Skip to main content

Heavy Metals: Defense and Ecological Utilization

  • Chapter
  • First Online:
  • 1915 Accesses

Abstract

In its present form with its high diversity of aerobic pro- and eukaryotic organisms, life on earth only developed after the majority of heavy metals had been buried below the surface and after the majority of reduced iron had been oxidized to banded iron formations and, in turn, molecular oxygen could escape into the atmosphere (Schlesinger 1997; Krämer 2010). This separation of organisms from heavy metal deposits implies that the concurrence of both organisms and metals bears potential conflicts, forces organisms to handle such chemically stressful situations, and requires organisms to develop strategies to survive and evolve further and eventually to pass on the adverse challenge to competitors or predators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    To date, only for a very few plants, for instance the marine diatom Thalassiosira weissflogii, Cd has been identified as an essential nutrient (Lee et al. 1995).

References

  • Audet P, Charest C (2006) Effects of AM colonization on ‘wild tobacco’ grown in zinc-contaminated soil. Mycorrhiza 16:277–283

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2007) Heavy metal phytoremediation from a meta-analytical perspective. Environ Pollut 147:231–237

    Article  PubMed  CAS  Google Scholar 

  • Audet P, Charest C (2008) Allocation plasticity and plant-metal partitioning: meta-analytical perspectives in phytoremediation. Environ Pollut 156:290–296

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants, heavy metal tolerance in plants. In: Shaw AJ (ed) Evolutionary aspects. CRC, Boca Raton, pp 155–177

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves DR, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soils and water. CRC Press LLC, Boca Raton, pp 171–188

    Google Scholar 

  • Bernard F, Brulle F, Douay F, Lemière S, Demuynck S, Vandenbulcke F (2010) Metallic trace element body burdens and gene expression analysis of biomarker candidates in Eisenia fetida, using an “exposure/depuration” experimental scheme with field soils. Ecotoxicol Environ Saf 73:1034–1045

    Article  PubMed  CAS  Google Scholar 

  • Boyd RS (2007) The defense hypothesis of elemental hyperaccumulation: status, challenges and new directions. Plant Soil 293:153–176

    Article  CAS  Google Scholar 

  • Boyd RS (2009) High-nickel insects and nickel hyperaccumulator plants: a review. Insect Sci 16:19–31

    Article  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    Article  CAS  Google Scholar 

  • Brulle F, Mitta G, Leroux R, Lemière S, Leprêtre A, Vandenbulcke F (2007) The strong induction of metallothionein gene following cadmium exposure transiently affects the expression of many genes in Eisenia fetida: a trade-off mechanism? Comp Biochem Physiol C Toxicol Pharmacol 144:334–341

    Article  PubMed  CAS  Google Scholar 

  • Brulle F, Cocquerelle C, Mitta G, Castric V, Douay F, Leprêtre A, Vandenbulcke F (2008) Identification and expression profile of gene transcripts differentially expressed during metallic exposure in Eisenia fetida coelomocytes. Dev Comp Immunol 32:1441–1453

    Article  PubMed  CAS  Google Scholar 

  • Brulle F, Morgan AJ, Cocquerelle C, Vandenbulcke F (2010) Transcriptomic underpinning of toxicant-mediated physiological function alterations in three trerrestrial invertebrate taxa: a review. Environ Pollut 158:2793–2808

    Article  PubMed  CAS  Google Scholar 

  • Callaghan A, Denny N (2002) Evidence for an interaction between p-glycoprotein and cadmium toxicity in cadmium-resistant and -susceptible strains of Drosophila melanogaster. Ecotoxicol Environ Saf 52:211–213

    Article  PubMed  CAS  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40:6792–6798

    Article  PubMed  CAS  Google Scholar 

  • Ciocan CM, Rotchell JM (2004) Cadmium induction of metallothionein isoforms in juvenile and adult mussel (Mytilus edulis). Environ Sci Technol 38:1073–1078

    Article  PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsbrough P (2002) Phytochelatins and metallothioneins: role in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  PubMed  CAS  Google Scholar 

  • Dehal P, Satou Y, Campbell RK et al (2002) The draft genome of Ciona intestinalis: insights into the chordate and vertebrate origins. Science 298:2157–2167

    Article  PubMed  CAS  Google Scholar 

  • Foster PL (2005) Stress responses and genetic variation in bacteria. Mutat Res Fundam Mol Mech Mutagen 569:3–11

    Article  CAS  Google Scholar 

  • Freeman JL, Quinn CF, Marcus MA, Fakra S, Pilon-Smits EAH (2006) Selenium-tolerant diamondback moth disarms hyperaccumulator plant defense. Curr Biol 16:2181–2192

    Article  PubMed  CAS  Google Scholar 

  • Grime JP (1979) Plant strategies and vegetation processes. Wiley, Chichester

    Google Scholar 

  • Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half-size BC transporter is involved in cadmium tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28:863–873

    Article  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–396

    Article  PubMed  CAS  Google Scholar 

  • Hendrickx F, Maelfait JP, Speelmans M, Van Straalen NM (2003) Adaptive reproductive variation along a pollution gradient in a wolf spider. Oecologia 134:189–194

    PubMed  Google Scholar 

  • Hensbergen PJ, Van Velzen MJM, Nugroho RA, Donker MH, Van Straalen NM (2000) Metallothionein-bound cadmium in the gut of the insect Orchesella cincta (Collembola) in relation to dietary cadmium exposure. Comp Biochem Physiol C Toxicol Pharmacol 125:17–24

    PubMed  CAS  Google Scholar 

  • Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006) Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88:1751–1765

    Article  PubMed  CAS  Google Scholar 

  • Hughes SL, Bundy JG, Want EJ, Kille P, Stürzenbaum SR (2009) The metabolomic responses of Caenorhabditis elegans to cadmium are largely independent of metallothionein status, but dominated by changes in cystathionine and phytochelatins. J Proteom Res 8:3512–3519

    Article  CAS  Google Scholar 

  • Janssens TKS, Mariën J, Cenijn P, Legler J, Van Straalen NM, Roelofs D (2007) Recombinational micro-evolution of functionally different metallothionein promoter alleles from Orchesella cincta. BMC Evol Biol 7:88

    Article  PubMed  Google Scholar 

  • Janssens TKS, Del Rio LR, Mariën J, Timmermans MJTN, Montagne-Wagner K, Van Straalen NM, Roelofs D (2008) Comparative population analysis of metallothionein promoter alleles suggests stress-induced micro-evolution in the field. Environ Sci Technol 42:3873–3878

    Article  PubMed  CAS  Google Scholar 

  • Janssens TKS, Roelofs D, van Straalen NM (2009) Molecular mechanisms of heavy metal tolerance and evolution in invertebrates. Insect Sci 16:3–18

    Article  CAS  Google Scholar 

  • Jiang RF, Ma DY, Zhao FJ, McGrath SP (2005) Cadmium hyperaccumulation protects Thlaspi caerulescens from leaf feeding damage by thrips (Frankliniella occidentalis). New Phytol 167:805–814

    Article  PubMed  CAS  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM, Reeves RD, Troumbis AY (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    PubMed  CAS  Google Scholar 

  • Klerks PL, Bartholomew PR (1991) Cadmium accumulation and detoxification in a Cd-resistant population of the oligochaete Limnodrilus hoffmeisteri. Aquat Toxicol 19:97–112

    Article  CAS  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Krämer U, Talke IN, Hanikenne (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    Article  PubMed  Google Scholar 

  • Lee JG, Roberts SB, Morel FMM (1995) Cadmium: a nutrient for the marine diatom Thalassiosira weissflogii. Limnol Oceanogr 40:1056–1063

    Article  CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–105

    Article  CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2002) Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment. Environ Exp Bot 68:1–13

    Article  Google Scholar 

  • Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43

    Article  CAS  Google Scholar 

  • Memon AR, Schröder P (2009) Implications of metal accumulation mechanisms to phytoremidiation. Environ Sci Pollut Res 16:162–175

    Article  CAS  Google Scholar 

  • Morgan AJ, Kille P, Stürzenbaum SR (2007) Microevolution and ecotoxicology of metals in invertebrates. Environ Sci Technol 41:1085–1096

    Article  PubMed  CAS  Google Scholar 

  • Morris C, Grossl PR, Call CA (2009) Elemental allelopathy: processes, progress, and pitfalls. Plant Ecol 202:1–11

    Article  Google Scholar 

  • Palmiter RD (1998) The elusive function of metallothioneins. Proc Natl Acad Sci USA 95:8428–8430

    Article  PubMed  CAS  Google Scholar 

  • Pierce S, Vianelli A, Cerabolini B (2005) From ancient genes to modern communities: the cellular stress response and the evolution of plant strategies. Funct Ecol 19:763–776

    Article  Google Scholar 

  • Pollard AJ, Baker AJM (1997) Deterrence of herbivory by zinc hyperaccumulation in Thlaspi caerulescens (Brassicaceae). New Phytol 135:655–658

    Article  CAS  Google Scholar 

  • Poschenrieder C, Tolrà R, Barceló J (2006) Can metal defend plants against biotic stress? Trends Plant Sci 11:288–295

    Article  PubMed  CAS  Google Scholar 

  • Posthuma L, van Straalen NM (1993) Heavy metal adaptation in terrestrial invertebrates: a review of occurrence, genetics, physiology and ecological consequences. Comp Biochem Phys C 106:11–38

    Google Scholar 

  • Posthuma L, Hogervorst RF, van Straalen NM (1992) Adaptation to soil pollution by cadmium excretion in natural populations of Orchesella cincta (L) (Collembola). Arch Environ Contam Toxicol 22:146–156

    Article  PubMed  CAS  Google Scholar 

  • Postma JF, van Nugteren P, Buckert de Jong MB (1996) Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (Diptera). Environ Toxicol Chem 15:332–339

    CAS  Google Scholar 

  • Poynton HC, Varshavsky JR, Chang B, Holman PS, Loguinov AV, Bauer DJ, Komachi K, Theil E, Perkins EJ, Hughes O, Vulpe CD (2007) Daphnia magna ecotoxicogenomics provides mechanistic insights into metal toxicity. Environ Sci Technol 41:1044–1050

    Article  PubMed  CAS  Google Scholar 

  • Roelofs D, Mariën J, van Straalen NM (2007) Differential gene expression profiles associated with heavy metal tolerance in the soil insect Orchesella cincta. Insect Biochem Mol Biol 37:287–295

    Article  PubMed  CAS  Google Scholar 

  • Roelofs D, Morgan J, Stürzenbaum S (2010) The significance of genome-wide transcriptional regulation in the evolution of stress tolerance. Evol Ecol 24:527–539

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry. An analysis of global change. Academic, San Diego

    Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 372:1351–1365

    Article  Google Scholar 

  • Semane B, Cuypers A, Smeets K, Van Belleghem F, Horemans N, Schat H, Vangronsveld J (2007) Cadmium responses in Arabidopsis thaliana: glutathione metabolism and antioxidative defence system. Physiol Plant 129:519–528

    Article  CAS  Google Scholar 

  • Shaw JR, Colbourne JK, Davey JC, Glaholt SP, Hampton TH, Chen CY, Folt CL, Hamilton JW (2007) Gene response profiles for Daphnia pulex exposed to the environmental stressor cadmium reveals novel crustacean metallothioneins. BMC Genomics 8:477

    Article  PubMed  Google Scholar 

  • Sterenborg I, Roelofs D (2003) Field-selected cadmium tolerance in the springtail Orchesella cincta is correlated with increased metallothionein mRNA expression. Insect Biochem Mol Biol 33:741–747

    Article  PubMed  CAS  Google Scholar 

  • Stürzenbaum SR, Winters C, Galay M, Morgan AJ, Kille P (2001) Metal ion trafficking in earthworms. J Biol Chem 276:34013–34018

    Article  PubMed  Google Scholar 

  • Stürzenbaum SR, Georgiev O, Morgan AJ, Kille P (2004) Cadmium detoxification in earthworms: from genes to cells. Environ Sci Technol 38:6283–6289

    Article  PubMed  Google Scholar 

  • Swain SC, Keusekotten K, Baumeister R, Stürzenbaum SR (2004) C. elegans metallothioneins: new insights into the phenotypic effects of cadmium toxicosis. J Mol Biol 341:951–959

    Article  PubMed  CAS  Google Scholar 

  • Timmermans MJTN, Roelofs D, Nota B, Ylstra B, Holmstrup M (2009) Sugar sweet springtails: on the transcriptional response of Folsomia candida (Collembola) to desiccation stress. Insect Mol Biol 18:737–746

    Article  PubMed  CAS  Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Van Themaat EVL, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    Article  PubMed  Google Scholar 

  • van de Mortel JE, Schat H, Moerland PD, Van Themaat EVL, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MGM (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324

    Article  PubMed  Google Scholar 

  • van Straalen NM, Roelofs D (2006) An introduction to ecological genomics. Oxford University Press, Oxford

    Google Scholar 

  • Vandegehuchte MB, Vandenbrouck T, de Coninck D, de Coen WM, Janssen CR (2010) Can metal stress induce transferable changes in gene transcription in Daphnia magna? Aquat Toxicol 97:188–195

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Bucher EA, Ward JT, Rea PA (2001) A new pathway for heavy metal detoxification in animals. Phytochelatinsynthase is required for cadmium tolerance in Caenorhabditis elegans. J Biol Chem 276:20817–20820

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009a) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009b) Mechansims to cope with arsenic or cadmium excess in plants. Curr Opin Plant Biol 12:364–372

    Article  PubMed  CAS  Google Scholar 

  • Vesk PA, Reichman SM (2009) Hyperaccumulators and herbivores – a Bayesian meta-analysis of feeding choice trials. J Chem Ecol 35:289–296

    Article  PubMed  CAS  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417

    PubMed  CAS  Google Scholar 

  • Wang T, Wu M (2006) An ATP-binding cassette transporter related to yeast vacuolar ScYCF1 is important for Cd sequestration in Chlamydomonas reinhardtii. Plant Cell Environ 29:1901–1912

    Article  PubMed  CAS  Google Scholar 

  • Weber M (2005) Identifizierung und Charakterisierung von Hyperakkumulationsfaktoren bzw. Schwermetallregulierten Genen in Arabidopsis halleri und Arabidopsis thaliana. Dissertation, University Halle, urn:nbn:de:gbv:3–000008574

    Google Scholar 

  • Weber M, Trampczynska A, Clemens S (2006) Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri. Plant Cell Environ 29:950–963

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  PubMed  CAS  Google Scholar 

  • Xie LT, Klerks PL (2004) Fitness cost of resistance to cadmium in the least killifish (Heterandria formosa). Environ Toxicol Chem 23:1499–1503

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian E. W. Steinberg .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Steinberg, C.E.W. (2012). Heavy Metals: Defense and Ecological Utilization. In: Stress Ecology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2072-5_6

Download citation

Publish with us

Policies and ethics