Skip to main content

Production of Industrial Proteins in Plants

  • Chapter
  • First Online:
Molecular Farming in Plants: Recent Advances and Future Prospects

Abstract

The plant production system is advantageous for industrial enzymes. Enzymes with large scale products that demand low cost manufacturing are the markets of choice for plants. The plant production system is also advantageous for products that are harmful to single cell systems, for example oxidation/reduction (redox) enzymes. Four classes of enzymes are discussed in this chapter—xylanases, redox enzymes, amylases and cellulases. Examples of each of these classes of enzyme have been produced in plants—some as demonstration projects, others with the intent to sell the product. The authors have chosen specific examples to describe the advantages of the plant system, issues that have arisen, and potential for addressing markets. These case studies illustrate the value of using plants for production with simple agricultural inputs of sunlight, nutrients and water. With the developing demand for biofuels and biobased products, large volume enzyme markets for processing agricultural materials are rapidly becoming a demand. The logical system for producing those enzymes is in co-products of the feedstock materials. Our examples below illustrate the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander RJ (1994) In: Watson SA, Ramstad PE (eds) Corn dry milling: Processes, products and applications. American Association of Cereal Chemists, Inc., St. Paul, pp 351–376

    Google Scholar 

  • Austin S, Bingham ET, Koegel RG, Mathews DE, Shahan MN, Straub RJ, Burgess RR (1994) An overview of a feasibility study for the production of industrial enzymes in transgenic alfalfa. Ann N Y Acad Sci 721:234–244

    Article  CAS  Google Scholar 

  • Austin S, Bingham ET, Mathews DE, Shahan MN, Will J, Burgess RR (1995) Production and field performance of transgenic alfalfa (Medicago sativa L.) expressing alpha-amylase and manganese-dependent lignin peroxidase. Euphytica 85:381–393. doi:10.1007/BF00023971

    Article  CAS  Google Scholar 

  • Bae H-J, Kim HJ, Kim YS (2008) Production of a recombinant xylanase in plants and its potential for pulp biobleaching applications. Bioresour Technol 99:3513–3519. doi:10.1016/j.biortech.2007.07.064

    Article  CAS  Google Scholar 

  • Bailey MR, Woodard SL, Callaway E, Beifuss K, Magallanes-Lundback M, Lane JR, Horn ME, Mallubhotla H, Delaney DD, Ward M, Van Gastel F, Howard JA, Hood EE (2004) Improved recovery of active recombinant laccase from maize seed. Appl Microbiol Biotechnol 63:390–397

    Article  CAS  Google Scholar 

  • Baker J, Ehrman C, Adney W, Thomas S, Himmel M (1998) Hydrolysis of cellulose using ternary mixtures of purified celluloses. Appl Biochem Biotechnol 70–72:395–403

    Article  Google Scholar 

  • Banci L, Bartalesi I, Ciofi-Baffoni S, Ming T (2003) Unfolding and pH studies on manganese peroxidase: role of heme and calcium on secondary structure stability. Biopolymers 72:38–47

    Article  CAS  Google Scholar 

  • Banerjee G, Scott-Craig JS, Walton JD (2010) Improving enzymes for biomass conversion: a basic research perspective. BioEnergy Res 3:82–92. doi:10.1007/s12155-009-9067-5

    Article  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338. doi:10.1007/s002530100704

    Article  CAS  Google Scholar 

  • Belanger FC, Kriz AL (1991) Molecular basis for allelic polymorphism of the maize Globulin-1 gene. Genetics 129:863–872

    CAS  Google Scholar 

  • Bergquist P, Te’o V, Gibbs M, Cziferszky A, de Faria F, Azevedo M, Nevalainen H (2002) Expression of xylanase enzymes from thermophilic microoroganisms in fungal hosts. Extremophiles 6:177–184

    Article  CAS  Google Scholar 

  • Bhat MK (2002) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  Google Scholar 

  • Bourbonnais R, Paice M (1990) Oxidation of non-phenolic substratesAn expanded role for laccase in lignin biodegradation. FEBS Lett 267:99–102. doi:10.1016/0014-5793(90)80298-W

    Article  CAS  Google Scholar 

  • Brock R (2011) USDA approves corn designed for ethanol production. Corn and soybean digest

    Google Scholar 

  • Camacho NA, Aguilar OG (2002) Production, purification, and characterization of a low-molecular-mass xylanase from Aspergillus sp. and its application in baking. Appl Biochem Biotechnol 104:159–171. doi:10.1385/ABAB:104:3:159

    Article  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Cardona CA, Sánchez OJ (2007) Fuel ethanol production: process design trends and integration opportunities. Bioresour Technol 98:2415–2457. doi:10.1016/j.biortech.2007.01.002

    Article  CAS  Google Scholar 

  • Carlson SR, Rudgers GW, Zieler H, Mach JM, Luo S, Grunden E, Krol C, Copenhaver GP, Preuss D (2007) Meiotic transmission of an in vitro-assembled autonomous maize minichromosome. PLoS Genet 3:1965–1974. doi:10.1371/journal.pgen.0030179

    Article  CAS  Google Scholar 

  • Clough R, Pappu K, Thompson K, Beifuss K, Lane J, Delaney D, Harkey R, Drees C, Howard J, Hood EE (2006) Manganese peroxidase from the white-rot fungus Phanerochaete chrysosporium is enzymatically active and accumulates to high levels in transgenic maize seed. Plant Biotechnol J 4:53–62

    Article  CAS  Google Scholar 

  • Crabb WD, Mitchinson C (1997) Enzymes involved in the processing of starch to sugars. Trends Biotechnol 15:349–352. doi:10.1016/S0167-7799(97)01082-2

    Article  CAS  Google Scholar 

  • Economist (2009) The parable of the sower. The Economist, pp 71–73

    Google Scholar 

  • Elegir G, Bussini D, Antonsson S, Lindstrom M, Zoia L (2007) Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor. Appl Microbiol Biotechnol 77:809–817

    Article  CAS  Google Scholar 

  • Fedoroff N (2010) The past, present and future of crop genetic modification. New Biotechnol 27:461–465

    Article  CAS  Google Scholar 

  • Gray BN, Ahner BA, Hanson MR (2009) High-level bacterial cellulase accumulation in chloroplast-transformed tobacco mediated by downstream box fusions. Biotechnol Bioeng 102:1045–1054

    Article  CAS  Google Scholar 

  • Gupta R, Beg Q, Lorenz P (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Biochem Biotechnol 59:15–32

    CAS  Google Scholar 

  • Harbak L, Thygesen HV (2002) Safety evaluation of a xylanase expressed in Bacillus subtilis. Food Chem Toxicol 40:1–8

    Article  CAS  Google Scholar 

  • Hayes TL, Zimmerman N, Hackle A (2007) World enzymes; Industry study 2229, Cleveland, OH

    Google Scholar 

  • Heinzelman P, Snow CD, Smith MA, Yu X, Kannan A, Boulware K, Villalobos A, Govindarajan S, Minshull J, Arnold FH (2009) SCHEMA recombination of a fungal cellulase uncovers a single mutation that contributes markedly to stability. J Biol Chem 284:26229–26233

    Article  CAS  Google Scholar 

  • Holladay JE, White JF, Bozell JJ, Johnson D (2007) Top value-added chemicals from biomass volume II — results of screening for potential candidates from biorefinery lignin. Pacific Northwest National Laboratory, Richland

    Book  Google Scholar 

  • Hood E, Howard J, Delaney D (2002) Method of Increasing Heterologous Protein Expression in Plants. US patent # 7, 541, 515

    Google Scholar 

  • Hood E, Howard J (2008) Over-expression of novel proteins in maize. In: Kriz A, Larkins B (eds) Molecular genetic approaches to maize improvement. Springer, Berlin/Heidelberg, pp 91–105

    Google Scholar 

  • Hood E, Vicuna Requesens D (2011) Recombinant protein production in plants: challenges and solutions. In: Lorence A (ed) Methods in molecular biology: recombinant gene expression. Humana Press, New York

    Google Scholar 

  • Hood E, Mr B, Beifuss K, Magallanes-Lundback M, Horn M, Callaway E, Drees C, Delaney D, Clough R, Howard J (2003) Criteria for high-level expression of a fungal laccase gene in transgenic maize. Plant Biotechnol J 1:129–140. doi:10.1046/j.1467-7652.2003.00014.x

    Article  CAS  Google Scholar 

  • Hood E, Love R, Lane J et al (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5:709–719

    Article  CAS  Google Scholar 

  • Howard JA, Hood E (2005) Bioindustrial and biopharmaceutical products produced in plants. Adv. Agron. 85:91–124

    Article  CAS  Google Scholar 

  • Howard J, Hood E (2007) Methods for growing nonfood products in transgenic plants. Crop Sci 47:1255. doi:10.2135/cropsci2006.09.0594

    Article  Google Scholar 

  • Howard J, Nikolov Z, Hood E (2011) Enzyme production systems for biomass conversion. In: Hood E, Nelson P, Powell R (eds) Plant biomass conversion. Wiley Press, Ames, pp 227–253

    Chapter  Google Scholar 

  • Hood EE, Devaiah SP, Fake G, Egelkrout E, Teoh K, Vicuna Requesens D, Hayden C, Hood KR, Pappu K, Carroll J and Howard JA (2011) Manipulating corn germplasm to increase recombinant protein accumulation. Plant Biotechnology Journal. Online DOI: 10.1111/j.1467-7652.2011.00627.x

    Google Scholar 

  • Hyunjong B, Lee D-S, Hwang I (2006) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169. doi:10.1093/jxb/erj019

    Article  CAS  Google Scholar 

  • Jamai L, Ettayebi K, El Yamani J, Ettayebi M (2007) Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of alpha-amylase. Bioresour Technol 98:2765–2770. doi:10.1016/j.biortech.2006.09.057

    Article  CAS  Google Scholar 

  • Jin R, Richter S, Zhong R, Lamppa GK (2003) Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol Biol 51:493–507

    Article  CAS  Google Scholar 

  • Jørgensen H, Kristensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofpr 1:119–134

    Google Scholar 

  • Kabir Kazi F, Fortman J, Anex R, Kothandaraman G, Hsu D, Aden A, Dutta A (2010) Techno-Economic Analysis of Biochemical Scenarios for Production of Cellulosic Ethanol. Technical Report. NREL/TP-6A2-46588

    Google Scholar 

  • Kim J, Kavas M, Fouad W, Nong G, Preston J, Altpeter F (2010) Production of heperthermostable GH10 xylanase Xyl10B from Thermotoga maritima in transplastomic plants enables complete hydrolysis of methylglucuronoxylan to fermentable sugars for biofuels production. Plant Mol Biol. doi:10.1007/s11103-010-9712-6

  • Koutinas AA, Wang R, Webb C (2004) Restructuring upstream bioprocessing: technological and economical aspects for production of a generic microbial feedstock from wheat. Biotechnol Bioeng 85:524–538

    Article  CAS  Google Scholar 

  • Krishnan M (2000) Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors. Bioresour Technol 75:99–105. doi:10.1016/S0960-8524(00)00047-X

    Article  CAS  Google Scholar 

  • Kuan IC, Tien M (1993) Stimulation of Mn peroxidase activity: a possible role for oxalate in lignin biodegradation. Proc Natl Acad Sci USA 90:1242–1246

    Article  CAS  Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  Google Scholar 

  • Kumagai M (2000) Rapid, high-level expression of glycosylated rice α-amylase in transfected plants by an RNA viral vector. Gene 245:169–174. doi:10.1016/S0378-1119(00)00015-9

    Article  CAS  Google Scholar 

  • Lagrimini LM, Bradford S, Rothstein S (1990) Peroxidase-induced wilting in transgenic tobacco plants. Plant Cell 2:7–18. doi:10.1105/tpc.2.1.7

    Article  CAS  Google Scholar 

  • Lau OS, Sun SSM (2009) Plant seeds as bioreactors for recombinant protein production. Biotechnol Adv 27:1015–1022. doi:10.1016/j.biotechadv.2009.05.005

    Article  CAS  Google Scholar 

  • Leelavathi S, Gupta N, Maiti S, Ghosh A, Reddy VS (2003) Overproduction of an alkali- and thermo-stable xylanase in tobacco chloroplasts and efficient recovery of the enzyme. Mol Breed 11:59–67

    Article  CAS  Google Scholar 

  • Lehninger AL, Nelson DL, Cox MM (2005) Lehninger principles of biochemistry, vol 1. W.H. Freeman, New York

    Google Scholar 

  • Leonowicz A, Cho N, Luterek J, Wilkolazka A, Wojtas-Wasilewska M, Matuszewska A, Hofrichter M, Wesenberg D, Rogalski J (2001) Fungal laccase: properties and activity on lignin. J Basic Microbiol 41:185–227. doi:10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T

    Article  CAS  Google Scholar 

  • Li X-L, Skory CD, Ximenes EA, Jordan DB, Dien BS, Hughes SR, Cotta MA (2007) Expression of an AT-rich xylanase gene from the anaerobic fungus Orpinomyces sp. strain PC-2 in and secretion of the heterologous enzyme by Hypocrea jecorina. Appl Microbiol Biotechnol 74:1264–1275. doi:10.1007/s00253-006-0787-6

    Article  CAS  Google Scholar 

  • Liu J-H, Selinger LB, Cheng K-J, Beauchemin KA, Moloney MM (1997) Plant seed oil-bodies as an immobilization matrix for a recombinant xylanase from the rumen fungus Neocallimastix patriciarum. Biochem J 3:463–470

    CAS  Google Scholar 

  • Loera Corral O, PĂ©rez PĂ©rez MCI, Barbosa RodrĂ­guez JR, Villaseñor Ortega F, Guevara-González RG, Torres-Pacheco I (2006) Laccases. In: RamĂłn Gerardo Guevara-González and Irineo Torres-Pacheco (eds) Advances in Agricultural and Food Biotechnology. Research Signpost, Kerala, India, pp 323–340

    Google Scholar 

  • Ma JK-C, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805. doi:10.1038/nrg1177

    Article  CAS  Google Scholar 

  • Mandavilli S (2000) Performance characteristics of an immobilized enzyme reactor producing ethanol from starch. J Chem Eng Japan 33:886–890

    Article  CAS  Google Scholar 

  • Mattinen M-L, Suortti T, Gosselink R, Argyropoulos DS, Evtuguin D, Suurnakki A, de Jong E, Tamminen T (2008) Polymerization of different lignins by laccase. BioResources 3:549–565

    Google Scholar 

  • McElroy D (2003) Sustaining agbiotechnology through lean times. Nat Biotechnol 21:996–1002

    Article  CAS  Google Scholar 

  • Mei C, Park S-H, Sabzikar R, Callista Ransom CQ, Mariam S (2009) Green tissue-specific production of a microbial endo-cellulase in maize ( Zea mays L.) endoplasmic-reticulum and mitochondria converts cellulose into fermentable sugars. J Chem Technol Biotechnol 84:689–695

    Article  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng Biotechnol 108:95–120

    CAS  Google Scholar 

  • Mitsui T, Itoh K (1997) The alpha-amylase multigene family. Trends Plant Sci 2:255–261

    Article  Google Scholar 

  • Moharrery A, Hvelplund T, Weisbjerg MR (2009) Effect of forage type, harvesting time and exogenous enzyme application on degradation characteristics measured using in vitro technique. Anim Feed Sci Technol 153:178–192. doi:10.1016/j.anifeedsci.2009.06.001

    Article  CAS  Google Scholar 

  • Mukherjee A, Borah M, Rai S (2009) To study the influence of different components of fermentable substrates on induction of extracellular α-amylase synthesis by Bacillus subtilis DM-03 in solid-state fermentation and exploration of feasibility for inclusion of α-amylase in laundry detergen. Biochem Eng J 43:149–156. doi:10.1016/j.bej.2008.09.011

    Article  CAS  Google Scholar 

  • Nieves RA, Ehrman CI, Adney WS, Elander RT, Himmel ME (1998) Technical communication: survey and analysis of commercial cellulase preparations suitable for biomass conversion to ethanol. World J Microb Biotechnol 14:301–304

    Article  CAS  Google Scholar 

  • Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Mariam S (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16:739–749

    Article  CAS  Google Scholar 

  • Pandey A, Nigam P, Soccol C, Soccol V, Singh D, Mohan R (2000) Advances in microbial amylases. Biotechnol Appl Biochem 31:135–152

    Article  CAS  Google Scholar 

  • Patel M, Johnson JS, Brettell RIS, Jacobsen J, G-ping X (2000) Transgenic barley expressing a fungal xylanase gene in the endosperm of the developing grains. Mol Breed 6:113–123

    Article  CAS  Google Scholar 

  • Pen J, van den Ooyen A, Elzen P, Rietveld K, Hoekema A (1992) Direct screening for high-level expression of an introduced alpha-amylase gene in plants. Plant Mol Biol 18:1133–1139

    Article  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591. doi:10.1007/s00253-005-1904-7

    Article  CAS  Google Scholar 

  • Raab RM (2010) Transgenic plants expressing CIVPS or intein modified proteins and related method. US Patent # 20110138502

    Google Scholar 

  • Rodrigues M, Pinto P, Bezerra R, Dias A, Guedes C, Cardoso V, Cone J, Ferreira L, Colaco J, Sequeira C (2008) Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw. Anim Feed Sci Technol 141:326–338. doi:10.1016/j.anifeedsci.2007.06.015

    Article  CAS  Google Scholar 

  • SchĂĽlein M (2000) Protein engineering of cellulases. Biochim Biophys Acta 1543:239–252

    Article  Google Scholar 

  • Senior D, Hamilton J, Taiplus P, Torvinin J (1999) Enzyme use can lower bleaching costs, aid ECF conversions. Pulp and Paper 73(7):59–65

    CAS  Google Scholar 

  • Silveira M, Jonas R (2002) The biotechnological production of sorbitol. Appl Microbiol Biotechnol 59:400–408

    Article  CAS  Google Scholar 

  • Smith AM (1999) Making starch. Curr Opin Plant Biol 2:223–229. doi:10.1016/S1369-5266(99)80039-9

    Article  CAS  Google Scholar 

  • Sticklen Mb (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9:433–443

    Article  CAS  Google Scholar 

  • Streatfield SJ (2007) Approaches to achieve high-level heterologous protein production in plants. Plant Biotechnol J 5:2–15. doi:10.1111/j.1467-7652.2006.00216.x

    Article  CAS  Google Scholar 

  • Taherzadeh MJ, Karimi K (2007) Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources 2:707–738

    CAS  Google Scholar 

  • Taylor LE II, Dai Z, Decker SR, Brunecky R, Adney William S, Ding S-Y, Himmel Michael E (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26:413–424

    Article  CAS  Google Scholar 

  • Urbanchuk JM, Kowalski DJ, Dale BE, Kim S (2009) Corn amylase: improving the efficiency and environmental footprint of corn to ethanol through plant biotechnology. AgBioforum 12:149–154

    Google Scholar 

  • Uthandi S, Saad B, Humbard MA, Maupin-Furlow JA (2010) LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii. Appl Environ Microbiol 76:733–743. doi:10.1128/AEM.01757-09

    Article  CAS  Google Scholar 

  • van der Maarel M (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J Biotechnol 94:137–155. doi:10.1016/S0168-1656(01)00407-2

    Article  Google Scholar 

  • Wolt J, Karaman S (2007) Estimated environmental loads of alpha-amylase from transgenic high-amylase maize. Biomass Bioenerg 31:831–835. doi:10.1016/j.biombioe.2007.04.003

    Article  CAS  Google Scholar 

  • Woodard SL, Mayor JM, Bailey MR, Barker DK, Love RT, Lane JR, Delaney DE, McComas-Wagner JM, Mallubhotla HD, Hood EE, Dangott LJ, Tichy SE, Howard JA (2003) Maize-derived bovine trypsin: characterization of the first large-scale, commercial protein product from transgenic plants. Biotechnol Appl Biochem 38:123–130

    Article  CAS  Google Scholar 

  • Yang P, Wang Y, Bai Y, Meng K, Luo H, Yuan T, Fan Y, Yao B (2007) Expression of xylanase with high specific activity from Streptomyces olivaceoviridis A1 in transgenic potato plants (Solanum tuberosum L.). Biotechnol Lett 29:659–667. doi:10.1007/s10529-006-9280-7

    Article  CAS  Google Scholar 

  • Yu W, Han F, Gao Z, Vega JM, Birchler JA (2007) Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci USA 104:8924–8929

    Article  CAS  Google Scholar 

  • Zhao J, Li X, Qu Y (2006) Application of enzymes in producing bleached pulp from wheat straw. Bioresour Technol 97:1470–1476. doi:10.1016/j.biortech.2005.07.012

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth E. Hood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hood, E.E., Requesens, D.V. (2012). Production of Industrial Proteins in Plants. In: Wang, A., Ma, S. (eds) Molecular Farming in Plants: Recent Advances and Future Prospects. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2217-0_8

Download citation

Publish with us

Policies and ethics