Skip to main content

Harmonic Oscillator

  • Chapter
  • 1516 Accesses

Abstract

It is well known that the quantum harmonic oscillator is analog of the classical harmonic oscillator. It is one of the most important model systems in quantum mechanics. Even though the linear harmonic oscillator may represent rather non-elementary objects like a solid and a molecule, it provides a window into the most elementary structure of the physical world. In this Chapter, we shall study its exact solutions in arbitrary dimensions, the recurrence relations for the radial wavefunction, the realization of dynamic algebra su(1,1) and the pseudoharmonic oscillator.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Landau, L.D., Lifshitz, E.M.: Quantum Mechanics-Nonrelativistic Theory, 3rd edn. Pergamon, New York (1977)

    Google Scholar 

  2. Dong, S.H.: Factorization Method in Quantum Mechanics. Springer, Netherlands (2007)

    MATH  Google Scholar 

  3. Louck, J.D.: Generalized orbital angular momentum and the n-fold degenerate quantum-mechanical oscillator: Part II. The n-fold degenerate oscillator. J. Mol. Spectrosc. 4, 298–333 (1960)

    Article  ADS  Google Scholar 

  4. Yáñez, R.J., Van Assche, W., Dehesa, J.S.: Position and momentum information entropies of the D-dimensional harmonic oscillator and hydrogen atom. Phys. Rev. A 50, 3065–3079 (1994)

    Article  ADS  Google Scholar 

  5. Joseph, A.: Self-adjoint ladder operators (I). Rev. Mod. Phys. 39, 829–837 (1967)

    Article  ADS  MATH  Google Scholar 

  6. Coulson, C.A., Joseph, A.: Self-adjoint ladder operators. II. Rev. Mod. Phys. 39, 838–849 (1967)

    Article  ADS  Google Scholar 

  7. Oyewumi, K.J., Akinpelu, F.O., Agboola, A.D.: Exactly complete solutions of the pseudoharmonic potential in N-dimensions. Int. J. Theor. Phys. 47(4), 1039–1057 (2008)

    Article  MathSciNet  Google Scholar 

  8. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series, and Products, 5th edn. Pergamon, New York (1994)

    Google Scholar 

  9. Infeld, L., Hull, T.E.: The factorization method. Rev. Mod. Phys. 23, 21–68 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gur, Y., Mann, A.: Radial coherent states—from the harmonic oscillator to the hydrogen atom. Phys. At. Nucl. 68, 1700–1708 (2005)

    Article  MathSciNet  Google Scholar 

  11. Goldman, I.I., Krivchenkov, V.D.: Problems in Quantum Mechanics. Pergamon, Oxford (1961)

    Google Scholar 

  12. Post, H.R.: Many-particles systems: II. Proc. Phys. Soc. A 69, 936–938 (1956)

    Article  ADS  Google Scholar 

  13. Palma, G., Raff, U.: The one-dimensional harmonic oscillator in the presence of a dipole-like interaction. Am. J. Phys. 71, 247 (2003)

    Article  ADS  MATH  Google Scholar 

  14. Hurley, J.: One-dimensional three-body problem. J. Math. Phys. 8, 813 (1967)

    Article  ADS  Google Scholar 

  15. Calogero, F.: Ground state of a one-dimensional N-body system. J. Math. Phys. 10, 2197 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  16. Calogero, F.: Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  17. Camiz, P., Gerardi, A., Marchioro, C., Presutti, E., Scacciatelli, E.: Exact solution of a time-dependent quantal harmonic oscillator with a singular perturbation. J. Math. Phys. 12, 2040 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dodonov, V.V., Malkin, I.A., Man’ko, V.I.: Even and odd coherent states and excitations of a singular oscillator. Physica 72, 597–615 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  19. Dodonov, V.V., Malkin, I.A., Man’ko, V.I.: Green function and excitation of a singular oscillator. Phys. Lett. A 39, 377–378 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ballhausen, C.J.: A note on the V=A/x 2+Bx 2 potential. Chem. Phys. Lett. 146, 449–451 (1988)

    Article  ADS  Google Scholar 

  21. Ballhausen, C.J.: Step-up and step-down operators for the pseudo-harmonic potential V=r 2/2+B/2r 2 in one and two dimensions. Chem. Phys. Lett. 151, 428–430 (1988)

    Article  ADS  Google Scholar 

  22. Friš, J., Mandrosov, V., Smorodinsky, Ya.A., Uhlíř, M., Winternitz, P.: On higher symmetries in quantum mechanics. Phys. Lett. 16, 354–356 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  23. Popov, D.: Barut-Girardello coherent states of the pseudoharmonic oscillator. J. Phys. A, Math. Gen. 34, 5283–5296 (2001)

    ADS  MATH  Google Scholar 

  24. Sage, M.L.: The vibrations and rotations of the pseudogaussian oscillator. Chem. Phys. 87, 431–439 (1984)

    Article  ADS  Google Scholar 

  25. Dong, S.H., Ma, Z.Q.: Algebraic approach to the pseudoharmonic oscillator in 2D. Int. J. Mod. Phys. E 11, 155–160 (2002)

    Article  ADS  Google Scholar 

  26. Dong, S., Dong, S.H., Lozada-Cassou, M.: Algebraic approach to a harmonic oscillator plus an inverse squared potential and its recurrence relation. Phys. Scr. 73, 173–177 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Schrödinger, E.: Further studies on solving eigenvalue problems by factorization. Proc. R. Ir. Acad. A 46, 183–206 (1940)

    Google Scholar 

  28. Berrondo, M., Palma, A.: The algebraic approach to the Morse oscillator. J. Phys. A, Math. Gen. 13, 773 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  29. Stahlhofen, A., Bleuler, K.: An algebraic form of the factorization method. Nuovo Cimento B 104, 447–465 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  30. Adams, B.G., Čižek, J., Paldus, J.: In: Löwdin, P.-O. (ed.) Lie Algebraic Methods and Their Applications to Simple Quantum Systems. Advances in Quantum Chemistry, vol. 19. Academic Press, New York (1988)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hai Dong .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dong, SH. (2011). Harmonic Oscillator. In: Wave Equations in Higher Dimensions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1917-0_6

Download citation

Publish with us

Policies and ethics