Skip to main content

Pollination Energetics

  • Chapter
  • First Online:
Pollination Biology
  • 5048 Accesses

Abstract

Nectar from flowers provides nourishment for animals ranging in size from mites to man. Pollinator-plant interaction is governed by the energy needs and pay off as the basic plan. The pollinators are highly selective in their floral visits and are shown to choose those flowers which best meet their energetic needs. The energy needs and foraging dynamics of pollinators are dependent upon prevailing weather conditions which regulate the schedule of activities thus influencing the energy budget. In this chapter, the role of energetics in pollinator-plant interaction, the current and future lines of research for the understanding of pollination biology are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrol DP (1986a) Time and energy budgets of alfalfa pollinating bee, Megachile nana Bingh and M. flavipes Spinola (Hymenoptera: Megachilidae). Proc Indian Acad Sci (Anim Sci) 95:579–586

    Article  Google Scholar 

  • Abrol DP (1986b) Ecophysiological adaptations between pollinating bees and their flowers. Environ Ecol 4:161

    Google Scholar 

  • Abrol DP (1986c) Metabolic expenditures of Megachile nana Bingh and M. flavipes Spinola (Hymenoptera: Megachilidae). J Anim Morphol Physiol 33:107–112

    Google Scholar 

  • Abrol DP (1987) Activity time budgets and pollination potential of Apis cerana indica workers. Environ Ecol 5(4):707–709

    Google Scholar 

  • Abrol DP (1989) Energy intake and expenditure in Andrena ilerda and A. leaena (Hymenoptera: Andrenidae). Korean J Apic 4:41–47

    Google Scholar 

  • Abrol DP (1990a) Energetics of nectar production in some apple cultivars as a predictor of floral choice by honeybees. Trop Ecol 31(1):116–122

    Google Scholar 

  • Abrol DP (1990b) Energy intake and expenditure in Xylocopa fenestrata F. and X. pubescens Spinola (Hymenoptera: Anthophoridae). In: Veeresh GK, Malik B, Virakthamath CA (eds) Social insects and the environment, Proceedings of the 11th international congress of IUSSI, Bangalore, August 1990. Oxford and IBH Publishing Co., New Delhi, pp 574

    Google Scholar 

  • Abrol DP (1992a) Bioenergetics in bee flower interrelationship – an analysis of foraging behaviour. Korean J Apic 7(1):39–66

    Google Scholar 

  • Abrol DP (1992b) Energetics of nectar production in some strawberry cultivars as a predictor of floral choice by honeybees. J Biosci 17(1):41–44

    Article  Google Scholar 

  • Abrol DP (1992c) Oxygen consumption of foraging bees. J Anim Morphol Physiol 39:27–42

    Google Scholar 

  • Abrol DP (1993a) Intervarietal differences in nectar production affecting pollinator attractiveness and fruit set in almond. In: Veeresh GK, Uma Shankar R, Ganeshaiah KN (eds) Pollination in tropics. IUSSI Indian Chapter, Bangalore, pp 120–122

    Google Scholar 

  • Abrol DP (1993b) Energy intake and expenditure in Megachile femorata Smith (Hymenoptera: Megachilidae). Trop Ecol 34(2):173–180

    Google Scholar 

  • Abrol DP (1995) Energetics of nectar production in some almond cultivars as a predictor of floral choice by honeybees Apis cerana indica F. and A. mellifera L. (Hymenoptera: Apidae). Proc Indian Natn Sci Acad B 57(2):127–132

    Google Scholar 

  • Abrol DP (1997) Bees and beekeeping in India. Kalyani Publishers, Ludhiana, 450p

    Google Scholar 

  • Abrol DP (1998a) Environmental factors influencing flight activity in honeybees Apis cerana Fab. and Apis mellifera L. (Hymenoptera: Apidae). Indian Bee J 60:71–75

    Google Scholar 

  • Abrol DP (1998b) Food acquisition efficiency as a determinant of honeybees foraging decisions. Indian Bee J 60(3):133–136

    Google Scholar 

  • Abrol DP (2000) Energy budget versus plant pollinator interactions. J Palynol 36:17–36

    Google Scholar 

  • Abrol DP (2010) Energy requirement and its harvest as determinant of foraging decisions of bees abstract no MP-002. Paper presented in 10th Asian Apicultural Association Conference & Api Expo held at Bexco Busan South Korea between 4th and 7th Nov 2010

    Google Scholar 

  • Abrol DP (2011) Foraging. In: Hepburn HR, Radloff SE (eds) Honeybees of Asia. Springer, Berlin, pp 257–292

    Chapter  Google Scholar 

  • Abrol DP, Kapil RP (1991) Foraging strategies of honeybees and solitary bees as determined by nectar sugar components. Proc Indian Natl Sci Acad B57(2):127–132

    Google Scholar 

  • Alm J, Ohnemeiss TE, Lanza J, Verizenia L (1990) Preference of white cabbage butterflies and honeybees for nectar that contains amino acids. Oecologia 84(1):51–57

    Article  Google Scholar 

  • Bahadur B, Chaturvedi A, Ramaswamy N (1986) Nectar types in Indian plants. Proc Indian Acad Sci (Plant Sci) 96:41–48

    CAS  Google Scholar 

  • Bailey ME, Feiger EA, Oertel E (1954) Paper chromatographic analysis of some southern nectars. Glean Bee Cult 82:401–403

    CAS  Google Scholar 

  • Baker HG, Baker I (1973a) Amino-acids in nectar and their evolutionary significance. Nature 241:543–545

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1973b) Some anthecological aspects of the evolution of nectar-producing flowers, particularly amino acid production in nectar. In: Heywood VH (ed) Taxonomy and ecology. Academic, London, pp 243–264

    Google Scholar 

  • Baker HG, Baker I (1975) Studies of nectar-constitution and pollinator-plant coevolution. In: Gilbert LE, Raven PH (eds) Coevolution of animals and plants. University of Texas Press, Austin, pp 100–140

    Google Scholar 

  • Baker HG, Baker I (1977) Intraspecific constancy of floral nectar amino acid compliments. Bot Gaz 138:183–191

    Article  CAS  Google Scholar 

  • Baker HG, Baker I (1979) Chemical constituents of the nectars of two Erythrina species and their hybrids. Ann Missouri Bot Gard 66:446–450

    Article  Google Scholar 

  • Baker HG, Baker I (1982a) Chemical constituents of nectar in relation to pollination mechanisms and phylogeny. In: Nitecki MH (ed) Biochemical aspects of evolutionary biology. The University of Chicago Press, Chicago, pp 131–171

    Google Scholar 

  • Baker HG, Baker I (1982b) Some chemical constituents of floral nectars of Erythrina in relation to pollinators and systematics. Allertonia 3:25–38

    CAS  Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectarines. Columbia University Press, New York, pp 126–152

    Google Scholar 

  • Baker HG, Haris BJ (1957) The pollination of Parkia by bats and its attendant Evolutionary problems. Evolution 11:449–460

    Article  Google Scholar 

  • Baker HG, Opler PA, Baker I (1978) A comparison of the amino acid complements of floral and extrafloral nectars. Bot Gaz 139:322–332

    Article  CAS  Google Scholar 

  • Barker HG (1979) Two cases of bat pollination in Central America. Rev Biol Trop 17:187–197

    Google Scholar 

  • Bartholomew GA (1968) Body temperature and energy metabolism. In: Gordon MS (ed) Animal functions: principles and adaptarins. Macmillan, New York, pp 348

    Google Scholar 

  • Bartholomew GA, Dawson WR, Laslewski RC (1970) Thermoregulation and heterothermy in some of the smaller flying foxes (Megachiroptera) of New Guinea. Z Verg Physiol 70:196–209

    Article  Google Scholar 

  • Berger M, Hart JS (1974) Physiology and energetics of flight. In: Farner DS, King JR (eds) Avian biology, vol 4. Academic, New York, pp 415–477

    Google Scholar 

  • Betts AD (1930) The ingestion of syrup by the honeybees. Bee Wld 11:85–90

    Google Scholar 

  • Boetius J (1948) Uber den verlaufder Nekarabsandering einiger Blutenpflanzen. Bethefie Zur Schweizerischen Bienzeitum 2:257–317

    Google Scholar 

  • Brandenburg A, Dell’Olivo A, Bshary R, Kuhlemeier C (2009) The sweetest thing. Recent advances in nectar research. Curr Opin Plant Biol 12:486–490

    Article  PubMed  Google Scholar 

  • Butler CG (1945) The influence of various physical and biological factors of environment on honeybee activity. An examination of the relationship between activity and nectar concentration and abundance. J Exp Biol 21:5–12

    Google Scholar 

  • Cakmak I, Wells H (2001) Reward frequency: effects on flower choices made by different honeybee races in Turkey. Turk J Zool 25(3):169–176

    Google Scholar 

  • Casey TH (1976) Flight energetics of sphinx moths; power input during hovering flight. J Exp Biol 64:529–543

    PubMed  CAS  Google Scholar 

  • Chappell MA (1982) Temperature regulation of carpenter bee (Xylocopa californica) foraging in the Colorado desert of Southern California. Physiol Zool 55:267–280

    Google Scholar 

  • Cirnu I, Harnaj A, Lucescu A, Fota H, Grosu E (1977) New criteria and elements to classify and estimate beekeeping economic contribution of honey plants. In: Honey plant basis of apiculture; international symposium on melliferous flora, Budapest, 1976, pp 191–194

    Google Scholar 

  • Comba L, Corbet SA, Barron A, Bird A, Collinge S, Miyazaki N (1999) Garden flowers: insect visits and the floral reward of horticulturally – modified variants. Ann Bot 83(1):73–86

    Article  Google Scholar 

  • Cooper PD, Schaffer WM, Buchmann SL (1985) Temperature regulation of honeybees (Apis mellifera L.) foraging in the Sonovan desert. J Exp Biol 114:1–7

    Google Scholar 

  • Corbet SA (1978a) A bee’s view of nectar. Bee World 59:25–32

    Google Scholar 

  • Corbet SA (1978b) Bees and nectar of Echium vulgare. In: Richards AJ (ed) The pollination of flowers by insects. Academic, London, pp 21–30

    Google Scholar 

  • Corbet SA (1978c) Bee visits and nectar of Echium vulgare L. and Sinapsis alba L. Ecol Ent 3:25–27

    Article  Google Scholar 

  • Corbet SA (1990) Pollination and weather. Israel J Bot 39:13–30

    Google Scholar 

  • Corbet SA, Unwin DM, Pryce-Jones OE (1979) Humidity, nectar and insect visits to flowers with special reference to Crategues. Tilia and Echium. Ecol Ent 4:9–12

    Article  Google Scholar 

  • Corbet SA, Fussel M, Ake R, Fraser A, Gunsen E, Salvage A, Smith K (1993) Temperature and the pollinating activity of social bees. Ecol Entomol 18:17–30

    Article  Google Scholar 

  • Crane E, Walker P, Day R (1985) Directory of important world honey sources. International Bee Research Association, London, 384p

    Google Scholar 

  • de la Barrera E, Nobel PS (2004) Nectar: properties, floral aspects, and speculations on origin. Trends Plant Sci 9:65–69

    Article  PubMed  CAS  Google Scholar 

  • Deodikar GB, Thakur CV, Phadke RP (1957) High nectar concentration in floral nectaries of silver oak, Grevillea robusta. Indian Bee J 19:84–85

    Google Scholar 

  • Elton CS (1966) The pattern of animal communities. Mathuen, London

    Google Scholar 

  • Epting RJ, Casey TM (1973) Power output and wing-disc loading in hovering hummingbirds. Am Nat 107:761–765

    Article  Google Scholar 

  • Faegri K (1978) Trends in research on pollination ecology. In: Richards AJ (ed) The pollination of flowers by insects. Academic, London, pp 5–12

    Google Scholar 

  • Fleming PA, Hartman Bakken B, Lotz CN, Nicolson SW (2004) Concentration and temperature effects on sugar intake and preferences in a sunbird and a hummingbird. Funct Ecol 18:223–232

    Article  Google Scholar 

  • Fleming PA, Xie S, Napier K, McWorther TJ, Nicolson SW (2008) Nectar concentration affects sugar preferences in two Australian honeyeaters and a lorikeet. Funct Ecol 22:509–605

    Article  Google Scholar 

  • Frankie GW, Opler PA, Bawa KS (1976) Foraging behaviour of solitary bees: implications for outcrossing of a neotropical forest tree species. J Ecol 64:1049–1057

    Article  Google Scholar 

  • Fried CS, May ML (1983) Energy expenditure and intake of territorial male of Pachydiplax longipennis (Odonata: Libellulidae). Ecol Ent 8:283–292

    Article  Google Scholar 

  • Gill FB, Wolf LL (1975a) Economics of feeding territoriality in the golden winged sunbird. Ecology 56:333–345

    Article  Google Scholar 

  • Gill FB, Wolf LL (1975b) Foraging strategies and energetics of African sunbirds at mistletoe flowers. Am Nat 109:491–510

    Article  Google Scholar 

  • Goulson D, Chapman JW, Hughes-William OH (2001) Discrimination of unrewarding flowers by bees; direct detection of rewards and use of repellent scent marks. J Insect Behav 14(5):669–678

    Article  Google Scholar 

  • Goulson D, Hawson SA, Stout JC (1998) Foraging bumblebees avoid flowers already visited by conspecifics or by other bumblebee species. Anim Behav 55(1):199–206

    Article  PubMed  Google Scholar 

  • Hainsworth FR (1973) On the tongue of a hummingbird; its role in the rate and energetics of feeding. Comp Biochem Physiol A 46:65–78

    Article  Google Scholar 

  • Hainsworth FR, Wolf LL (1972a) Energetics of nectar extraction in a small high altitude, tropical hummingbird. J Comp Physiol 80:377–387

    Article  Google Scholar 

  • Hainsworth FR, Wolf LL (1972b) Power hovering flight in relation to body size in hummingbirds. Am Nat 160:589–596

    Article  Google Scholar 

  • Hainsworth FR, Wolf LL (1976) Nectar characteristics and food selection by hummingbirds. Oecologia (Berl) 25:101–113

    Article  Google Scholar 

  • Hansen-Bay CM (1976) Secretary control mechanism in salivary glands of adult Calliphora. Ph.D. thesis, University of Cambridge, Cambridge

    Google Scholar 

  • Harder LD (1985) Morphology as a predictor of floral choice by bumblebees. Ecology 66:190–210

    Article  Google Scholar 

  • Hart JS, Berger M (1972) Energetics, water economy and temperature regulation during flight. In: Proceedings of the 15th international ornithological congress, the Hague, pp 189–199

    Google Scholar 

  • Heinrich B (1971a) Temperature regulation of sphinx moth Manduca sexta. I. Flight energetics and body temperature during free and tethered flight. J Exp Biol 54:141–152

    PubMed  CAS  Google Scholar 

  • Heinrich B (1971b) Temperature regulation of sphinx moth Manduca sexta. II. Regulation of heat loss by control of blood circulation. J Exp Biol 54:153–166

    PubMed  CAS  Google Scholar 

  • Heinrich B (1972) Patterns of endothermy in bumblebee queens, drones and workers. J Comp Physiol 77:65–79

    Article  Google Scholar 

  • Heinrich B (1974a) Thermoregulation in bumblebees: I. Brood incubation by Bombus vosnesenskii queens. J Comp Physiol 8:129–140

    Article  Google Scholar 

  • Heinrich B (1974b) Thermoregulation in endothermic insects. Science 185:747–755

    Article  PubMed  CAS  Google Scholar 

  • Heinrich B (1975a) Energetics of pollination. Ann Rev Ecol Syst 6:139–170

    Article  Google Scholar 

  • Heinrich B (1975b) The role of energetics in bumble bee flower interrelationships. In: Gilbert LE, Raven PH (eds) CoEvolution of animals and plants. University Texas Press, Austin, pp 141–158

    Google Scholar 

  • Heinrich B (1975c) Thermoregulation and flight energetics of desert insects. In: Hagley N (ed) Environmental physiology of desert animals. Academic, London

    Google Scholar 

  • Heinrich B (1975d) Thermoregulation in bumblebees. II. Energetics of warm-up and free flight. J Comp Physiol 96:155–166

    Google Scholar 

  • Heinrich B (1976) Foraging specialization of individual bumblebees. Ecol Monogr 46:105–128

    Article  Google Scholar 

  • Heinrich B (1977) Pollination energetics: an ecosystem approach. In: Matton WJ (ed) The role of arthropods in forest ecosystem. Springer, New York, pp 41–46

    Chapter  Google Scholar 

  • Heinrich B (1979) Bumblebee economics. Harvard University Press, Cambridge, London

    Google Scholar 

  • Heinrich B (1981) Energetics of pollination. Ann Missouri Bot Gard 68:370–378

    Article  Google Scholar 

  • Heinrich B (1983) Insect foraging energetics. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. Academic, New York, pp 187–215

    Google Scholar 

  • Heinrich B, Casey TM (1973) Metabolic rate and endothermy in sphinx moths. J Comp Physiol 82:195–206

    Article  Google Scholar 

  • Heinrich B, Pantle C (1975) Thermoregulation in small flies (Syrphus sp.): basking and shivering. J Exp Biol 62:599–610

    Google Scholar 

  • Heinrich B, Raven PH (1972) Energetics and pollination ecology. Science 176:497–602

    Article  Google Scholar 

  • Heithaus ER, Opler PA, Baker HG (1974) Bat activity and pollination of Bauhinia pauletia: plant pollinator coEvolution. Ecology 55:412–419

    Article  Google Scholar 

  • Helversen OV, Reyer HU (1984) Nectar intake and energy expenditure in a flower visiting bat. Oecologia 63:178–184

    Article  Google Scholar 

  • Hickman JC (1974) Pollination by ants: a low energy system. Science 184:1290–1292

    Article  PubMed  CAS  Google Scholar 

  • Hill-Peggy SM, Hollis J, Harrington W (2001) Foraging decisions in nectarivores: unexpected interactions between flower constancy and energetic rewards. Anim Behav 62(4):729–737

    Article  Google Scholar 

  • Ish-Am G, Eisikowitch D (1998) Low attractiveness of avocado (Persea americana Mill.) flowers to honeybees (Apis mellifera L.) limits fruit set in Israel. J Hort Sci Biotechnol 73(2):195–204

    Google Scholar 

  • Jain KL, Kapil RP (1980) Foraging rhythm of Megachild bees in relation the flowering of Medicago sativa L. and Parkinsonia aculeata L. Indian Bee J 42:35–38

    Google Scholar 

  • Jamieson CA, Austin GH (1956) Preferences of honeybees for sugar solutions. In: Proceedings of the 10th international congress on entomology. Montreal, 1956, vol 4, pp 1059–1062

    Google Scholar 

  • Johnson SD, Nicolson SW (2008) Evolutionary associations between nectar properties and specificity in bird pollination systems. Biol Lett 4:49–52

    Article  PubMed  Google Scholar 

  • Jones CE, Buchmann SL (1974) Ultraviolet floral patterns as functional orientation cues in hymenopterous pollination systems. Anim Behav 22:481–485

    Article  Google Scholar 

  • Josens RB, Roces F (2000) Foraging in the ant Camponotus mus: nectar intake rate and crop filling depend on colony starvation. J Insect Physiol 46:1103–1110

    Article  PubMed  CAS  Google Scholar 

  • Josens RB, Farina WM, Roces F (1998) Nectar feeding by the ant Camponotus mus: intake rate and crop filling as a function of sucrose concentration. J Insect Physiol 44:579–584

    Article  PubMed  CAS  Google Scholar 

  • Kammer AE, Heinrich B (1978) Insect flight metabolism. Adv Insect Physiol 13:113–228

    Google Scholar 

  • Kapil RP, Brar HS (1971) Foraging behavior of Apis florea F. in relation to Brassica campestris var. toria. L. In: Proceedings of 22nd international apicultural congress, Moscow, 1971, pp 335–339

    Google Scholar 

  • Kleiber E (1935) Hat des Zeitzedachtis der Bienen biologische Bedeutung. Z.Vergl. Physiology 22:221–262

    Google Scholar 

  • Klinkhamer GL, De Jong TJ (1993) Attractiveness to pollinators – a plants dilemma. Oikos 66:180–184

    Article  Google Scholar 

  • Köhler VL, McWhorter TJ, Nicolson SW (2009) Energy management on a nectar diet: can sunbirds meet the challenges of low temperature and dilute food? Funct Ecol 24(6):1241–1251

    Article  Google Scholar 

  • Köhler A, Carolina D, Leseigneur C, Verburgt L, Nicolson SW (2010) Dilute bird nectars: viscosity constrains food intake by licking in a sunbird. Am J Physiol Reg Integr Comp Physiol 299(4):1068–1074

    Article  CAS  Google Scholar 

  • Kwon YJ, Saeed S (2003) Effect of temperature on the foraging activity of Bombus terrestris L. (Hymenoptera: Apidae) on greenhouse hot pepper (Capsicum annuum L.). Appl Entomol Zool 38(3):275–280

    Article  Google Scholar 

  • Lack AJ (1982) Competition for pollination in the ecology of Centaurea scabiosa L. and Centaurea nigra L. II. Observations on nectar production. New Phytol 91:309–320

    Article  Google Scholar 

  • Linsley EG, MacSwain JB, Raven PH (1963) Comparative behaviour of bees on onagraceae. Univ Calif Pub Ent 33:1–58

    Google Scholar 

  • Loper GM, Waller GD (1970) Alfalfa flower aroma and flower selection by honeybees. Crop Sci 10:66–68

    Article  CAS  Google Scholar 

  • Louw GN, Nicolson SW (1983) Thermal energetic and nutritional considerations of the carpenter bee, Xylocopa capitata. J Ent Soc South Africa 46(2):227–240

    Google Scholar 

  • Marden JH, Waddington KD (1981) Floral choice by honeybees in relation to the relative distances to flowers. Physiol Entomol 6:431–435

    Article  Google Scholar 

  • Mitchell RJ, Irwin RE, Flanagan RJ, Karron JD (2009) Ecology and evolution of plant-pollinator interactions. Ann Bot 103:1355–1363

    Article  PubMed  Google Scholar 

  • Moffatt L (2001) Metabolic rate and thermal stability during honeybee foraging at different reward rates. J Exp Biol 204(4):759–766

    PubMed  CAS  Google Scholar 

  • Moffett JO, Smith LS, Burkhardt CC, Shipman CW (1976) Nectar secretion in cotton flowers and its relation to honeybee. Am Bee J 116:32, 34, 36

    Google Scholar 

  • Mommers J (1977) The concentration and composition of nectar in relation to honeybee visits to fruit trees. Apidologie 8:357–361

    Article  Google Scholar 

  • Morrant DS, Schumann R, Petit S (2009) Field methods for sampling and storing nectar from flowers with low nectar volumes. Ann Bot 103(3):533–542

    Article  PubMed  CAS  Google Scholar 

  • Mullen RR (1971) Respiratory metabolism and body water turn over rates of two species of free living Kangaroo rats Dipodamys merriami and D. microps.. Comp Biochem Physiol A 39:279–290

    Google Scholar 

  • Nicolson SW (2007) Nectar consumers. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 293–346

    Chapter  Google Scholar 

  • Nunez JA (1977) Nectar flow by melliferous flora and gathering flow by Apis mellifera ligustica. J Insect Physiol 23:265–276

    Article  Google Scholar 

  • Page RE Jr, Erber J, Fondrk MK (1998) The effect of genotype on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J Comp Physiol Sens Neural Behav Physiol 182(4):489–500

    Article  Google Scholar 

  • Pearson OP (1960) Torpidity in birds. Bull Mus Com Zool Harv Univ 24:93–103

    Google Scholar 

  • Pederson MW, Bohart CE (1953) Factors responsible for the attractiveness of various clones of alfalfa to pollen collecting bumblebees. Agron J 45:548–551

    Article  Google Scholar 

  • Pelmenev VK, Korshenevskaya NI, Kharitonova NF (1984) Flowering, nectar secretion and significance as a fodder crop of Rhanonticum carthamoides introduced in the Leningrad oblash (USSR). Rastitelinye Resursv 17:62–68

    Google Scholar 

  • Percival MS (1961) Types of nectars in angiosperms. New Phytol 60:236–281

    Article  Google Scholar 

  • Percival MS (1965) Floral biology. Pergamon Press, New York

    Google Scholar 

  • Pereboom JJM, Biesmeijer JC (2003) Thermal constraints for stingless bee foragers: the importance of body size and coloration. Oecologia 137(1):42–50

    Article  PubMed  CAS  Google Scholar 

  • Pernal SF, Currie RW (1998) Nectar quality in open-pollinated, pol CMS hybrid, and dominant SI hybrid oilseed summer rape. Can J Plant Sci 78(1):79–89

    Article  Google Scholar 

  • Pesti J (1976) Daily fluctuations in the sugar content of nectar and periodicity of secretion of nectar in the composition. Acta Agron Acad Sci Hungarica 25:5–17

    Google Scholar 

  • Raw GR (1953) The effect on nectar secretion of removing nectar from flowers. Bee World 34:23–25

    Google Scholar 

  • Real LA (1981) Nectar availability and bee foraging in flowers of Ipomoea and Aniseia (Convolvulaceae). Ecology 51:1061–1067

    Google Scholar 

  • Real LA (ed) (1983) Pollination biology. Academic, London

    Google Scholar 

  • Riessberger U, Crailsheim K (1997) Short-term effect of different weather conditions upon the behaviour of forager and nurse honey bees (Apis mellifera carnica Pollmann). Apidologie 28(6):411–426

    Article  Google Scholar 

  • Rowley FA (1976) The sugars of some common Philippines nectars. J Apic Res 15:19–21

    CAS  Google Scholar 

  • Sharma PL (1958) Sugar concentration of nectar of some Punjab honey plants. Indian Bee J 20(7):86–91

    CAS  Google Scholar 

  • Shaw RW (1953) The sugar concentration of nectar of some New England honey plants. Glean Bee Cult 81:88–89

    CAS  Google Scholar 

  • Sihag RC (1982) Effect of competition with Parkinsonia aculeata L on pollination and seed production in Medicago sativa L. Indian Bee J 44:89–90

    Google Scholar 

  • Sihag RC (1983) Life cycle pattern, seasonal mortality, problem of parasitization and sex ratio pattern in alfalfa pollinating Megachilid bees. Z Ang Entomol 96:191–203

    Google Scholar 

  • Sihag RC (1984) Role of temperature in the Evolution of bee- plant mutualism. Indian Bee J 46:28–32

    Google Scholar 

  • Sihag RC (1988) Characterization of the pollinators of cruciferous and leguminous crops of subtropical Hisar (India). Bee World 69(4):153–158

    Google Scholar 

  • Sihag RC, Abrol DP (1986) Correlation and path-coefficient analysis of environmental factors influencing flight activity of Apis florea F. J Apic Res 25:202–208

    Google Scholar 

  • Sihag RC, Kapil RP (1983) Foraging strategies of honeybees as determined by quality and quantity of nectar. In: Proceedings of the 5th international symposium on pollination, Versailles, 1983, pp 51–59

    Google Scholar 

  • Silva EM, Dean BB (2000) Effect of nectar composition and nectar concentration on honey bee (Hymenoptera: Apidae) visitations to hybrid onion flowers. J Econ Entomol 93(4):1216–1221

    Article  PubMed  CAS  Google Scholar 

  • Simidchiev (1977) Pollen and nectar production of sunflower (Helianthus annuus L.) In: Honey plants basis of apiculture: international symposium on melliferous flora, Budapest, Bucharest, Romania, 1977; Apimondia Publishing House, pp 125–135

    Google Scholar 

  • Simpson J (1964) Dilution by honeybees of solid and liquid food containing sugar. J Apic Res 3:37–40

    CAS  Google Scholar 

  • Sotavalta O (1954) On the fuel consumption of honeybees (Apis mellifera L.) in flight experiments. Ann Zool Soc Fenn Vanamo 16:1–27

    CAS  Google Scholar 

  • Southwick EE, Southwick AK (1986) Nectar characteristic and phenology of spring bee plants in Northwestern New York. Agri Ecosyst Environ 16:55–62

    Article  Google Scholar 

  • Southwick EE, Loper GM, Sadwick SE (1981) Nectar production, composition, energetics and pollinator attractiveness in spring flowers of western New York. Am J Bot 68(7):994–1002

    Article  CAS  Google Scholar 

  • Stiles FG (1975) Ecology, flowering and humming bird pollination in some Costa Rican Heliconia species. Ecology 56:285–301

    Article  Google Scholar 

  • Strickler K (1979) Specialization and foraging efficiency of solitary bees. Ecology 60:998–1009

    Article  Google Scholar 

  • Teuber LR, Barnes DK (1979) Environmental and genetic influence on alfalfa nectar. Crop Sci 19:874–879

    Article  Google Scholar 

  • Teuber LR, Barnes DK (1978). Breeding alfalfa for increased nectar production. In: Proceedings of the IVth international symposium on pollination, Maryland Agricultural and Experimental Station Special Miscellaneous, Publication 1, pp 109–116

    Google Scholar 

  • Tucker VA (1968) Respiratory exchange and evaporative water loss in the flying Budgerigar. J Exp Biol 48:67–87

    Google Scholar 

  • Utter JM (1973) Daily energy expenditure of purple Martins (Progne subis) during the breeding season, estimates using D2O18 and time budget methods. Ecology 54:597–604

    Article  Google Scholar 

  • Van Ripper W (1960) Does a hummingbird find nectar through its sense of smell? Sci Am 202:157–160

    Google Scholar 

  • von Frisch K (1950) Bees. Their vision, chemical senses and language. Cornell University Press, Ithaca

    Google Scholar 

  • Waller GD (1972) Evaluating responses of honeybees to sugar solutions using an artificial flower feeder. Ann Ent Soc Am 65:857–862

    CAS  Google Scholar 

  • Weis-Fogh T (1972) Energetics of hovering flight in hummingbird and Drosophila. J Exp Biol 56:79–104

    Google Scholar 

  • Wilms W, Wiechers B (1997) Floral resource partitioning between native Melipona bees and the introduced Africanized honey bee in the Brazilian Atlantic rain forest. Apidologie 28(6):339–355

    Article  Google Scholar 

  • Wolf LD (1975) Energy intake and expenditure in a nectar feeding sunbird. Ecology 56:92–102

    Article  Google Scholar 

  • Wolf LL, Hainsworth FR (1971) Time and energy budgets of territorial humming birds. Ecology 52:980–988

    Article  Google Scholar 

  • Wolf LL, Hainsworth FR, Stiles FG (1972) Energetics of foraging: rate and efficiency of nectar extraction by hummingbirds. Science 176:1351–1352

    Article  PubMed  CAS  Google Scholar 

  • Wolf LL, Hainsworth FR, Gill FB (1975) Foraging efficiencies and time budgets in nectar feeding birds. Ecology 56:117–128

    Article  Google Scholar 

  • Wyke GR (1952a) An investigation of sugars present in the nectar of flowers of various species. New Phytol 51:210–215

    Article  Google Scholar 

  • Wyke GR (1952b) The preferences of honeybees for solutions of various sugars which occur in nectar. J Exp Biol 29:511–528

    Google Scholar 

  • Wyke GR (1953) The sugar content of nectars. Biochem J 53:294–296

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharam P. Abrol .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abrol, D.P. (2012). Pollination Energetics. In: Pollination Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1942-2_14

Download citation

Publish with us

Policies and ethics