Skip to main content

Climate Change and Pollinators

  • Chapter
  • First Online:
Book cover Pollination Biology

Abstract

This chapter describes how the climate change is potentially the most severe threat to pollinator biodiversity. Mounting evidence demonstrates that there have already been biotic responses to the relatively small climate changes that have occurred this century. Pollinators such as birds, bees, butterflies, moths, flies, wasps, beetles bats and even mosquitoes are essential for food production because they transfer pollen between seed plants-impacting 35% of the world’s crops. Along with providing an essential service to human populations, pollinators also have a key role in maintaining other ecosystem services including ensuring biodiversity and helping Nature to adjust to external threats such as climate change. The “pollination crisis” that is evident in declines of honeybees and native bees worldwide is due to disruption of critical balance between the two mutually interacting organisms. Anthropogenic climate change is widely expected to drive species extinct by hampering individual survival and reproduction, by reducing the amount and accessibility of suitable habitat, or by eliminating other organisms that are essential to the species in question. The potential disruption of a ubiquitous mutualistic interaction of terrestrial habitats, that between plants and their animal pollinators, via climate change is at risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (1988) Environmental factors influencing pollination activity of Apis mellifera L. on Brassica campestris L. var toria. J Indian Inst Sci (Biol Sci) 68:49–52

    Google Scholar 

  • Abrol DP (1991) Conservation of pollinators for promotion of agricultural production in India. J Anim Morphol Physiol 38(1/2):123–139

    Google Scholar 

  • Abrol DP (1993) Insect pollination and crop production in Jammu and Kashmir. Curr Sci 65:265–269

    Google Scholar 

  • Abrol DP (2007) Honeybee and rapeseed – a pollinator plant interaction. In: Dr Gupta SK (ed) Advances in botanical research: rapeseed breeding, vol 45. Elsevier, London, pp 339–367

    Google Scholar 

  • Abrol D (2008) Bees and beekeeping in India, 2nd edn. Kalyani Publishers, Ludhiana, 720p

    Google Scholar 

  • Allen-Wardell G, Bernhardt P, Bitner R, Burquez A, Buchmann S, Cane J, Cox PA, Dalton V, Feinsinger P, Ingram M, Inouye D, Jones CE, Kennedy K, Kevan P, Koopowitz H, Medellin R, Medellin-Morales S, Nabhan GP, Pavlik B, Tepedino V, Torchio P, Walker S (1998) The potential consequences of pollinator declines on the conservation of biodiversity and stability of food crop yields. Conserv Biol 12(1):8–17

    Google Scholar 

  • Attri SD (2001) Status of climate change in India. In: Dash SK, Rao P (eds) Assessment climate change in India and mitigation policies. WWF, New Delhi, pp 10–17

    Google Scholar 

  • Balling RC, Cerveny RS (1998) Weekly cycles of air pollutants, precipitation and tropical cyclones in the coastal NW Atlantic region. Nature 394:561–563

    Google Scholar 

  • Banaszak J (1995) Changes in fauna of wild bees in Europe. Pedagogical University, Bydgoszcz

    Google Scholar 

  • Bazzaz FA (1998) Tropical forests in a future climate: changes in the biological diversity and impact on the global carbon cycle. Clim Chang 39:317–336

    Google Scholar 

  • Bazzaz F, Sombroek W (eds) (1996) Global climate change and agricultural production. Direct and indirect effects of changing hydrological, pedological and plant physiological processes. FAO/Wiley, Rome/Baffins Lane

    Google Scholar 

  • Bellarby J, Foereid B, Hastings A, Smith P (2008) Cool farming: climate impacts of agriculture and mitigation potential. Greenpeace International, Amsterdam

    Google Scholar 

  • Benedek P (1996) Structure and density of lucerne pollinating wild bee populations as affected by changing agriculture. Acta Hortic 437:353–357

    Google Scholar 

  • Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, Settele J, Kunin WE (2006) Parallel declines in pollinators and insect-pollinated plants in Britain and the Netherlands. Science 313(5785):351–354

    PubMed  CAS  Google Scholar 

  • Bryant SR, Thomas CD, Bale JS (1997) Nettle-feeding nymphalid butterflies: temperature, development and distribution. Ecol Entomol 22:390–398

    Google Scholar 

  • Buchmann SL, Nabhan GP (1996) The forgotten pollinators. Island Press, Washington, DC

    Google Scholar 

  • Cane JH (2001) Habitat fragmentation and native bees: a premature verdict? Conserv Ecol 5(1):3

    Google Scholar 

  • Corbet SA, Williams IH, Osborne JL (1991) Bees and the pollination of crops and wild flowers in the European Community. Bee World 72:47–59

    Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1987) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Google Scholar 

  • Costanza R, d’ Arge R, de Groot R, Farber S, Grasso M, Hannon B et al (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    CAS  Google Scholar 

  • Cowley MJR, Thomas CD, Thomas JA, Warren MS (1999) Flight areas of British butterflies: assessing species status and decline. Proc R Soc Lond B 266:1587–1592

    Google Scholar 

  • Currie DJ (1991) Energy and large-scale patterns of animal and plant species richness. Am Nat 137:27–49

    Google Scholar 

  • Currie DJ, Kerr JT, Francis AP (1999) Some general propositions about the study of spatial patterns of species richness. Ecoscience 6:392–399

    Google Scholar 

  • Day MC (1991) Towards the conservation of Aculeate Hymenoptera in Europe. Convention on the conservation of European wildlife and natural habitats, Nature and Environment Series 51. Council of Europe Press, Strasbourg

    Google Scholar 

  • Falk S (1991) A review of scarce and threatened bees, wasp and ants of Great Britain. Research and survey in nature conservation no 35, Nature Conservancy Council, Peterborough, UK

    Google Scholar 

  • Fitter AH, Fitter RSR (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    PubMed  CAS  Google Scholar 

  • Fleishman EG, Austin T, Weiss AD (1998) An empirical test of Rapoport’s rule: elevational gradients in montane butterfly communities. Ecology 79:2482–2493

    Google Scholar 

  • Fraser RH (1998) Vertebrate species richness at the mesoscale: relative roles of energy and heterogeneity. Glob Ecol Biogeogr 7:215–220

    Google Scholar 

  • Free JB (1993) Insect pollination of crops. Academic, London, 684 pp

    Google Scholar 

  • Gallai N, Sallas JM, Settele J, Vaissiere BE (2008) Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ 68:810–821

    Google Scholar 

  • Gärdenfors U (ed) (2000) Rödlistade arter i Sverige 2000 – the 2000 red list of Swedish species. ArtDatabanken SLU, Uppsala, 397 pp

    Google Scholar 

  • Ghazoul J (2005) Buzziness as usual? questioning the global pollination crisis. Trends Ecol Evol 20(7):15–17

    Google Scholar 

  • Gillette DD, Kimbrough JD (1970) Chiropteran mortality. In: Slaughter BH, Walton DW (eds) About bats: a chiropteran biology symposium. Southern Methodist University Press, Dallas, pp 262–283, 339 pp

    Google Scholar 

  • Hajjar R, Jarvis DI, Gemmill-Herren B (2008) The utility of crop genetic diversity in maintaining ecosystem services. Agric Ecosys Environ 123:261–270

    Google Scholar 

  • Harrison RD (2000) Repercussions of El Nin˜o: drought causes extinction and the breakdown of mutualism in Borneo. Proc R Soc Lond B 267:911–915

    CAS  Google Scholar 

  • Helmholtz Centre for Environmental Research (UFZ) (2008) Economic value of insect pollination worldwide estimated at 153 billion Euros. Ecological economics, Press release, 15 Sept 2008

    Google Scholar 

  • Hill JK, Thomas CD, Fox R, Telfer MG, Willis SG, Asher J, Huntley B (2002) Responses of butterflies to twentieth century climate warming: implications for future changes. Proc R Soc Lond B 269:2163–2171

    CAS  Google Scholar 

  • Hughes MJ (1996) Commercial rearing of bumblebees. In: Matheson A (ed) Bumblebees for ­pleasure and profit. International Bee Research Association, Cardiff, pp 40–47

    Google Scholar 

  • Ingram M, Nabhan G, Stephen B (1996) Our forgotten pollinators: protecting the birds and bees. Glob Pest Campaign 6(4):123–125

    Google Scholar 

  • Inouye DW (2000) The ecological and Evolutionary significance of frost in the context of climate change. Ecol Lett 3(5):457–463

    Google Scholar 

  • Inouye DW (2008) Effects of climate change on phenology, frost damage, and floral abundance of montane wildflowers. Ecology 89:353–362

    PubMed  Google Scholar 

  • Inouye D, Barr B (2006) Consequences of abrupt climate change for hibernating animals and perennial wildflowers at high altitude in the Colorado Rocky Mountains, USA. In: Price MF (ed) Global change in mountain regions. Sapiens Publishing, London, pp 166–168

    Google Scholar 

  • Inouye DW, Wielgolaski FE (2003) Phenology of high-altitude climates. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, pp 195–214

    Google Scholar 

  • Inouye DW, Barr WA, Armitage KB, Inouye BD (2000) Climate change is affecting altitudinal migrants and hibernating species. Proc Natl Acad Sci 97(4):1630–1633

    PubMed  CAS  Google Scholar 

  • Inouye DW, Morales M, Dodge G (2002) Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change. Oecologia 130:543–550

    Google Scholar 

  • Inouye DW, Saavedra F, Lee-Yang W (2003) Environmental influences on the phenology and abundance of flowering by Androsace septentrionalis L. (Primulaceae). Am J Bot 90(6):905–910

    PubMed  Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Pachauri RK, Reisinger A (eds) Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team]. IPCC, Geneva, 104 pp

    Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Syst 29:83–112

    Google Scholar 

  • Kerr JT (1999) Weak links: “Rapoport’s rule” and large-scale species richness patterns. Glob Ecol Biogeogr 8:47–54

    Google Scholar 

  • Kerr JT (2001) Butterfly species richness patterns in Canada: energy, heterogeneity and the potential consequences of climate change. Conserv Ecol 5:1–18

    Google Scholar 

  • Kerr JT, Packer L (1997) Habitat heterogeneity as a determinant of mammal species richness in high energy regions. Nature 385:252–254

    CAS  Google Scholar 

  • Kerr JT, Packer L (1998) The impact of climate change on mammal diversity in Canada. Environ Model Assess 49:263–270

    Google Scholar 

  • Kerr JT, Packer L (1999) Epicauta species richness patterns in North America: the importance of energy. Biodivers Conserv 8:617–628

    Google Scholar 

  • Kerr JT, Vincent RL, Currie DJ (1998) Determinants of Lepidoptera richness in North America. Ecoscience 5:448–453

    Google Scholar 

  • Kerr JT, Sugar A, Packer L (2000) Indicator taxa, rapid biodiversity assessment, and nestedness in an endangered ecosystem. Conserv Biol 14:1726–1734

    Google Scholar 

  • Kevan PG, Phillips T (2001) The economics of pollinator declines: assessing the consequences. Conserv Ecol 5(1):8

    Google Scholar 

  • Klein AM, Vaissie`re BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C et al (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc Lond B 274:303–313

    Google Scholar 

  • Kremen C, Williams NM, Thorp RW (2000) Crop pollination from native bees at risk from agricultural intensification. PNAS 99:16812–16816

    Google Scholar 

  • Kukal O, Ayres MP, Scriber JM (1991) Cold tolerance of the pupae in relation to the distribution of swallowtail butterflies. Can J Zool 69:3028–3037

    Google Scholar 

  • Luig J, Maavara V (1998) Kiletiivalised, Hymenoptera. – Rmt: V.Lilleleht (koostaja). Eesti Punane Raamat. Ohustatud seened taimed ja loomad, lk. 103–106

    Google Scholar 

  • McLaughlin J et al (2002) Climate change hastens population extinctions. Proc Natl Acad Sci 99(9):6070–6074

    PubMed  CAS  Google Scholar 

  • Memmott J, Craze PG, Waser NM, Price MV (2007) Global warming and the disruption of plant-pollinator interactions. Ecol Lett 10:710–717

    PubMed  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Google Scholar 

  • Mikkola K (1997) Population trends of Finnish Lepidoptera during 1961–1996. Entomol Fennica 8:121–143

    Google Scholar 

  • Miller-Rushing Abraham J, Katsuki T, Primack RB, Ishii Y, Lee SD, Higuchi H (2007) Impact of global warming on a group of related species and their hybrids: cherry tree (Rosaceae) flowering at Mt. Takao, Japan. Am J Bot 94:1470–1478

    PubMed  CAS  Google Scholar 

  • Moza MK, Bhatnagar AK (2007) Plant reproductive biology studies crucial for conservation. Curr Sci 92(9):1206–1207

    Google Scholar 

  • Myers N (1992) Synergisms: joint effects of climate change and other forms of habitat destruction. In: Peters RL, Lovejoy TE (eds) Global warming and biological diversity. Yale University Press, New Haven, pp 344–354

    Google Scholar 

  • Nabhan GP, Buchmann SL (1997) Services provided by pollinators. In: Daily GC (ed) Nature’s services: societal dependence on natural ecosystems. Island Press, Washington, DC, pp 133–150

    Google Scholar 

  • O’Toole C (1994) Who cares for solitary bees? In: Metheson A (ed) Forage for bees in an agricultural landscape. International Bee Research Association, Cardiff, pp 47–56

    Google Scholar 

  • Osborne JL, Williams IH, Corbet SA (1991) Bees, pollination and habitat change in the European community. Bee World 72:99–116

    Google Scholar 

  • Parmesan C (1996) Climate and species’ range. Nature 382:765–766

    CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    PubMed  CAS  Google Scholar 

  • Parmesan C, Ryrholm N, Steganescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583

    CAS  Google Scholar 

  • Partap U, Partap T (2002) Warning signal from the apple valley of the HKH: productivity concerns and pollination problems. ICIMOD, Kathmandu

    Google Scholar 

  • Pekkarinen A (1998) Oligolectic bee species in Northern Europe (Hymenoptera, Apoidea). Entomol Fennica 8:205–214

    Google Scholar 

  • Pekkarinen A, Teräs H, Wuorenrinne H (1987) Suomen myrkkypistiäislajien taantuminen ja uhanalaisuus. Luonnon Tutkija 91:124–129

    Google Scholar 

  • Pollard E, Rothery P, Yates TJ (1996) Annual growth rates in newly established populations of the butterfly Pararge aegeria. Ecol Entomol 21:365–369

    Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    CAS  Google Scholar 

  • Price MV, Waser NM (1998) Effects of experimental warming on plant reproductive phenology in a subalpine meadow. Ecology 79:1261–1271

    Google Scholar 

  • Rasmont P (1988) Monographie écologique et zoogéographique des bourdons de France et de Belgique (Hymenoptera, Apidae, Bombinae). PhD thesis, Faculté des Sciences Agronomique de l’Etat, Gembloux, Belgium

    Google Scholar 

  • Rassi P, Alanen A, Kanerva T, Mannerkoski I (toim.) (2001) Suomen lajien uhanalaisuus 2000. – Ympäristöministeriö and Suomen ympäristökeskus, Helsinki, 432 pp

    Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    PubMed  CAS  Google Scholar 

  • Rosenfeld D (2000) Suppression of rain and snow by urban and industrial air pollution. Science 287:1793–1796

    PubMed  CAS  Google Scholar 

  • Rusterholz HP, Erhardt A (1998) Effects of elevated CO2 on flowering phenology and nectar production of nectar plants important for butterflies of calcareous grasslands. Oecologia 113:341–349

    Google Scholar 

  • Saavedra F, Inouye DW, Price MV, Harte J (2003) Changes in flowering and abundance of Delphinium nuttallianum (Ranunculaceae) in response to a subalpine climate warming experiment. Glob Chang Biol 9:885–894

    Google Scholar 

  • Sharma HK (2006) Cash crops farming in the Himalayas: the importance of pollinators and pollination in vegetable seed production in Kullu valley Of Himachal Pradesh, India. FAO. Case study submitted for Rapid Assessment of Pollinators’ Status Report. Available (http://www.fao.org/ag/AGP/AGPS/Default.htm – then go to C-CAB Group>Pollinators>Case studies on pollinators and pollination)

  • Söderman G, Leinonen R (2003) Suomen mesipistiäiset ja niiden uhanalaisuus. Tremex Press Oy, Helsinki, 420 pp

    Google Scholar 

  • Sparks TH, Yates TJ (1997) The effect of spring temperature on the appearance dates of British butterflies, 1883–1993. Ecography 20:368–374

    Google Scholar 

  • Stefanescu C, Pen˜uelas J, Fililla I (2003) Effects of climate change on the phenology of butterflies in the northwest Mediterranean basin. Glob Chang Biol 9:1494–1506

    Google Scholar 

  • Swengel AB (1998a) Effects of management on butterfly abundance in tallgrass prairie and pine barrens. Biol Conserv 83:77–89

    Google Scholar 

  • Swengel AB (1998b) Comparisons of butterfly richness and abundance measures in prairie and barrens. Biodivers Conserv 7:1639–1659

    Google Scholar 

  • Tarrier M, Leestmans R (1997) Losses and acquisitions probably linked to the effects of global climatic warming on western Mediterranean lepidopteran fauna (Lepidoptera, Papilionoidea). Linneana Belgica 16:23–36

    Google Scholar 

  • Tedeschini E, Rodriguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana 45(3):222–229

    Google Scholar 

  • Thomas CD, Jones TM (1993) Partial recovery of a skipper butterfly (Hesperia comma) from population refuges: lessons for conservation in a fragmented landscape. J Anim Ecol 62:472–481

    Google Scholar 

  • Thomas CD, Lennon JJ (1999) Birds extend their range northwards. Nature 399:213

    Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–148

    PubMed  CAS  Google Scholar 

  • Travis MJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond B 270:467–473

    CAS  Google Scholar 

  • Turner JRG, Gatehouse CM, Corey CA (1987) Does solar energy control organic diversity? Butterflies, moths and the British climate. Oikos 48:195–205

    Google Scholar 

  • UNEP (1993) Global biodiversity. UNEP, Nerobi

    Google Scholar 

  • University of Southampton (2000) Credit: National Oceanography Centre, Southampton, University of Southampton

    Google Scholar 

  • Visser ME, Both C (2005) Shifts in phenology due to global climate change: the need for a yardstick. Proc R Soc Lond B 272:2561–2569

    Google Scholar 

  • Wall MA, Timmerman-Erskine M, Boyd RS (2003) Conservation impact of climatic variability on pollination of the federally endangered plant, Clematis socialis (Ranunculaceae). Southeast Nat 2:11–24

    Google Scholar 

  • Westrich P (1989) Die Wildbienen Baden-Württembergs. Ulmer, Stuttgart

    Google Scholar 

  • Wielgolaski FE, Inouye DW (2003) Phenology of high-latitude climates. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, pp 175–194

    Google Scholar 

  • Williams PH (1986) Environmental change and the distributions of British bumble bees (Bombus Latr.). Bee World 67:50–61

    Google Scholar 

  • Williams IH (1996) Aspects of bee diversity and crop pollination in the European Union. In: Matheson A, Buchmann SL, O’Toole C, Westrich P, Williams IH (eds) The conservation of bees, Linnaean Society symposium series 18. Academic Press, London, pp 210–226

    Google Scholar 

  • Willis JK, Chambers DP, Nerem RS (2008) Assessing the globally averaged sea level budget on seasonal to interannual time scales. J Geophys Res 113:C06015. doi:10.1029/2007JC004517

    Google Scholar 

  • Wilson EO (1988) The current state of biodiversity. In: Wilson EO, Peter FM (eds) Biodiversity. National Academic Press, Washington DC, pp 3–18

    Google Scholar 

  • Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506

    Google Scholar 

  • Wright DH, Currie DJ, Maurer BA (1993) Energy supply and patterns of species richness on local and regional scales. In: Ricklefs RE, Schluter D (eds) Species diversity in ecological ­communities. University of Chicago Press, Chicago, pp 66–74

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Climate Change and Pollinators. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_15

Download citation

Publish with us

Policies and ethics