Skip to main content

Metal Ion-Promoted Conformational Changes of Oligonucleotides

  • Chapter
  • First Online:

Part of the book series: Metal Ions in Life Sciences ((MILS,volume 10))

Abstract

The review will discuss the influence of metal ions on conformational changes of oligonucleotides. First, a short definition of the torsion angles is given, followed by a concise yet critical overview of the commonly applied experimental techniques. Finally, the possible role of metals upon the following conformational changes of oligonucleotides is discussed: (i) the denaturation of double-strands, (ii) the transition from B- to A-DNA, (iii) the transition from right- to left-handed DNA and RNA, (iv) the condensation, (v) and other conformational changes. We conclude with a summary and outlook.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. In the course of this chapter, we will not differentiate between oligonucleotides and ­polynucleotides, unless this is necessary.

    Google Scholar 

  2. R. E. Franklin, R. G. Gosling, Acta Cryst. 1953, 6, 673–677.

    Article  CAS  Google Scholar 

  3. J. Pilet, J. Brahms, Nature New Biol. 1972, 236, 99–100.

    CAS  PubMed  Google Scholar 

  4. W. C. Johnson, in Circular Dichroism, 2nd edn., Eds N. Berova, K. Nakanishi, R. W. Woody, Wiley-VCH, New York, 2000, pp 703–718.

    Google Scholar 

  5. W. L. Peticolas, E. Evertsz, Method. Enzymol. 1992, 211, 335–352.

    Article  CAS  Google Scholar 

  6. W. L. Peticolas, Method. Enzymol. 1995, 246, 389–416.

    Article  CAS  Google Scholar 

  7. V. A. Bloomfield, D. M. Crothers, I. Tinoco, Jr., Nucleic Acids: Structures, Properties and Functions, 1st edn., University Science Books, Sausalito, 2000, p 800.

    Google Scholar 

  8. R. Lavery, K. Zakrzewska, in Oxford Handbook of Nucleic Acid Structure, Ed S. Neidle, Oxford University Press, Oxford, 1999, pp 39–76.

    Google Scholar 

  9. G. E. Sims, S. H. Kim, Nucleic Acids Res. 2003, 31, 5607–5616.

    Article  CAS  PubMed  Google Scholar 

  10. D. Svozil, J. Kalina, M. Omelka, B. Schneider, Nucleic Acids Res. 2008, 36, 3690–3706.

    Article  CAS  PubMed  Google Scholar 

  11. B. Schneider, Z. Moravek, H. M. Berman, Nucleic Acids Res. 2004, 32, 1666–1677.

    Article  CAS  PubMed  Google Scholar 

  12. S. Devarajan, R. H. Shafer, Nucleic Acids Res. 1986, 14, 5099–5109.

    Article  CAS  PubMed  Google Scholar 

  13. J. G. Duguid, V. A. Bloomfield, J. M. Benevides, G. J. Thomas, Biophys. J. 1995, 69, 2623–2641.

    Article  CAS  PubMed  Google Scholar 

  14. A. M. Polyanichko, V. V. Andrushchenko, E. V. Chikhirzhina, V. I. Vorob’ev, H. Wieser, Nucleic Acids Res. 2004, 32, 989–996.

    Article  CAS  PubMed  Google Scholar 

  15. U. McDonnell, M. R. Hicks, M. J. Hannon, A. Rodger, J. Inorg. Biochem. 2008, 102, 2052–2059.

    Article  CAS  PubMed  Google Scholar 

  16. E. M. Kenyon, M. F. Hughes, Toxicology 2001, 160, 227–236.

    Article  CAS  PubMed  Google Scholar 

  17. N. E. Grossoehme, A. M. Spuches, D. E. Wilcox, J. Biol. Inorg. Chem. 2010, 15, 1183–1191.

    Article  CAS  PubMed  Google Scholar 

  18. M. G. Santangelo, A. Medina-Molner, A. Schweiger, G. Mitrikas, B. Spingler, J. Biol. Inorg. Chem. 2007, 12, 767–775.

    Article  CAS  PubMed  Google Scholar 

  19. M. G. Santangelo, P. M. Antoni, B. Spingler, G. Jeschke, ChemPhysChem 2010, 11, 599–606.

    Article  CAS  PubMed  Google Scholar 

  20. J. Anastassopoulou, J. Mol. Struct. 2003, 651, 19–26.

    Article  CAS  Google Scholar 

  21. G. L. Eichhorn, Coord. Chem. Rev. 1993, 128, 167–173.

    Article  CAS  Google Scholar 

  22. J. Kypr, I. Kejnovska, D. Renciuk, M. Vorlickova, Nucleic Acids Res. 2009, 37, 1713–1725.

    Article  CAS  PubMed  Google Scholar 

  23. K. J. Jalkanen, V. W. Jurgensen, A. Claussen, A. Rahim, G. M. Jensen, R. C. Wade, F. Nardi, C. Jung, I. M. Degtyarenko, R. M. Nieminen, F. Herrmann, M. Knapp-Mohammady, T. A. Niehaus, K. Frimand, S. Suhai, Int. J. Quantum Chem. 2006, 106, 1160–1198.

    Article  CAS  Google Scholar 

  24. V. Andrushchenko, J. H. van de Sande, H. Wieser, Biopolymers 2003, 72, 374–390.

    Article  CAS  PubMed  Google Scholar 

  25. M. Egli, Chem. Biol. 2002, 9, 277–286.

    Article  CAS  PubMed  Google Scholar 

  26. (a) P. Auffinger, L. Bielecki, E. Westhof, Structure 2004, 12, 379–388. (b) L. D. Williams, in DNA Binders and Related Subjects, Springer, Dordrecht, Vol. 253, 2005, pp 77–88.

    Google Scholar 

  27. E. P. Geiduschek, A. Holtzer, in Advances in Biological and Medical Physics, Eds C. A. Tobias, J. H. Lawrence, Academic Press, New York, 1958, Vol. 6, pp 431–551.

    Google Scholar 

  28. R. H. Garrett, C. M. Grisham, Biochemistry, 4th edn., Brooks Cole, Boston, 2008, p 1184.

    Google Scholar 

  29. A. V. Tataurov, Y. You, R. Owczarzy, Biophys. Chem. 2008, 133, 66–70.

    Article  CAS  PubMed  Google Scholar 

  30. R. Owczarzy, Biophys. Chem. 2005, 117, 207–215.

    Article  CAS  PubMed  Google Scholar 

  31. S. A. Rice, P. Doty, J. Am. Chem. Soc. 1957, 79, 3937–3947.

    Article  CAS  Google Scholar 

  32. G. Bonner, A. M. Klibanov, Biotechnol. Bioeng. 2000, 68, 339–344.

    Article  CAS  PubMed  Google Scholar 

  33. J. M. Sturtevant, E. P. Geiduschek, J. Am. Chem. Soc. 1958, 80, 2911–2911.

    Article  CAS  Google Scholar 

  34. S. Lewin, D. S. Pepper, Arch. Biochem. Biophys. 1965, 109, 192–194.

    Article  CAS  PubMed  Google Scholar 

  35. M. Ageno, E. Dore, C. Frontali, Biophys. J. 1969, 9, 1281–1311.

    Article  CAS  PubMed  Google Scholar 

  36. R. Owczarzy, Y. You, B. G. Moreira, J. A. Manthey, L. Y. Huang, M. A. Behlke, J. A. Walder, Biochemistry 2004, 43, 3537–3554.

    Article  CAS  PubMed  Google Scholar 

  37. R. Owczarzy, B. G. Moreira, Y. You, M. A. Behlke, J. A. Walder, Biochemistry 2008, 47, 5336–5353.

    Article  CAS  PubMed  Google Scholar 

  38. R. Owczarzy, A. V. Tataurov, Y. Wu, J. A. Manthey, K. A. McQuisten, H. G. Almabrazi, K. F. Pedersen, Y. Lin, J. Garretson, N. O. McEntaggart, C. A. Sailor, R. B. Dawson, A. S. Peek, Nucleic Acids Res. 2008, 36, W163–W169.

    Article  CAS  PubMed  Google Scholar 

  39. G. L. Eichhorn, Nature 1962, 194, 474–475.

    Article  CAS  PubMed  Google Scholar 

  40. J. Duguid, V. A. Bloomfield, J. Benevides, G. J. Thomas, Biophys. J. 1993, 65, 1916–1928.

    Article  CAS  PubMed  Google Scholar 

  41. V. Andrushchenko, D. Tsankov, H. Wieser, J. Mol. Struct. 2003, 661, 541–560.

    Article  CAS  Google Scholar 

  42. J. H. Lee, Bull. Korean Chem. Soc. 2008, 29, 1937–1940.

    Article  CAS  Google Scholar 

  43. V. I. Ivanov, D. Y. Krylov, Methods Enzymol. 1992, 211, 111–127.

    Article  CAS  PubMed  Google Scholar 

  44. F. M. Pohl, T. M. Jovin, J. Mol. Biol. 1972, 67, 375–396.

    Article  CAS  PubMed  Google Scholar 

  45. T. Brown, W. N. Hunter, Biopolymers 1997, 44, 91–103.

    Article  CAS  Google Scholar 

  46. N. W. Luedtke, Chimia 2009, 63, 134–139.

    Article  CAS  Google Scholar 

  47. A. H. J. Wang, G. J. Quigley, F. J. Kolpak, J. L. Crawford, J. H. van Boom, G. van der Marel, A. Rich, Nature 1979, 282, 680–686.

    Article  CAS  PubMed  Google Scholar 

  48. H. Drew, T. Takano, S. Tanaka, K. Itakura, R. E. Dickerson, Nature 1980, 286, 567–573.

    Article  CAS  PubMed  Google Scholar 

  49. B. A. Brown II, A. Rich, Acta Biochim. Pol. 2001, 48, 295–312.

    CAS  PubMed  Google Scholar 

  50. H. Sugiyama, K. Kawai, A. Matsunaga, K. Fujimoto, I. Saito, H. Robinson, A. H.-J. Wang, Nucleic Acids Res. 1996, 24, 1272–1278.

    Article  CAS  PubMed  Google Scholar 

  51. T. M. Jovin, L. P. Mcintosh, D. J. Arndt-Jovin, D. A. Zarling, M. Robert-Nicoud, J. H. van de Sande, K. F. Jorgenson, F. Eckstein, J. Biomol. Struct. Dyn. 1983, 1, 21–57.

    Article  CAS  PubMed  Google Scholar 

  52. S. M. Singh, B. Murphy, R. O’Reilly, Clin. Genet. 2003, 64, 451–460.

    Article  CAS  PubMed  Google Scholar 

  53. A. Herbert, K. Lowenhaupt, J. Spitzner, A. Rich, Proc. Natl. Acad. Sci. USA 1995, 92, 7550–7554.

    Article  CAS  PubMed  Google Scholar 

  54. A. Herbert, A. Rich, J. Biol. Chem. 1996, 271, 11595–11598.

    Article  CAS  PubMed  Google Scholar 

  55. A. Rich, S. Zhang, Nat. Rev. Genet. 2003, 4, 566–572.

    Article  CAS  PubMed  Google Scholar 

  56. G. Wang, L. A. Christensen, K. M. Vasquez, Proc. Natl. Acad. Sci. USA 2006, 103, 2677–2682.

    Article  CAS  PubMed  Google Scholar 

  57. H. Li, J. Xiao, J. M. Li, L. Lu, S. Feng, P. Dröge, Nucleic Acids Res. 2009, 37, 2737–2746.

    Article  CAS  PubMed  Google Scholar 

  58. P. Khuu, M. Sandor, J. DeYoung, P. S. Ho, Proc. Natl. Acad. Sci. USA 2007, 104, 16528–16533.

    Article  CAS  PubMed  Google Scholar 

  59. K. Hall, P. Cruz, I. Tinoco Jr., T. M. Jovin, J. H. van de Sande, Nature 1984, 311, 584–586.

    Article  CAS  PubMed  Google Scholar 

  60. J. H. Riazance, W. A. Baase, W. C. Johnson, K. Hall, P. Cruz, I. Tinoco, Nucleic Acids Res. 1985, 13, 4983–4989.

    Article  CAS  PubMed  Google Scholar 

  61. M. O. Trulson, P. Cruz, J. D. Puglisi, I. Tinoco, R. A. Mathies, Biochemistry 1987, 26, 8624–8630.

    Article  CAS  PubMed  Google Scholar 

  62. M. K. Teng, Y. C. Liaw, G. A. van der Marel, J. H. van Boom, A. H. J. Wang, Biochemistry 1989, 28, 4923–4928.

    Article  CAS  PubMed  Google Scholar 

  63. D. Placido, B. A. Brown II, K. Lowenhaupt, A. Rich, A. Athanasiadis, Structure 2007, 15, 395–404.

    Article  CAS  PubMed  Google Scholar 

  64. P. W. Davis, R. W. Adamiak, I. Tinoco Jr., Biopolymers 1990, 29, 109–122.

    Article  CAS  PubMed  Google Scholar 

  65. M. Popenda, J. Milecki, R. W. Adamiak, Nucleic Acids Res. 2004, 32, 4044–4054.

    Article  CAS  PubMed  Google Scholar 

  66. M. Behe, G. Felsenfeld, Proc. Natl. Acad. Sci. USA 1981, 78, 1619–1623.

    Article  CAS  PubMed  Google Scholar 

  67. S. Sarhan, N. Seiler, Biol. Chem. Hoppe-Seyler 1989, 370, 1279–1284.

    Article  CAS  PubMed  Google Scholar 

  68. A. Woisard, G. V. Fazakerley, W. Guschlbauer, J. Biomol. Struct. Dyn. 1985, 2, 1205–1220.

    Article  CAS  PubMed  Google Scholar 

  69. J. H. van de Sande, L. P. McIntosh, T. M. Jovin, EMBO J. 1982, 1, 777–782.

    CAS  PubMed  Google Scholar 

  70. T. Schoenknecht, H. Diebler, J. Inorg. Biochem. 1993, 50, 283–298.

    Article  CAS  PubMed  Google Scholar 

  71. B. Spingler, Inorg. Chem. 2005, 44, 831–833.

    Article  CAS  PubMed  Google Scholar 

  72. G. V. Fazakerley, Nucleic Acids Res. 1984, 12, 3643–3648.

    Article  CAS  PubMed  Google Scholar 

  73. A. Medina-Molner, C. Da Pieve, B. Spingler, unpublished.

    Google Scholar 

  74. C. Bauer, A. H.-J. Wang, J. Inorg. Biochem. 1997, 68, 129–135.

    Article  CAS  PubMed  Google Scholar 

  75. B. Malfoy, B. Hartmann, M. Leng, Nucleic Acids Res. 1981, 9, 5659–5669.

    Article  CAS  PubMed  Google Scholar 

  76. A. Johnson, Y. Qu, B. Van Houten, N. Farrell, Nucleic Acids Res. 1992, 20, 1697–1703.

    Article  CAS  PubMed  Google Scholar 

  77. P. K. Wu, M. Kharatishvili, Y. Qu, N. Farrell, J. Inorg. Biochem. 1996, 63, 9–18.

    Article  CAS  PubMed  Google Scholar 

  78. T. D. McGregor, W. Bousfield, Y. Qu, N. Farrell, J. Inorg. Biochem. 2002, 91, 212–219.

    Article  CAS  PubMed  Google Scholar 

  79. Y. Qu, A. Harris, A. Hegmans, A. Petz, P. Kabolizadeh, H. Penazova, N. Farrell, J. Inorg. Biochem. 2004, 98, 1591–1598.

    Article  CAS  PubMed  Google Scholar 

  80. E. Kimura, A. Sakonaka, M. Nakamoto, Biochim. Biophys. Acta 1981, 678, 172–179.

    Article  CAS  PubMed  Google Scholar 

  81. E. Kimura, A. Yatsunami, A. Watanabe, R. Machida, T. Koike, H. Fujioka, Y. Kuramoto, M. Sumomogi, K. Kunimitsu, A. Yamashita, Biochim. Biophys. Acta 1983, 745, 37–43.

    Article  CAS  PubMed  Google Scholar 

  82. H.-C. Shih, N. Tang, C. J. Burrows, S. E. Rokita, J. Am. Chem. Soc. 1998, 120, 3284–3288.

    Article  CAS  Google Scholar 

  83. B. Spingler, C. Da Pieve, Dalton Trans. 2005, 1637–1643.

    Google Scholar 

  84. B. Spingler, F. Zobi, P. M. Antoni, A. Medina-Molner, R. Alberto, Chimia 2005, 59, 826–831.

    Article  CAS  Google Scholar 

  85. T. F. Kagawa, B. H. Geierstanger, A. H.-J. Wang, P. S. Ho, J. Biol. Chem. 1991, 266, 20175–20184.

    CAS  PubMed  Google Scholar 

  86. P. S. Ho, C. A. Frederick, G. J. Quigley, G. A. van der Marel, J. H. van Boom, A. H. J. Wang, A. Rich, EMBO J. 1985, 4, 3617–3623.

    CAS  PubMed  Google Scholar 

  87. Y.-G. Gao, M. Sriram, A. H.-J. Wang, Nucleic Acids Res. 1993, 21, 4093–4101.

    Article  CAS  PubMed  Google Scholar 

  88. V. A. Bloomfield, Biopolymers 1998, 44, 269–282.

    Article  Google Scholar 

  89. P. Saccardo, A. Villaverde, N. Gonzalez-Montalban, Biotechnol. Adv. 2009, 27, 432–438.

    Article  CAS  PubMed  Google Scholar 

  90. A. Gelasco, S. J. Lippard, in Metallopharmaceuticals I, DNA Interactions, Eds M. J. Clarke, P. J. Sadler, Springer, Berlin, 1999, Vol. 1, pp 1–43.

    Chapter  Google Scholar 

  91. E. R. Jamieson, S. J. Lippard, Chem. Rev. 1999, 99, 2467–2498.

    Article  CAS  PubMed  Google Scholar 

  92. B. Spingler, D. A. Whittington, S. J. Lippard, Inorg. Chem. 2001, 40, 5596–5602.

    Article  CAS  PubMed  Google Scholar 

  93. V. Brabec, J. Kasparkova, Drug Resist. Update 2005, 8, 131–146.

    Article  CAS  Google Scholar 

  94. D. MacDonald, P. Lu, Curr. Opin. Struc. Biol. 2002, 12, 337–343.

    Article  CAS  Google Scholar 

  95. J. A. Parkinson, Y. Chen, P. D. S. Murdoch, Z. Guo, S. J. Berners-Price, T. Brown, P. J. Sadler, Chem. Eur. J. 2000, 6, 3636–3644.

    Article  CAS  PubMed  Google Scholar 

  96. L. G. Marzilli, J. S. Saad, Z. Kuklenyik, K. A. Keating, Y. Xu, J. Am. Chem. Soc. 2001, 123, 2764–2770.

    Article  CAS  PubMed  Google Scholar 

  97. M.-A. Elizondo-Riojas, J. Kozelka, J. Mol. Biol. 2001, 314, 1227–1243.

    Article  CAS  PubMed  Google Scholar 

  98. N. Farrell, in Metal Complexes in Tumor Diagnosis and as Anticancer Agents, Eds A. Sigel, H. Sigel, Marcel Dekker Inc, 2004, Vol. 42, pp 251–296.

    Google Scholar 

  99. V. Brabec, O. Novakova, Drug Resist. Updates 2006, 9, 111–122.

    Article  CAS  Google Scholar 

  100. D. P. Buck, J. A. Paul, M. J. Pisani, J. G. Collins, F. R. Keene, Aust. J. Chem. 2010, 63, 1365–1375.

    Article  CAS  Google Scholar 

  101. M. Ando, K. Ueda, R. Makino, Y. Nishino, H. Nishida, C. Toda, Y. Okamoto, N. Kojima, J. Health Sci. 2009, 55, 319–323.

    Article  CAS  Google Scholar 

  102. K. K. Mukherjea, G. Panda, M. Selim, Trans. Metal Chem. 2008, 33, 203–210.

    Article  CAS  Google Scholar 

  103. S. Roy, P. U. Maheswari, M. Lutz, A. L. Spek, H. den Dulk, S. Barends, G. P. van Wezel, F. Hartl, J. Reedijk, Dalton Trans. 2009, 10846–10860.

    Google Scholar 

  104. D. E. Draper, RNA 2004, 10, 335–343.

    Article  CAS  PubMed  Google Scholar 

  105. A. R. Ferré-D’Amaré, W. C. Winkler, in Structural and Catalytic Roles of Metal Ions in RNA, Eds A. Sigel, H. Sigel, R. K. O. Sigel, Royal Society of Chemistry, Cambridge, 2011, Vol. 9, pp 141–173.

    Chapter  Google Scholar 

  106. D. W. Gruenwedel, Eur. J. Biochem. 1994, 219, 491–496.

    Article  CAS  PubMed  Google Scholar 

  107. B. Spingler, P. M. Antoni, Chem. Eur. J. 2007, 13, 6617–6622.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author thanks the University of Zürich for continuous support, all coworkers, past and present, for their input, and Dr. Susmita Gupta for a careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Spingler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Spingler, B. (2012). Metal Ion-Promoted Conformational Changes of Oligonucleotides. In: Sigel, A., Sigel, H., Sigel, R. (eds) Interplay between Metal Ions and Nucleic Acids. Metal Ions in Life Sciences, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2172-2_3

Download citation

Publish with us

Policies and ethics