Skip to main content

Interaction with the Global Climate System

  • Chapter
  • First Online:
  • 1820 Accesses

Part of the book series: Atmospheric and Oceanographic Sciences Library ((ATSL,volume 43))

Abstract

The Arctic is part of the global climate system. To address the issue of climate, the fluxes of heat, salt, and fresh water must be considered. One of the most speculated reasons for rapid climate change in the subarctic North Atlantic, and the global conveyor belt, is a breakdown of the thermohaline circulation (THC) due to an increased fresh water supply. Whitehead’s (Estuaries 21:281–293, 1998) one-box dynamic model is used to show how multiple states and catastrophe can occur in the Arctic Mediterranean with variable freshening and cooling. The broader question is how this interacts with the global climate. In this chapter, we focus on the oceanic aspects of the arctic climate system, discuss processes, review the data, and speculate on the role this part of the globe has in the greater context of global climate. The interaction with the global system comprises the outflow of freshwater and ice, and deeper, freshened, and cooled seawater into the subarctic North Atlantic, via the Labrador Sea. An example of significant climate variability in the twentieth century is presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A :

Albedo

G i :

Mode of convection

M :

Advection term

M a :

Atmospheric advection

M o :

Ocean advection

q T :

Cooling

Q :

Ventilation of saline water in AM

Q f :

Fresh water supply

S :

Short wave radiation; Salinity

S o :

Solar constant

t :

Time

T :

Temperature

T 0 :

Surface air temperature

U :

Outgoing long wave radiation

z :

Vertical coordinate

α :

Variation of density with temperature (pressure dependent)

β :

Variation of density with salinity

θ :

Potential (adiabatic) density

ρ :

Density

ρ o :

Reference density

s:

Density anomaly (r – 1000 kg/m3)

σ M :

RMS fluctuation in heat advection

σ t :

Density anomaly ignoring pressure effects

\( {\sigma }_{T}\) :

RMS fluctuation in air temperature

ψ :

Local, temporal solar elevation

AM:

Arctic Mediterranean

AO:

Arctic Oscillation Index (SLP at North Pole)

AW:

Atlantic Water

BODC:

British Oceanographic Data Centre

BSBW:

Barents Sea Branch Water

ECHAM:

European Centre Hamburg Model (global climate model)

EWG:

Environmental Working Group

FSBW:

Fram Strait Branch Water

GSR:

Greenland–Scotland Ridge

MAIA:

Monitoring Atlantic Inflow toward the Arctic

MOC:

Meridional Overturning Circulation

NAO:

North Atlantic Oscillation Index (SLP at Lisbon – SLP at Reykjavik)

NPR:

North Polar Region

psu:

Practical salinity units (= ppt)

PW:

Polar Water

R/V:

Research vessel

SAT:

Surface air temperature

SLA:

Sea level anomaly

SLP:

Sea level pressure

Sv:

Sverdrups (= 106 m3/s)

THC:

Thermohaline circulation

TRACTOR:

TRAcer and Circulation in The NORdic Seas Region

WSC:

West Spitsbergen Current

References

  • Aagaard K (1968) Temperature variations in the Greenland Sea deep-water. Deep-Sea Res 15:281–296

    Google Scholar 

  • Aagaard K, Carmack EC (1989) The role of sea ice and other fresh water in the arctic circulation. J Geophys Res 94:14485–14498

    Article  Google Scholar 

  • Aagaard K, Carmack EC (1994) The Arctic Ocean and climate: a perspective. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment, AGU geophysical monograph 85. American Geophysical Union, Washington, DC, pp 5–20

    Chapter  Google Scholar 

  • Aagaard K, Swift JH, Carmack EC (1985) Thermohaline circulation in the Arctic Mediterranean seas. J Geophys Res 90:4833–4846

    Article  Google Scholar 

  • Aagaard K, Barrie LA, Carmack EC, Jones EP, Lubin D, Macdonald RW, Swift JH, Tucker WB, Wheeler PA, Whrither USRH (1996) Canadian researchers explore Arctic Ocean. EOS 77(22):209–213

    Article  Google Scholar 

  • Alekseev G (2003) Research of the Arctic climate change in 20th century. Trudy AARI 446:7–17, In Russian

    Google Scholar 

  • Alekseev G, Ivanov V, Korablev A (1995) Interannual variation of deep convection in the Greenland Sea. Oceanology 35:45–52

    Google Scholar 

  • Alekseev GV, Bulatov LV, Zakharov VF, Ivanov VV (1997) Inflow of unusually warm Atlantic waters to the Arctic Basin. Rep Acad Sci 356(3):401–403

    Google Scholar 

  • Alekseev GV, Bulatov LV, Zakharov VF, Ivanov VV (1998) Heat expansion of Atlantic waters in the Arctic Basin. Meteorol Gidrol 7:69–78

    Google Scholar 

  • Alekseev GV, Bulatov LV, Zakharov VF, Ivanov VV (1999) To the change in the thermal state of Atlantic water in the Arctic Basin for the last 100 years. Problemy Arktiki i Antarktiki 71:179–183

    Google Scholar 

  • Alekseev GV, Bulatov LV, Zakharov VF (2000) Freshwater melting/freezing cycle in the Arctic Ocean. In: Lewis EW et al (eds) The freshwater budget of the Arctic Ocean, NATO science series. Kluwer Academic, Boston, pp 589–608

    Google Scholar 

  • Alekseev GV, Johannessen OM, Korablev AA, Ivanov VV, Kovalevsky DV (2001) Interannual variability in water masses in the Greenland Sea and adjacent areas. Polar Res 20(2):201–208

    Article  Google Scholar 

  • Alekseev GV, Johannessen OM, Korablev AA, Proshuntinsky A (2003) Arctic Ocean and sea ice. In: Bobylev LP, Kondratyev KYa, Johannessen OM (eds) Arctic environment variability in the context of global change. Springer-Praxis, Berlin

    Google Scholar 

  • Alekseev GV, Pnyushkov AV, Ivanov NE, Ashik IM, Sokolov VT (2009) Assessment of climate change in the marine Arctic with IPY 2007/08 data. Problemy Arctiki i Antarctiki 1(81):7–14

    Google Scholar 

  • Anderson LG, Jones EP, Koltermann KP, Schlosser P, Swift JH, Wallace DWR (1989) The first oceanographic section across the Nansen Basin in the Arctic Ocean. Deep-Sea Res 36:475–482

    Article  Google Scholar 

  • Bengtsson L, Semenov VA, Johannessen OM (2004) The early century warming in the Arctic – a possible mechanism. J Clim 17:4045–4057

    Article  Google Scholar 

  • Blindheim J (1989) Cascading of Barents Sea bottom water into the Norwegian Sea. Rapports et Procès-verbaux Reunion Conseil Internationale Exploration de la Mer 188:49–58

    Google Scholar 

  • Bobylev L, Kondratyev KYa, Johannessen OM (2003) Arctic environment variability in the context of global change. Springer-Praxis, Berlin

    Google Scholar 

  • BODC: Monitoring Atlantic inflow toward the Arctic. MAIA CD-ROM, © NERC (2003)

    Google Scholar 

  • Bonish B, Blindheim J, Bullister JL, Schlosser P, Wallace DWR (1997) Longterm trends of temperature, salinity, density and transient tracers in the central Greenland Sea. J Geophys Res 102:18553–18571

    Article  Google Scholar 

  • Budeus G, Schneider W, Krause G (1998) Winter convective events and bottom water warming in the Greenland Sea. J Geophys Res 103:18513–18527

    Article  Google Scholar 

  • Carmack E, Aagaard K (1973) On the deep water of the Greenland Sea. Deep-Sea Res 20:687–715

    Google Scholar 

  • Carmack EC, Macdonald RW, Perkin RG, MacLaughlin FA, Pearson RJ (1995) Evidence for warming of Atlantic water in the southern Canadian Basin of the Arctic Ocean: results from the Larsen – 93 expedition. Geophys Res Lett 22:1061–1064

    Article  Google Scholar 

  • Chu PC (1991) Geophysics of deep convection and deep water formation in oceans. In: Chu PC, Gascard JC (eds) Deep convection and deep water formation in the oceans, Proceedings of the international Monterey colloquium on deep convection and deep water formation in the oceans, Elsevier oceanography series 57. Elsevier, Amsterdam/New York, pp 3–16

    Chapter  Google Scholar 

  • Delworth TL, Knutson TR (2000) Simulation of early 20th century global warming. Science 287:2246–2250

    Article  Google Scholar 

  • Delworth TL, Mann ME (2000) Observed and simulated multidecadal variability in the Northern Hemisphere. Clim Dyn 16:661–676

    Article  Google Scholar 

  • Dickson RR, Meincke J, Malmberg S-A, Lee AJ (1988) The “great salinity anomaly” in the Northern North Atlantic 1968–1982. Prog Oceanogr 20:103–151

    Article  Google Scholar 

  • Dickson RR, Osborn TJ, Hurrell JW, Meincke J, Blindheim J, Adlandsvik B, Vinje T, Alekseev G, Maslowski W (2000) The Arctic Ocean response to the North Atlantic oscillation. J Clim 13:2671–2696

    Article  Google Scholar 

  • Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) (2005) The Nordic seas: an integrated perspective, AGU monograph 158. American Geophysical Union, Washington, DC

    Google Scholar 

  • Eldevik T, Straneo F, Sandø AB, Furevik T (2005) Pathways and export of Greenland Sea water. In: Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) The Nordic seas: an integrated perspective, AGU monograph 158. American Geophysical Union, Washington, DC, pp 89–103

    Google Scholar 

  • Eldevik T, Nilsen JEØ, Iovino D, Olsson KA, Sandø AB, Drange H (2009) Observed sources and variability of Nordic seas overflow. Nat Geosci 2:406–410

    Article  Google Scholar 

  • Environmental Working Group (EWG) (1997) Joint U.S. Russian atlas of the Arctic Ocean: oceanography atlas for the winter period. National Snow and Ice Data Center, Boulder

    Google Scholar 

  • Fischer J, Schott FA, Dengler M (2003) Boundary circulation at the exit of the Labrador Sea. J Phys Oceanogr 34:1548–1570

    Article  Google Scholar 

  • Gascard JC (1991) Open ocean convection and deep water formation revisited in the Mediterranean, Labrador, Greenland and Weddell seas. In: Chu PC, Gascard JC (eds) Deep convection and deep water formation in the oceans, Proceedings of the international Monterey colloquium on deep convection and deep water formation in the oceans, Elsevier oceanography series 57. Elsevier, Amsterdam/New York, pp 157–181

    Chapter  Google Scholar 

  • Gorshkov SG (ed) (1980) Atlas of the oceans. Arctic Ocean. USSR Ministry of Defense, VMF, GUNIO. (GUNIO = Glavnoe Upravlenie navigazii i okeanografii). In English: Main Administration on Navigation and Oceanography, 199 pp

    Google Scholar 

  • Hãkkinen S (1993) An Arctic source for the great salinity anomaly: a simulation of the Arctic Ice-Ocean system for 1955–1975. J Geophys Res 98:16397–16410

    Article  Google Scholar 

  • Häkkinen S, Cavalieri DJ (1989) A study of oceanic surface heat fluxes in the Greenland. Norwegian and Barents seas. J Geophys Res 94:6145–6157

    Article  Google Scholar 

  • Hansen B, Østerhus S (2000) North Atlantic-Nordic seas exchanges. Prog Oceanogr 45:109–208

    Article  Google Scholar 

  • Hansen B, Østerhus S, Quadfasel D, Turrell W (2004) Already the day after tomorrow? Science 305:953–954

    Article  Google Scholar 

  • Jakobsen PK, Ribergaard MH, Quadfasel D, Schmith T, Hughes CW (2003) Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: variability from the mesoscale to interannual. J Geophys Res. doi:10.1029/2002JC001554

  • Johannessen OM, Johannessen JA, Morison J, Farrelly BA, Svendsen EA (1983) Oceanographic conditions in the marginal Ice Zone North of Svalbard in early fall 1979 with emphasis on Mesoscale Process. J Geophys Res 88:2755–2769

    Article  Google Scholar 

  • Johannessen OM, Sandven S, Johannessen JA (1991) Eddy-related winter convection in the Boreas Basin. In: Gascard JC, Chu PC (eds) Deep convection and deep water formation in the oceans, Elsevier oceanographic series. Elsevier, New York, pp 87–105

    Chapter  Google Scholar 

  • Johannessen OM, Muench R, Overland JE (eds) (1994) The polar oceans and their role in shaping the global environment, The Nansen centennial volume, Geophysical monograph 85. American Geophysical Union, Washington, DC. ISBN 0–87590–042–9

    Google Scholar 

  • Johannessen OM, Lygre K, Samuel AJ, Samuel P (1996) Observations of convective chimneys in the Greenland Sea in late winter 1994 and 1995. NERSC technical report, 12, June 30, 34 pp

    Google Scholar 

  • Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev G, Zakharov VF, Nagurnyi AP, Bobylev LP, Pettersson LH, Hasselmann K, Cattle H (2004) Arctic climate change – observed and modeled temperature and sea ice variability. Tellus 56A:328–341

    Google Scholar 

  • Johannessen OM, Lygre K, Eldevik T (2005) Convective chimneys and plumes in the Northern Greenland Sea. In: Drange H, Dokken T, Furevik T, Gerdes R, Berger W (eds) The Nordic seas: an integrated perspective. Geophysical Monograph Series No 158, American Geophysical Union, Washington, DC, pp 251–272

    Google Scholar 

  • Khrol VP (ed) (1992) Atlas of the energy budget of the northern polar region. Gidrometeoizdat, St.-Petersburg, 72 pp

    Google Scholar 

  • Killworth P (1979) On “chimney” formations in the ocean. J Phys Oceanogr 9:531–554

    Article  Google Scholar 

  • Loeng H, Sagen H, Ådlandsvik B, Ozhigin V (1993) Current measurements between Novaya Zemlya and Frans Josef Land September 1991–September 1992 data report. Institute of Marine research report no 2 – 1993, 23 pp

    Google Scholar 

  • Lumpkin R, Speer K (2003) Large-scale vertical and horizontal circulation in the North Atlantic Ocean. J Phys Oceanogr 33:1902–1920

    Article  Google Scholar 

  • Marchuk GI, Kondratyev KYa, Kosoderov VV (1988) Earth radiation budget: key aspects. Nauka, Moscow, 216 pp

    Google Scholar 

  • Mauritzen C (1996a) Production of dense overflow waters feeding the North Atlantic across the Greenland–Scotland Ridge. Part 1: evidence for a revised circulation scheme. Deep-Sea Res 1 Oceanogr Res Pap 43:769–806

    Article  Google Scholar 

  • Mauritzen C (1996b) Production of dense overflow waters feeding the North Atlantic across the Greenland–Scotland Ridge. Part 2: an inverse model. Deep-Sea Res 1 Oceanogr Res Pap 43:807–835

    Article  Google Scholar 

  • Maxworthy T, Narimousa S (1994) Unsteady, turbulent convection into a homogeneous, rotating fluid, with oceanographic applications. J Phys Oceanogr 24:865–887

    Article  Google Scholar 

  • McClimans TA, Johannessen BO, Jenserud T (1999) Monitoring a shelf edge current using bottom pressures or coastal sea level data. Cont Shelf Res 19:1265–1283

    Article  Google Scholar 

  • Meincke J, Rudels B, Friedrich HJ (1997) The Arctic Ocean – Nordic seas thermohaline system. ICES J Mar Sci 54:283–299

    Article  Google Scholar 

  • Mysak LA, Manak DK, Marsden RF (1990) Sea ice anomalies observed in the Greenland and Labrador seas during 1901–1984 and their relation to an interceded Arctic climate cycle. Clim Dyn 5:111–132

    Article  Google Scholar 

  • Nagurniy A, Bogorodsky P, Popov A, Svyaschennikov P (1985) Forming of cold deep water on the surface of the Greenland Sea. Doklady AN USSR 284(2):478–480

    Google Scholar 

  • Nansen F (1909) The oceanography of North Polar Basin. The Norwegian North polar expedition 1893–1896. Sci Res 3(9):390 pp

    Google Scholar 

  • Orvik KA, Skagseth Ø (2003) The impact of the wind stress curl in the North Atlantic on the Atlantic inflow to the Norwegian Sea toward the Arctic. Geophys Res Lett 30(17):1884. doi:10.1029/2003GL017932

    Google Scholar 

  • Orvik KA, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic seas: current structure and volume fluxes from moored current meters, VM ADCP and SeaSoar CTD observations, 1995–1999. Deep-Sea Res 48:937–957

    Article  Google Scholar 

  • Østerhus S, Turrell WR, Hansen B, Lundberg P, Buch E (2001) Observed transport estimates between the North Atlantic and the Arctic Mediterranean in the Iceland–Scotland region. Polar Res 20:169–175

    Article  Google Scholar 

  • Polyakov IV, Johnson MA, Colony RL, Bhatt U, Alexseev GV (2002) Observationally based assessment of polar amplification of global warming. Geophys Res Lett 29:1878–1881

    Article  Google Scholar 

  • Quadfasel D (1991) Warming in the Arctic. Nature 350:385

    Article  Google Scholar 

  • Quadfasel D, Rudels B, Kurz K (1988) Outflow of dense water from a Svalbard fjord into the Fram Strait. Deep-Sea Res 35:1143–1150

    Article  Google Scholar 

  • Rudels B, Jones EP, Anderson LG, Kattner G (1994) On the intermediate depth waters in the Arctic Ocean. In: Johannessen OM, Muench RD, Overland JE (eds) The polar oceans and their role in shaping the global environment, Geophysical monograph 85. American Geophysical Union, Washington, DC, pp 33–46

    Chapter  Google Scholar 

  • Rudels B, Darnell C, Gunn J, Zakharchuck E (1997) CTD observations. In: Scientific Gruise report of the Arctic expedition ARK – XI/1 of RV “Polarstern” in 1995. Berichte zur Polarforschung 226:22–25

    Google Scholar 

  • Rudels B, Björk G, Nilsson J, Winsor P, Lake I, Nohr C (2005) The interaction between waters from the Arctic Ocean and the Nordic seas north of Fram Strait and along the East Greenland Current: results from the Arctic Ocean-02 Oden expedition. J Mar Syst 55:1–30

    Article  Google Scholar 

  • Schauer U (2000) The expedition ARKTIS XV/3 of the research vessel “Polarstern” in 1999. Rep Polar Res 350:63 pp, Alfred-Wegener-Institute, Bremerhaven

    Google Scholar 

  • Schauer U, Rudels B, Muench RD, Timokhov L (1995) Circulation and water mass modification along the Nansen Basin slope. Berichtezur Polarforschung 176:94–98

    Google Scholar 

  • Schauer U, Loeng H, Rudels B, Ozhigin VK, Dieck W (2002) Atlantic water flow through the Barents and Kara Seas. Deep-Sea Res I 49:2281–2298

    Article  Google Scholar 

  • Schauer U, Fahrbach E, Osterhus S, Rohardt G (2004) Arctic warming through the Fram Strait: oceanic heat transport from 3 years of measurements. J Geophys Res 109:C06026. doi:10.1029/2003JC001823 (2004)

    Article  Google Scholar 

  • Smedsrud LH, Sorteberg A, Kloster K (2008) Recent and future changes of the Arctic sea – ice cover. Geophys Res Lett. doi:10.1029/2008GL034813

  • Stommel H (1961) Thermohaline convection with two stable regimes of flow. Tellus 13:224–230

    Article  Google Scholar 

  • Stommel H, Farmer HG (1953) Control of salinity in an estuary by a transition. J Mar Res 12:13–20

    Google Scholar 

  • Thompson DWJ, Wallace JM (1998) The Arctic oscillations signature in the wintertime geopotential height and temperature fields. Geophys Res Lett 25:1297–1300

    Article  Google Scholar 

  • Timofeyev VT (1960) Water masses of the Arctic Basin. Gidrometeoizdat, Leningrad

    Google Scholar 

  • Vinje T (2001) Anomalies and trends of sea ice extent and atmospheric circulation in the Nordic seas during the period 1864–1998. J Clim 14:255–267

    Article  Google Scholar 

  • Walin G, Broström G, Nilsson J, Dahl O (2004) Baroclinic boundary currents with downstream decreasing buoyancy: a study of an idealized Nordic seas system. J Mar Res 62:517–543

    Article  Google Scholar 

  • Walsh JE, Portis DH (1999) Relationship between the atmospheric circulation of the Central Arctic and the North Atlantic. In: 5th AMS Conference on polar meteorology and oceanography, Dallas, 10–15 Jan 1999

    Google Scholar 

  • Whitehead JA (1995) Thermohaline ocean processes and models. Ann Rev Fluid Mech 27:89–113

    Article  Google Scholar 

  • Whitehead JA (1998) Multiple T-S states for estuaries, shelves and marginal seas. Estuaries 21:281–293

    Article  Google Scholar 

  • Worcester PF, Lynch JF, Morawitz MWL, Pawlowicz R, Sutton PJ, Cornuelle BD, Johannessen OM, Munk WH, Owens WB, Schuchman R, Spindel RC (1993) Evolution of the large-scale temperature field in the Greenland Sea during 1988–89 from tomographic measurements. Geophys Res Lett 20:2211–2214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. A. McClimans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McClimans, T.A., Alekseev, G.V., Johannessen, O.M., Miles, M.W. (2012). Interaction with the Global Climate System. In: Lemke, P., Jacobi, HW. (eds) Arctic Climate Change. Atmospheric and Oceanographic Sciences Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2027-5_6

Download citation

Publish with us

Policies and ethics