Skip to main content

C60 Molecules on Surfaces: The Role of Jahn–Teller Effects and Surface Interactions

  • Chapter
  • First Online:
  • 1219 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 23))

Abstract

The molecular orbitals of fullerene molecules on surface substrates can be imaged experimentally using scanning tunnelling microscopy (STM). The observed images are influenced by interactions with the substrate. In addition, for fullerene ions, splitting of the orbitals by the Jahn–Teller (JT) effect also affects the observed images. In this work, we consider the effect of both static and dynamic JT interactions on the images that are expected to be obtained from the fullerene anion C60 , taking into account interactions with the substrate. Our method is to use Hückel molecular orbital (HMO) theory, which is very simple and quick to implement on a desktop computer. Although our approach is not as rigorous as using density functional theory (DFT), the predicted STM images are almost indistinguishable from published DFT images. Furthermore, it readily allows us to explore different situations, such as different adsorption geometries. Our results are also compared with experimental and simulated STM images in the literature.

Deceased

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lu X, Grobis M, Khoo KH, Louie SG, Crommie MF (2004) Phys Rev B 70:115418

    Article  Google Scholar 

  2. Altman EI, Colton RJ (1993) Phys Rev B 48:18244

    Article  CAS  Google Scholar 

  3. Hashizume T, Motai K, Wang XD, Shinohara H, Saito Y, Maruyama Y, Ohno K, Kawazoe Y, Nishina Y, Pickering HW, Kuk Y (1993) Sakurai T Phys Rev Lett 71:2959

    Article  CAS  Google Scholar 

  4. Pascual JI, Gómez-Herrero J, Rogero C, Baró AM, Sánchez-Portal D, Artacho E, Ordejón P, Soler JM (2000) Chem Phys Lett 321:78

    Article  CAS  Google Scholar 

  5. Grobis M, Lu X, Crommie MF (2002) Phys Rev B 66:161408(R)

    Google Scholar 

  6. Wachowiak A, Yamachika R, Khoo KH, Wang Y, Grobis M, Lee DH, Louie SG, Crommie MF (2005) Science 310:468

    Article  CAS  Google Scholar 

  7. Casarin M, Forrer D, Orzali T, Petukhov M, Sambi M, Tondello E, Vittadini A (2007) J Phys Chem C 111:9365

    Article  CAS  Google Scholar 

  8. Schull G, Berndt R (2007) Phys Rev Lett 99:226105

    Article  CAS  Google Scholar 

  9. Wang Y, Yamachika R, Wachowiak A, Grobis M, Khoo KH, Lee DH, Louie SG, Crommie MF (2007) Phys Rev Lett 99:086402

    Article  Google Scholar 

  10. Wang Y, Yamachika R, Wachowiak A, Grobis M, Crommie MF (2008) Nat Mater 7:194

    Article  CAS  Google Scholar 

  11. Li HI, Pussi K, Hanna KJ, Wang LL, Johnson DD, Cheng HP, Shin H, Curtarolo S, Moritz W, Smerdon JA, McGrath R, Diehl RD (2009) Phys Rev Lett 103:056101

    Article  CAS  Google Scholar 

  12. Frederiksen T, Franke KJ, Arnau A, Schulze G, Pascual JI, Lorente N (2008) Phys Rev B 78:233401

    Article  Google Scholar 

  13. Silien C, Pradhan NA, Ho W, Thiry PA (2004) Phys Rev B 69:115434

    Article  Google Scholar 

  14. Tersoff J, Hamann DR (1985) Phys Rev B 31:805

    Article  CAS  Google Scholar 

  15. Bersuker IB (1997) J Comput Chem 18:260

    Article  CAS  Google Scholar 

  16. Hands ID, Dunn JL, Bates CA (2010) Phys Rev B 81:205440

    Article  Google Scholar 

  17. Atkins P, Friedman R (2005) Molecular quantum mechanics. Oxford University Press, Oxford

    Google Scholar 

  18. Deng Y, Yang CN (1992) Phys Lett A 170:116

    Article  CAS  Google Scholar 

  19. O’Brien MCM (1983) J Phys C Solid State Phys 16:85

    Article  Google Scholar 

  20. Dunn JL, Eccles MR, Liu YM, Bates CA (2002) Phys Rev B 65:115107

    Article  Google Scholar 

  21. Dunn JL, Bates CA (1995) Phys Rev B 52:5996

    Article  CAS  Google Scholar 

  22. Hands ID, Dunn JL, Bates CA (2010) Phys Rev B 82:155425

    Article  Google Scholar 

  23. Hands ID, Dunn JL, Rawlinson CSA, Bates CA (2009) In: Köppel H, Yarkony DR, Barentzen H (eds) The Jahn–Teller effect. Springer series in chemical physics, vol 97. Springer, Heidelberg, pp 517–551

    Google Scholar 

  24. Hou JG, Yang JL, Wang HQ, Li QX, Zeng CG, Yuan LF, Wang B, Chen DM, Zhu QS (2001) Nature 409:304

    Article  CAS  Google Scholar 

  25. Yuan LF, Yang J, Wang H, Zeng C, Li Q, Wang B, Hou JG, Zhu Q, Chen DM (2003) J Am Chem Soc 125:169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank the UK Engineering and Physical Sciences Research Council for supporting this work (Grant EP/E030106/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janette L. Dunn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dunn, J.L., Hands, I.D., Bates, C.A. (2011). C60 Molecules on Surfaces: The Role of Jahn–Teller Effects and Surface Interactions. In: Atanasov, M., Daul, C., Tregenna-Piggott, P. (eds) Vibronic Interactions and the Jahn-Teller Effect. Progress in Theoretical Chemistry and Physics, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2384-9_11

Download citation

Publish with us

Policies and ethics