., Atiya-Nasagi, Y., Simon, I., Gordin, M., Mechaly, A., & Yitzhaki, S. (2009). A combined immunomagnetic separation and lateral flow method for a sensitive on-site detection of bacillus anthracis spores - assesment on water and dairy products. Letters in Applied Microbiology, 48(4), 413–418.

    Article  PubMed  CAS  Google Scholar 

  • Fuchslin, H. P., Kotzsch, S., Keserue, H.-A., & Egli, T. (2010). Rapid and quantitative detection of legionella pneumophila applying immunomagnetic separation and flow-cytometry. Cytometry, 77A, 264–274.

    Google Scholar 

  • Geisler, D., Charbonniere, L. J., Ziessel, R. F., Butlin, N. G., Lohmannsroben, H.-G., & Hildebrandt, N. (2010). Quantum dot biosensors for ultrasensitive multiplexed diagnostics. Angewandte Chemie, International Edition, 49, 1396–1401.

    Google Scholar 

  • Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S., & Alivisatos, A. P. (2001). Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots. The Journal of Physical Chemistry B, 2001, 8861–8871.

    Article  Google Scholar 

  • Godfrey, W. L., Zhang, Y. Z., Jaron, S., & Buller, G. M. (2009). Qdot nanocrystal conjugates in multispectral cytometry. The Journal of Immunology, 182, 42.12.

    Google Scholar 

  • Goldman, E. R., Anderson, G. P., Tran, P. T., Mattoussi, H., Charles, P. T., & Mauro, J. M. (2002). Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays. Analytical Chemistry, 74, 841–847.

    Article  PubMed  CAS  Google Scholar 

  • Hahn, M., Gao, X., Su, J. S., & Nie, S. (2001). Quantum-dot-tagged microbead for multiplexed optical coding of biomolecules. Nature Biotechnology, 19, 631–635.

    Article  Google Scholar 

  • Hahn, M., Keng, P. C., & Krauss, T. D. (2008). Flow cytometric analysis to detect pathogens in bacterial cell mixtures using semiconductor quantum dots. Analytical Chemistry, 80, 854–872.

    Article  Google Scholar 

  • Hermanson, G. H. (1996). Bioconjugate techniques. San Diego: Academic.

    Google Scholar 

  • Jaron, S., & Godfrey, W. L. (2009). Multicolor flow cytometry using only Qdot conjugates primary antibodies. The Journal of Immunology, 182, 42.12.

    Google Scholar 

  • Jenikova, G., Pazlarova, J., & Demnerova, K. (2000). Detection of salmonella in food samples by the combination of immunomagnetic separation and PCR assay. International Microbiology, 3, 225–229.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Brandon, R., Cate, M., Peng, X., Stony, R., & Johnson, M. B. (2007). Detection of pathogen using luminescent CdSe/ZnS Dendron nanocrystals and porous membrane immunofilter. Analytical Chemistry, 79, 8796–8802.

    Article  PubMed  CAS  Google Scholar 

  • McHugh, I. O. L., & Tucker, A. L. (2007). Flow cytometry for the rapid detection of bacteria in cell culture production medium. Cytometry, 71A, 1019–1026.

    Article  Google Scholar 

  • Medintz, I., & Mattoussi, H. (2009). Quantum dot based resonance energy transfer ant its growing application in biology. Physical Chemistry Chemical Physics, 11, 17–45.

    Article  PubMed  CAS  Google Scholar 

  • Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., & Weiss, S. (2005). Quantum dots for live cells, in vivo imaging and diagnostics. Science, 307, 538–544.

    Article  PubMed  CAS  Google Scholar 

  • Nebe-Von-Caron, G., & Muller, S. (2010). Functional single cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiology Reviews, 34, 554–587.

    PubMed  Google Scholar 

  • Nebe-Von-Caron, G., Stephens, P. J., Hewitt, C. J., Powell, J. R., & Badley, R. A. (2000). Analysis of bacterial function by multi-colour fluorescence flow cytometry and single cell sorting. Journal of Microbiological Methods, 42, 97–114.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, H. M. (2000). Microbial analysis at the single-cell level: Tasks and techniques. Journal of Microbiological Methods, 42, 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Shapiro, H. M. (2003). Practical flow cytometry. Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  • Stevens, K. A., & Jaykus, L.-A. (2004). Bacterial separation and concentration from complex matrices: A review. Critical Reviews in Microbiology, 30, 7–24.

    Article  PubMed  Google Scholar 

  • Stopa, P. J. (2000). The flow cytometry of bacillus anthracis spores revisited. Cytometry, 41, 237–244.

    PubMed  CAS  Google Scholar 

  • Su, X.-L., & Li, Y. (2004). Quantum dot biolabeling coupled with immunomagnetic separation for detection of E. coli O157:H7. Analytical Chemistry, 76, 4806–4810.

    Article  PubMed  CAS  Google Scholar 

  • Summers, H. D., Holton, M. D., Rees, P., Williams, P. M., & Thornton, C. A. (2010). Analysis of quantum dot fluorescent stability in primary blood mononuclear cells. Cytometry, 77A, 933–939.

    Article  CAS  Google Scholar 

  • Tarnok, A. (2010). Quantum of dots. Cytometry, 77A, 905–906.

    Article  Google Scholar 

  • Venkatapathi, M., Barak, R., Ragheb, K., Banada, P. P., Lary, T., Robinson, J. P., & Hirleman, E. D. (2008). High speed classification of individual bacterial cells using a model-based light scatter system and multivariate statistics. Applied Optics, 47, 678–686.

    Article  PubMed  Google Scholar 

  • Yitzhaki, S., Barnea, A., Keysary, A., & Zahavy, E. (2004). New approach for serological testing for leptospirosis by using detection of leptospira agglutination by flow cytometry light scatter analysis. Journal of Clinical Microbiology, 42, 1680–1685.

    Article  PubMed  CAS  Google Scholar 

  • Yitzhaki, S., Freeman, E., Lustig, S., Keysary, A., & Zahavy, E. (2005). Double labeling and simultaneous detection of B and T cells using fluorescence nano crystal in paraffin embedded tissues. Journal of Fluorescence, 15, 661–665.

    Article  PubMed  Google Scholar 

  • Zahavy, E., Fisher, M., Bromberg, A., & Olshevsky, U. (2003). Detection of FRET pair on double labeled micro-sphere and B. anthracis spores, by flow-cytometry. Applied and Environmental Microbiology, 69, 2330–2339.

    Article  PubMed  CAS  Google Scholar 

  • Zahavy, E., Heleg-Shabtai, V., Zafrani, Y., Marciano, D., & Yitzhaki, S. (2010). Application of fluorescent nanocrystals (q-dots) as fluorescent labels for the detection of pathogenic bacteria by flow-cytometry. Journal of Fluorescence, 20(1), 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, Y., Ye, M., Chao, Q., Jia, N., Ge, Y., & Shen, H. (2009). Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots couples with immunomagnetic separation in food samples. Journal of Agricultural and Food Chemistry, 57, 517–524.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eran Zahavy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zahavy, E. et al. (2012). Application of Nanoparticles for the Detection and Sorting of Pathogenic Bacteria by Flow-Cytometry. In: Zahavy, E., Ordentlich, A., Yitzhaki, S., Shafferman, A. (eds) Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, vol 733. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2555-3_3

Download citation

Publish with us

Policies and ethics