Skip to main content

Progress in Hydrological Modeling over High Latitudes: Under Arctic Climate System Study (ACSYS)

  • Chapter
  • First Online:
Arctic Climate Change

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 43))

Abstract

We review achievements in hydrological modeling over high latitudes during ACSYS, including development and improvement of land surface schemes in representing cold processes, large-scale hydrological modeling over high-latitude river basins, and estimates of freshwater river inflow to the Arctic Ocean. ACSYS hydrological modeling efforts were closely linked to the GEWEX continental-scale experiments (CSEs) and to the Project for Intercomparison of Land-Surface Parameterization Schemes (PILPS). Results in this review are mainly from PILPS 2(e), MAGS, BALTEX, GAME-Siberia (the latter three of which are CSEs), and other studies related to ACSYS. Based on these achievements from the 10 years efforts, the ACSYS scientific strategy for hydrology, which included adaptation of macroscale hydrological modes developed in the framework of GEWEX to Arctic (high-latitude) climate conditions and development of physical (conceptual) or parametric mesoscale hydrologic models for selected river catchments within the Arctic region, was implemented more or less as envisaged in the ACSYS Implementation Plan. In spite of major advances in high-latitude hydrological modeling during the ACSYS era, there remain important problems in parameterization of snow, frost, and lake/wetlands cold processes within climate and hydrology models and in linkages between atmospheric and hydrological models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACSYS:

Arctic Climate System Study

ALMA:

Assistance for Land Modeling Activities

AORB:

Arctic Ocean River Basin

ARW:

A NATO Advanced Research Workshop

BALTEX:

Baltic Sea Experiment

CGCM:

Canadian General Circulation Model

CLASS:

Canadian Land Surface Scheme

CliC:

Climate and Cryosphere project

CRCM:

Canadian Regional Climate Model

CSEs:

Continental-Scale Experiments

ECMWF:

European Centre for Medium-Range Weather Forecasts

GAME:

GEWEX Asian Monsoon Experiment

GEWEX:

Global Energy and Water Cycle Experiment

MAGS:

Mackenzie GEWEX Study

MOSES:

The Met Office Surface Exchange Scheme

NSE:

Nash–Sutcliffe efficiency

PILPS:

Project for Intercomparison of Land-Surface Parameterization Schemes

SAST:

Snow Atmosphere Soil Transfer

SEWAB:

Surface Energy and Water Balance land surface scheme

VIC:

Variable Infiltration Capacity model

WCRP:

World Climate Research Programme

WGNE:

Working Group on Numerical Experimentation

References

  • Aagaard K, Carmack EC (1989) The role of sea ice and other fresh waters in the Arctic circulation. J Geophys Res 94(C10):14485–14498

    Article  Google Scholar 

  • Allison L, Barry RG, Goodison BE (2001) Climate and Cryosphere (CliC) project science and co-ordination plan, Version1. http://clic.npolar.no/introduction/science_plan.pdf. Accessed 24 Mar 2010

  • Armstrong RL, Brodzik MJ (2001) Recent northern Hemisphere snow extent: a comparison of data derived from visible and microwave sensors. Geophys Res Lett 28:3673–3676

    Article  Google Scholar 

  • Barry RG, Serreze MC (2000) Atmospheric components of the arctic ocean freshwater balance and their interannual variability. In: Levis EL et al (eds) The freshwater budget of the Arctic ocean. Springer, New York

    Google Scholar 

  • Beljaars ACM, Viterbo P, Miller MJ, Betts AK, Ball JH (1993) A new surface boundary layer formulation at ECWMF and experimental continental precipitation forecasts. GEWEX News 3(3):l5–l8, 5–8

    Google Scholar 

  • Bergstrom S (1995) The HBV model. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, Highlands Ranch, Co

    Google Scholar 

  • Bergstrom S, Graham LP (1998) On the scale problem in hydrological modeling. J Hydrol 211:253–265

    Article  Google Scholar 

  • Bowling LC (2002) Estimating the freshwater budget of high-latitude land areas. PhD dissertation. University of Washington, Seattle

    Google Scholar 

  • Bowling LC, Lettenmaier DP, Matheussen BV (2000) Hydroclimatology of the Arctic drainage basin. In: Levis EL et al (eds) The freshwater budget of the Arctic ocean. Springer, New York

    Google Scholar 

  • Bowling LC et al (2003) Simulation of high-latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e): 1. Experiment description and summary intercomparisons. Glob Planet Change 38:1–30

    Article  Google Scholar 

  • Bowling LC, Pomeroy JW, Lettenmaier DP (2004) Parameterization of blowing snow sublimation in a macroscale hydrology model. J Hydrometeorol 5(5):745–762

    Article  Google Scholar 

  • Broecker WS (1997) Thermohaline circulation, the Achilles heel of our climate system: will man-made CO2 upset the current balance? Science 28:1582–1588

    Article  Google Scholar 

  • Brown RD (2000) Northern Hemisphere snow cover variability and change, 1915–1997. J Clim 13:2339–2355

    Article  Google Scholar 

  • Chen T et al (1997) Cabauw experimental results from the Project for Intercomparison of Land- surface Parameterization Schemes (PILPS). J Clim 10:1194–1215

    Article  Google Scholar 

  • Cherkauer KA, Lettenmaier DP (1999) Hydrologic effects of frozen soils in the upper Mississippi River basin. J Geophys Res 104(D16):19599–19610

    Article  Google Scholar 

  • Cherkauer KA, Lettenmaier DP (2003) Simulation of spatial variability in snow and frozen soil field. J Geophys Res. doi:10.1029/2003JD003575

  • Cherkauer KA, Bowling LC, Lettenmaier DP (2003) Variable infiltration capacity cold land process model updates. Glob Planet Change 38:151–159

    Article  Google Scholar 

  • Dai A, Trenberth KE (2002) Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J Hydrometeorol 3:660–3687

    Article  Google Scholar 

  • Davison B, Pohl S, Dornes P, Marsh P, Pietroniro A, MacKay M (2006) Characterizing snowmelt variability in land-surface-hydrologic model. Atmosphere-Ocean 44:271–287

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A (1988) Modelling tropical deforestation: a study of GCM land-surface parameterizations. Q J R Meteorol Soc 114(B):439–462

    Article  Google Scholar 

  • Essery R, Clark DB (2003) Developments in the MOSES 2 land-surface model for the PILPS 2e. Glob Planet Change 38:161–164

    Article  Google Scholar 

  • Essery R, Li L, Pomeroy J (1999) A distributed model of blowing snow over complex terrain. Hydrol Process 13:2423–2438

    Article  Google Scholar 

  • Fassnacht SR, Soulis ED (2002) Implications during transitional periods of improvements to the snow processes in the land surface scheme-hydrological model WATCLASS. Atmosphere-Ocean 40:389–403

    Article  Google Scholar 

  • Frauenfeld OW, Zhang T, Barry RG (2004) Interdecadal changes in seasonal freeze and thaw depths in Russia. J Geophys Res. doi:10.1029/2003JD004245

  • Gedney N, Cox PM, Douville H, Polcher J, Valdes PJ (2000) Characterizing GCM land surface schemes to understand their responses to climate change. J Clim 13:3066–3079

    Article  Google Scholar 

  • Grabs WE, Portman F, de Couet T (2000) Discharge observation networks in Arctic regions: computation of the river runoff into the Arctic ocean, its seasonality and variability. In: Levis EL et al (eds) The freshwater budget of the Arctic Ocean. Springer, New York

    Google Scholar 

  • Graham LP (1999) Modeling runoff to the Baltic Sea. Ambio 28:328–334

    Google Scholar 

  • Graham LP (2004) Climate change effects on river flow to the Baltic Sea. Ambio 33(4–5):235–241

    Google Scholar 

  • Graham LP, Bergstrom S (2001) Water balance modelling in the Baltic Sea drainage basin-analysis of meteorological and hydrological approaches. Meteorol Atmos Phys 77:45–60

    Article  Google Scholar 

  • Habets F, Boone A, Noilhan J (2003) Simulation of a Scandinavian basin using the diffusion transfer version of ISBA. Glob Planet Change 38:137–149

    Article  Google Scholar 

  • Hamada S, Ohta T, Hiyama T, Kuwada T, Takahashi A, Maximov TC (2004) Hydrometeorological behavior of pine and larch forests in eastern Siberia. Hydrol Process 18:23–39

    Article  Google Scholar 

  • Hedstrom NR, Pomeroy JW (1998) Measurements and modelling of snow interception in the boreal forest. Hydrol Process 12:1611–1625

    Article  Google Scholar 

  • Henderson-Sellers A (1996) Soil moisture: a critical focus for global change studies. Glob Planet Change 13:3–9

    Article  Google Scholar 

  • Henderson-Sellers A, Yang Z-L, Dickinson RE (1993) The project for intercomparison of land surface parameterization schemes. Bull Am Meteorol Soc 74:1335–1350

    Article  Google Scholar 

  • Henderson-Sellers A, Pitman AJ, Love PK, Irannejad P, Chen TH (1995) The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS): phase 2 and 3. Bull Amer Meteorol Soc 76:489–504

    Article  Google Scholar 

  • Hirashima H, Ohata T, Kodama Y Yabuki H, Sato N, Georgiadi A (2004a) Nonuniform distribution of tundra snow cover in Eastern Siberia. J Hydrometeorol 5(3):373–389

    Article  Google Scholar 

  • Hirashima H, Ohata T, Kodama Y, Yabuki H (2004b) Estimation of annual water balance in Siberian tundra region using a new land surface model. Northern Res Basins Water Balance 290:41–49

    Google Scholar 

  • Ishii Y (2001) The outline of the field observation at the right bank of the Lena River. Activity report of GAME-Siberia 2000. GAME Publication 26:83–86

    Google Scholar 

  • Jin J, Gao X, Sorooshian S (2003) Impacts of model calibration on high-latitude land-surface processes: PILPS 2(e) calibration/validation experiments. Glob Planet Change 38:93–99

    Article  Google Scholar 

  • Karcher M, Gerdes R, Kauker F, Koberle C, Yashayaev I (2005) Arctic ocean change heralds north Atlantic freshening. Geophys Res Lett. doi:10.1029/2005GL023861

  • Kouwen N, Soulis ED, Pietroniro A, Donald J, Harrington RA (1993) Grouping response units for distributed hydrologic modeling. J Water Res Manage Plan 119:289–305

    Article  Google Scholar 

  • Lammers RB, Shiklomanov AI, Vorosmarty CJ, Fekete BM, Peterson BJ (2001) Assessment of contemporary Arctic river runoff based on observational discharge records. J Geophys Res 106(D4):3321–3334

    Article  Google Scholar 

  • Lewis EL (2000) The freshwater budget of the Arctic Ocean – introduction. In: Levis EL et al (eds) The freshwater budget of the Arctic Ocean. Springer, New York

    Google Scholar 

  • Liang X, Lettenmaier DP, Wood EF, Burges SJ (1994) A simple hydrologically based model of land surface water and energy fluxes for general circulation models. J Geophys Res 105(D17):14415–14428

    Article  Google Scholar 

  • Liang X, Wood EF, Lettenmaier DP (1996) Surface soil moisture parameterization of the VIC-2L model: evaluation and modifications. Glob Planet Change 13:195–206

    Article  Google Scholar 

  • Liston G, Sturm M (1998) A snow-transport model for complex terrain. J Glaciol 44:498–516

    Google Scholar 

  • Lohmann D, Nolte-Holube R, Raschke E (1996) A large scale horizontal routing model to be coupled to land surface parameterization schemes. Tellus 48A:708–721

    Google Scholar 

  • Luo L et al (2003) Effects of frozen soil on soil temperature, spring infiltration, and runoff: results from the POLPS 2 (d) experiment at Valdai, Russia. J Hydrometeorol 4:334–351

    Article  Google Scholar 

  • Ma X, Hiyama T, FukushimaY HT (1998) A numerical model of the heat transfer for permafrost regions. J Jpn Soc Hydrol Water Resour 11(4):346–359

    Article  Google Scholar 

  • Ma X, Fukushima Y, Hiyama T, Hashimoto T, Ohata T (2000) A macro-scale hydrological analysis of the Lena River basin. Hydro Process 14(3):639–651

    Article  Google Scholar 

  • MacKay MD, Szeto K, Verseghy D, Chan E, Bussieres N (2003a) Mesoscale circulations and surface energy balance during snowmelt in a regional climate model. Nordic Hydrol 34:91–106

    Google Scholar 

  • MacKay MD, Seglenieks F, Verseghy D, Soulis ED, Sneigrove KR, Walker A, Szeto K (2003b) Modeling Mackenzie Basin surface water balance during CAGES with the Canadian Regional Climate Model. J Hydrometeorol 4:748–767

    Article  Google Scholar 

  • MacKay MD, Bartlett P, Chan E, Verseghy D, Soulis ED, Seglenieks FR (2007) The MAGS regional climate modeling system: CRCM-MAGS. In: Woo MK (ed) Cold regions atmospheric and hydrologic studies: the Mackenzie GEWEX experience, vol I, Atmospheric dynamics. Springer

    Google Scholar 

  • Magnuson JJ et al (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289:1743–1746

    Article  Google Scholar 

  • Manabe S (1969) Climate and ocean circulation: 1, the atmospheric circulation and the hydrology of the earth’s surface. Mon Weather Rev 97:739–805

    Article  Google Scholar 

  • Mengelkamp H-T, Warrach K, Raschke E (1999) SEWAB-A parameterization of the surface energy and water balance for atmospheric and hydrologic models. Adv Water Resour 23:165–175

    Article  Google Scholar 

  • Mengelkamp H-T, Warrach K, Ruhe C, Raschke E (2001) Simulation of runoff and streamflow on local and regional scales. Meteorol Atmos Phys 76:107–117

    Article  Google Scholar 

  • Nijssen B et al (2003) Simulation of high latitude hydrological processes in the Torne-Kalix basin: PILPS phase 2(e): 2. Comparison of model results with observations. Glob Planet Change 38:31–53

    Article  Google Scholar 

  • Niu G-Y, Yang Z-L (2003) The versatile integrator of surface and atmosphere processes (VISA) Part II: evaluation of three topography-based runoff schemes. Glob Planet Change 38:191–208

    Article  Google Scholar 

  • Ohta T, Hiyama T, Tanaka H, Kuwada T, Maximov T, Ohata T, Fukushima Y (2001) Seasonal variation in the energy and water exchanges above and below a larch forest in eastern Siberia. Hydrol Process 15:1459–1476

    Article  Google Scholar 

  • Peterson BJ, Holmes RM, McClelland JW, Vorosmarty CJ, Lammers RB, Shiklomanov AI, Shiklomanov IA, Rahmstorf S (2002) Increasing river discharge to the Arctic Ocean. Science 298:2171–2173

    Article  Google Scholar 

  • Pietroniro A, Soulis ED (2003) A hydrology modeling framework for the Mackenzie GEWEX program. Hydrol Process 10:1245–1261

    Article  Google Scholar 

  • Pitman AJ, Slater AG, Desborough CE, Zhao M (1999) Uncertainty in the simulation due to the parameterization of frozen soil moisture using the Global Soil Wetness Project methodology. J Geophys Res 104(D14):16879–16888

    Article  Google Scholar 

  • Pitman AJ, Xia Y, Leplastrier M, Henderson-Sellers A (2003) The CHAmeleon Surface Model: description and use with the PILPS phase 2(e) forcing data. Glob Planet Change 38:121–135

    Article  Google Scholar 

  • Pomeroy JW, Li L (2000) Prairie and Arctic areal snow cover mass balance using a blowing snow model. J Geophys Res 105(D21):26619–26634

    Article  Google Scholar 

  • Pomeroy J, Marsh P, Gray DM (1997) Application of a distributed blowing snow model to the Arctic. Hydrol Process 11:1451–1464

    Article  Google Scholar 

  • Pomeroy JW, Gray DM, Shook KR, Toth B, Essery RLH, Pietroniro A, Hedstrom N (1998) An evaluation of snow accumulation and ablation processes for land surface modeling. Hydrol Process 12:2339–2367

    Article  Google Scholar 

  • Pomeroy JW, Gray DM, Hedstrom NR, Janowicz JR (2002) Prediction of seasonal snow accumulation in cold climate forests. Hydrol Process 9:213–228

    Google Scholar 

  • Prowse TD, Flegg PO (2000) Arctic river flow: a review of contributing areas. In: Levis EL et al (eds) The freshwater budget of the Arctic Ocean. Springer, New York

    Google Scholar 

  • Raschke et al (2001) A European contribution to investigate the energy and water cycle over a large drainage basin. Bull Am Meteorol Soc 82(11):2389–2413

    Article  Google Scholar 

  • Rouse WR (2000) Progress in hydrological research in the Mackenzie GEWEX study. Hydrol Process 14:1667–1685

    Article  Google Scholar 

  • Rouse WR et al (2003) Energy and water cycles in a high-latitude north-flowing river system: summary of results from the Mackenzie GEWEX study-phase 1. Bull Am Meteorol Soc 84:73–87

    Article  Google Scholar 

  • Rouse WR, Blanken PD, Duguay CR, Oswald CJ, Schertzer WM (2007) Climate-lake interactions. In: Woo MK (ed) Cold regions atmospheric and hydrologic studies: the Mackenzie GEWEX experience, vol II, Hydrologic processes. Springer

    Google Scholar 

  • Shiklomanov IA, Shiklomanov AI, Lammers RB, Peterson BJ, Vorosmarty CJ (2000) The dynamics of river water inflow to the Arctic Ocean. In: Levis EL et al (eds) The freshwater budget of the Arctic Ocean. Springer, New York

    Google Scholar 

  • Smith SL, Burgress MM, Riseborough D, Nixon FM (2005) Recent trends from Canadian permafrost thermal monitoring network sites. Permafr Periglacial Process 16:19–30

    Article  Google Scholar 

  • Snelgrove K, Soulis ED, Seglenieks F, Kouwen N, Pietroniro A (2005) The application of hydrological models in MAGS: lessons learned for PUB. In: Pomeroy J, Pietroniro A, Spence C (eds) Prediction in ungauged basins: approaches for Canada’s cold regions. Canadian Water Resources Association

    Google Scholar 

  • Soulis ED, Seglenieks FR (2007) The MAGS integrated modeling system. In: Woo MK (ed) Cold regions atmospheric and hydrologic studies: the Mackenzie GEWEX experience, vol II, Hydrologic processes. Springer

    Google Scholar 

  • Soulis ED, Snelgrove KR, Kouwen N, Seglenieks FR, Verseghy DL (2000) Toward closing the vertical water balance in Canadian atmospheric models: coupling the land surface scheme CLASS with the distributed hydrologic model WATFLOOD. Atmosphere-Ocean 38:251–269

    Article  Google Scholar 

  • Soulis ED, Kouwen N, Pietroniro A, Seglenieks FR, Snelgrove KR, Pellerin P, Shaw DW, Martz LW (2005) A framework for hydrological modeling in MAGS. In: Pomeroy J, Pietroniro A (eds) Prediction in ungauged basins: approaches for Canada’s cold regions. Canadian Water Resources Association

    Google Scholar 

  • Stewart RE et al (1998) The Mackenzie GEWEX study: the water and energy cycles of a major north American river basin. Bull Am Meteorol Soc 79(12):2665–2683

    Article  Google Scholar 

  • Storck P, Lettenmaier DP (1999) Predicting the effect of a forest canopy on ground snow accumulation and ablation in maritime climates. In: Troendle C (ed) Proceedings of 67th western snow conference. Colo State University, Fort Collins

    Google Scholar 

  • Su F, Adam JC, Bowling LC, Lettenmaier DP (2005) Streamflow simulations of the terrestrial Arctic domain. J Geophys Res. doi:10.1029/2004JD005518

  • Van den Hurk B, Viterbo P (2003) The Torne-Kalix PILPS 2(e) experiment as a test bed for modifications to the ECMWF land surface scheme. Glob Planet Change 38:165–173

    Article  Google Scholar 

  • Verseghy DL (1991) CLASS-A Canadian land surface scheme for GCMs, Part1: soil model. Int J Climatol 11:111–133

    Article  Google Scholar 

  • Verseghy DL, McFarland NA, Lazare M (1993) CLASS-A Canadian land surface scheme for GCMs, Part 2: vegetation model and coupled runs. Int J Climatol 13:347–370

    Article  Google Scholar 

  • Vorosmarty CJ, Hinzman LD, Peterson BJ, Bromwich DH, Hamilton LC, Morison J, Romanovsky VE, Sturm M, Webb RS (2001) The hydrologic cycle and its role in Arctic and global environmental change: a rationale and strategy for synthesis study. Fairbanks, Alaska: Arctic Research Consortium of the US, 84 pp

    Google Scholar 

  • Wang XL, Cho HR (1997) Spatial-temporal structures of trend and oscillatory variabilities of precipitation over northern Eurasia. J Clim 10:2285–2298

    Article  Google Scholar 

  • Warrach K, Mengelkamp H-T, Raschke E (1999) Runoff parameterization in a SVAT scheme: sensitivity tests with the model SEWAB, regionalization in hydrology. IAHS Publ 254:123–130

    Google Scholar 

  • Warrach K, Mengelkamp H-T, Raschke E (2001) Treatment of frozen soil and snow cover in the land surface model SEWAB. Theor Appl Climatol 69:23–37

    Article  Google Scholar 

  • WCRP (1994) Arctic Climate System Study (ACSYS) Initial implementation plan. WCRP-No. 85, WMO/TD-No.627

    Google Scholar 

  • WCRP (1999) Report on the hydrology models intercomparison planning meeting, Koblenz, 27–29 Mar 1999, WCRP Informal Report No. 12/1999

    Google Scholar 

  • Woo M-K, Marsh P (2005) Snow, frozen soils and permafrost hydrology in Canada, 1999–2002. Hydrol Process 19:215–229

    Article  Google Scholar 

  • Woo M-K, Carey SK, Martz LW (1998) Effects of seasonal frost and permafrost on the hydrology of subalpine slopes and drainage basins. In: Strong GS, Wilkinson YML (eds) Proceedings of the 4th scientific workshop for the Mackenzie GEWEX study. Montreal, Quebec

    Google Scholar 

  • Woo M-K, Marsh P, Pomeroy JW (2000) Snow, frozen soil and permafrost hydrology in Canada, 1995–1998. Hydrol Process 14:1591–1611

    Article  Google Scholar 

  • Wood EF (1998) The project for intercomparison of land-surface parameterization schemes (PILPS) phase 2(c) Red-Arkansas basin experiment: 1. Experiment description and summary intercomparisons. Glob Planet Change 19:115–135

    Article  Google Scholar 

  • Xue Y, Shukla J (1993) The influence of landsurface properties on Sahel climate, Part I: desertification. J Climatol 6:2232–2245

    Article  Google Scholar 

  • Yamazaki T (2001) A one-dimensional land surface model adaptable to intensely cold regions and its application in eastern Siberia. J Meteorol Soc Japan 79:1107–1118

    Article  Google Scholar 

  • Yamazaki T, Yabuki H, Ishii Y, Ohta T, Ohata T (2004) Water and energy exchanges at forests and a grassland in Eastern Siberia evaluated using a one-dimensional land surface model. J Hydrometeorol 5(3):504–515

    Article  Google Scholar 

  • Yang D, Kane DL, Hinzman L, Zhang X, Zhang T, Ye H (2002) Siberian Lena River hydrologic regime and recent change. J Geophys Res. doi:10.1029/2002JD002542

  • Ye H, Ladochy S, Yang D, Zhang T, Zhang X, Ellison M (2004) The impact of climatic conditions on seasonal river discharges in Siberia. J Hydrometeorol 5(2):286–295

    Article  Google Scholar 

  • Zhang T, Barry RG, Knowles K, Heginbottom JA, Brown J (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geogr 23(2):132–154

    Article  Google Scholar 

  • Zhang T, Heginbottom JA, Brown J (2000) Further statistics on the distribution of permafrost and ground ice in the Northern Hemisphere. Polar Geogr 24(2):126–131

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by NSF Grants 0230372 and 0629491 to the University of Washington.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis P. Lettenmaier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lettenmaier, D.P., Su, F. (2012). Progress in Hydrological Modeling over High Latitudes: Under Arctic Climate System Study (ACSYS). In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_9

Download citation

Publish with us

Policies and ethics