Skip to main content

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 98))

  • 1726 Accesses

Abstract

When studying the asymptotic stability of the basic flow, it is possible to simplify the problem essentially by reducing the consideration of nonlinear equations of motion to the analysis of linearized equations for disturbances. In this chapter, various aspects of the corresponding theory for the so-called parallel shear flows are expounded beginning from formulation of linear hydrodynamic stability problems in time and space for wavy (modal) disturbances. The classical Gaster’s transformation between these two approaches is explained. The dual role of viscosity for flow instability is outlined. Then, relevance of oblique waves in instability is discussed. Finally, such special issues, important in the following chapters, as bi-orthogonality of modes and completeness of their set are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References

  • DiPrima RC, Habetler GJ (1969) A completeness theorem for nonself-adjoint eigenvalue problems in hydrodynamic stability. Arch Rat Mech Anal 34:218–227

    Article  MathSciNet  Google Scholar 

  • Fjørtoft R (1950) Amplification of integral theorems in deriving criteria for instability for laminar flows and the baroclinic circular vortex. Geofus Publ 17(6):1–52

    Google Scholar 

  • Gaster M (1962) A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J Fluid Mech 14:222–224

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Howard LN (1961) Note on a paper by John. W. Miles. J Fluid Mech 10:509–512

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Orr WM (1907a) The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part 1: A perfect liquid. Proc R Irish Acad A 27:9–68

    Google Scholar 

  • Orr WM (1907b) The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part 2: A viscous liquid. Proc R Irish Acad A 27:69–138

    Google Scholar 

  • Prandtl L (1921) Bemerkungen über die Entstehung der Turbulenz. Z Angew Math Mech 1:431–436

    Article  Google Scholar 

  • Prandtl L (1922) Bemerkungen über die Entstehung der Turbulenz. Phys Z 23:19–25

    Google Scholar 

  • Lord Rayleigh (1880) On the stability, or instability, of certain fluid motions. Proc Lond Math Soc 9:57–70

    Google Scholar 

  • Salwen H, Grosch CE (1981) The continuous spectrum of the Orr–Sommerfeld equation. Part 2. Eigenfunction expansion. J Fluid Mech 104:445–465

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Schensted IV (1960) Contributions to the theory of hydrodynamic stability. PhD thesis, University of Michigan

    Google Scholar 

  • Sommerfeld A (1908) Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegungen. In: Atti IV Congr. Internaz. Mat., Acad. dei Lincei, Rome, vol 3, pp 116–124

    Google Scholar 

  • Tollmien W (1935) Ein algemeines kriterium der instabilität laminarer geschwindigkeitsverteilungen. Nachr Ges Wiss Göttingen (Matematik) 1(5):79–114, translated as NACA TM 792, 1936

    Google Scholar 

  • Yudovich VV (1965) On stability of stationary flows of viscous incompressible fluid. Dokl Akad Nauk 161(5):1037–1040

    Google Scholar 

  • Zhigulev VN, Tumin AM (1987) Onset of turbulence. Dynamical theory of excitation and development of instabilities in boundary layers. Nauka. Sib. Otd., Novosibirsk, In Russian.

    Google Scholar 

Further Reading

  • Lin CC (1955) The theory of hydrodynamic stability. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Prandtl L (1935) The mechanics of viscous fluids. In: Durand WF (ed) Aerodynamic Theory, vol 3, Springer–Verlag, Berlin

    Google Scholar 

  • Saffman PG (1962) On the stability of a laminar flow to a dusty gas. J Fluid Mech 13:120–128

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Sattinger DH (1970) The mathematical problem of hydrodynamic stability. J Math Mech 20(9):797–817

    MathSciNet  Google Scholar 

  • Schlichting H, Gersten K (2000) Boundary layer theory, 8th edn. Springer–Verlag, Berlin

    MATH  Google Scholar 

  • Squire HB (1933) On the stability for three-dimensional disturbances of viscous fluid between parallel walls. Proc R Soc Lond A 142:621–628

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Boiko .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Boiko, A.V., Dovgal, A.V., Grek, G.R., Kozlov, V.V. (2012). Theoretical aspects. In: Physics of Transitional Shear Flows. Fluid Mechanics and Its Applications, vol 98. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2498-3_2

Download citation

Publish with us

Policies and ethics