Skip to main content

Genotoxicity Assessment of Heavy Metal–Contaminated Soils

  • Chapter
  • First Online:

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

The soil environment is a major sink for multitude of chemicals and heavy metals, which inevitably leads to environmental contamination problems. Indeed, a plethora of different types of heavy metals are used and emanated through various industrial activities. Millions of tonnes of trace elements are produced every year from the mines in demands for newer materials. On being discharged into soil, the heavy metals get accumulated and may disturb the soil ecosystem, plant productivity, and also pose threat to human health and environment. Therefore, the ­establishment of efficient and inexpensive methodology and techniques for identifying and limiting or preventing metal pollution, causing threats to the agricultural production systems and human health, is earnestly required. The possible genotoxic effects of heavy metals on plants and other organisms have been extensively investigated worldwide and sufficiently discussed in this chapter. Also, the development and applications of new biomonitoring methodologies for assessment of soil genotoxicity have been emphasized. The molecular techniques being employed either alone or in combination for detecting the DNA damage induced by heavy metal–contaminated soils and other potentially genotoxic compounds are adequately elaborated. Indeed, the combination of two techniques leads to the precise and efficient detection and quantification of the sublethal genotoxic effects induced in the plant bioindicators by contaminated soil. Thus, the application of biomonitoring protocols in conjunction with the genotoxic assessment of contaminated soil will be advantageous in effective management of heavy metal–polluted soils.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aina R, Sergio S, Angela S, Massimo L, Alessandra G, Sandra C (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    Article  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265

    Article  CAS  Google Scholar 

  • Alloway BJ, Ayres DC (1993) Chemical principles of environmental pollution. Blackie Academic and Professional, London

    Google Scholar 

  • Ames BN, Lee FD, Durston WE (1973) An improved bacterial test system for the detection and classification of mutagens. Proc Natl Acad Sci USA 70:782–786

    Article  CAS  Google Scholar 

  • Ames BN, Kammen HO, Yamasaki E (1975) Hair dyes are mutagenic: identification of a variety of mutagenic ingredients. Proc Natl Acad Sci USA 72:2423–2427

    Article  CAS  Google Scholar 

  • Anonymous (1973) Evalution of gentic risk of environmental chemicals. Royal Swedish academy of Sciences, Ambio, Special Report No.3

    Google Scholar 

  • Arnold RE, Langdon CJ, Hodson ME, Black S (2003) Development of a methodology to investigate the importance of chemical speciation on the bioavailability of contaminants to Eisenia andrei. Pedobiologia 47:633–639

    CAS  Google Scholar 

  • Asakura K, Satoh H, Chiba M, Okamoto M, Serizawa K, Nakano M, Omae K (2009) Genotoxicity studies of heavy metals: lead, bismuth, indium, silver and antimony. J Occup Health 51:498–512

    Article  CAS  Google Scholar 

  • Atienzar FA, Jha AN (2006) The random amplified polymorphic DNA (RAPD) assay and related techniques applied to genotoxicity and carcinogenesis studies: a critical review. Mut Res 613:76–102

    CAS  Google Scholar 

  • Atienzar FA, Cordi B, Donkin ME, Evenden AJ, Jha AN, Depledge MH (2000) Comparison of ultraviolet-induced genotoxicity detected by random amplified polymorphic DNA with chlorophyll fluorescence and growth in a marine macroalgae, Palmaria palmate. Aquat Toxicol 50:1–12

    Article  CAS  Google Scholar 

  • Babich H, Stotzky G (1977) Reductions in toxicity of cadmium to microorganisms by clay minerals. Appl Environ Microbiol 33:696–705

    CAS  Google Scholar 

  • Baeumner AJ (2003) Biosensors for environmental pollutants and food contaminants. Anal Bioanal Chem 377:434–445

    Article  CAS  Google Scholar 

  • Belkin S (2003) Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212

    Article  CAS  Google Scholar 

  • Brooks LR, Hughes TJ, Claxton LD, Austern B, Brenner R, Kremer F (1998) Bioassay-directed fractionation and chemical identification of mutagens in bioremediated soils. Environ Health Perspect 106:1435–1440

    Article  CAS  Google Scholar 

  • Brown KW, Donnelly KC, Thomas JC, Davol P, Scott BR (1985) Mutagenicity of three agricultural soils. Sci Total Environ 41:173–186

    Article  CAS  Google Scholar 

  • Brummer G, Gerth J, Herms U (1986) Heavy metal species, mobility and availability in soils. Z Pflanzenernaehr Bodenkd 149:382–398

    Article  Google Scholar 

  • Bruning T, Chronz C (1999) Occurrence of urinary tract tumors in miners highly exposed to dinitroluene. YOEM 3:144–149

    Google Scholar 

  • Bunger J, Krahl J, Munack A, Ruschel Y, Schröder O, Emmert B, Westphal G, Müller M, Hallier E, Brüning T (2007) Strong mutagenic effects of diesel engine emissions using vegetable oil as fuel. Arch Toxicol 81:599–603

    Article  CAS  Google Scholar 

  • Cabrera GL, Rodriguez DM (1999) Genotoxicity of soil from farmland irrigated with wastewater using three plant bioassays. Mut Res 426:211–214

    Article  CAS  Google Scholar 

  • Cenkci S, Yildiz M, Ciğerci IH, Konuk M, Bozdağ A (2009) Toxic chemicals-induced genotoxicity detected by random amplified polymorphic DNA (RAPD) in bean (Phaseolus vulgaris L.) seedlings. Chemosphere 76:900–9006

    Article  CAS  Google Scholar 

  • Chavez-Crooker P, Pozo P, Castro H, Dice MS, Boutet I, Tanguy A, Moraga D, Ahearn GA (2003) Cellular localization of calcium, heavy metals, and metallothionein in lobster (Homarus americanus) hepatopancreas. Comp Biochem Physiol C Toxicol Pharmacol 136:213–224

    Article  CAS  Google Scholar 

  • Chernozemski I, Shishkov T (2001) Oncology. SIELA-SOFT, Sofia, pp 15–21

    Google Scholar 

  • Citterio S, Aina R, Labra M, Ghiani A, Fumagalli P, Sgorbati S, Santagostino A (2002) Soil genotoxicity: a new strategy based on biomolecular tools and plants bioindicators. Environ Sci Tech 36:2748–2753

    Article  CAS  Google Scholar 

  • Conte C, Mutti I, Puglisi P, Ferrarini A, Regina GRG, Maestri E, Marmiroli N (1998) DNA fingerprint analysis by PCR based method for monitoring the genotoxic effects of heavy metals pollution. Chemosphere 37:2739–2749

    Article  CAS  Google Scholar 

  • Cook SV, Chu A, Goodman RH (2002) Leachability and toxicity of hydrocarbons, metals and salt contamination from flare pit soil. Water Air Soil Pollut 133:297–314

    Article  CAS  Google Scholar 

  • Cotelle S, Masfaraund JF, Férard JF (1999) Assessment of the genotoxicity of contaminated soil with Allium/Vicia-micronucleus and the Tradescantia-micronucleus assays. Mut Res 426:167–171

    Article  CAS  Google Scholar 

  • Davies NA, Hodson ME, Black S (2003) Is the OECD acute worm toxicity test environmentally relevant? The effect of mineral form on calculated lead toxicity. Environ Pollut 121:49–54

    Article  CAS  Google Scholar 

  • Depault F, Cojocaru M, Fortin F, Chakrabarti S, Lemieux N (2006) Genotoxic effects of chromium (VI) and cadmium (II) in human blood lymphocytes using the electron microscopy in situ end-labeling (EM-ISEL) assay. Toxicol In vitro 20:513–518

    Article  CAS  Google Scholar 

  • Devi SS, Biswas AR, Biswas RA, Vinayagamoorthy N, Krishnamurthi K, Shinde VM, Hengstler JG, Hermes M, Chakrabarti T (2007) Heavy metal status and oxidative stress in diesel engine tuning workers of central Indian population. J Occup Environ Med 49:1228–1234

    Article  CAS  Google Scholar 

  • Drake JW, Abrahamson S, Crow JF, Hollaender A, Lederberg S (1975) Environmental mutagenic hazards. Science 157:503–514

    Google Scholar 

  • Ehrlichmann H, Dott W, Eisentraeger A (2000) Assessment of the water-extractable genotoxic potential of soil samples from contaminated sites. Ecotoxicol Environ Saf 46:73–80

    Article  CAS  Google Scholar 

  • Environment Agency (2003) Ecological risk assessment – a public consultation on a framework and methods for assessing harm to ecosystems from contaminants in soil

    Google Scholar 

  • Fiskesjo G (1997) Allium test for screening chemicals; evaluation of cytological parameters. In: Wang W, Gorsuch JW, Hughes JS (eds) Plants for environmental studies. Lewis Publishers, New York, pp 307–333

    Chapter  Google Scholar 

  • Fredrickson HL, Perkins EJ, Bridges TS, Tonucci RJ, Fleming JK, Nagel A, Diedrich K, Mendez-Tenorio A, Doktycz MJ, Beattie KL (2001) Towards environmental toxicogenomics development of a flow through high-density DNA hybridization array and its application to ecotoxicity assessment. Sci Total Environ 274:137–149

    Article  CAS  Google Scholar 

  • Gao Y, Zhou P, Mao L, Zhi Y, Shi WJ (2010) Assessment of effects of heavy metals combined pollution on soil enzyme activities and microbial community structure: modified ecological dose response model and PCR-RAPD. Environ Earth Sci 60:603–612

    Article  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Angel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  CAS  Google Scholar 

  • Geburek T (2000) Effects of environmental pollution on the genetics of forest trees. In: Zhitkovich A, Young A, Bosheir D, Boyle T (eds) Forest conservation genetics, principle and practice. CABI, Wallingford, pp 135–158

    Google Scholar 

  • Gichner T (1999) Monitoring the genotoxicity of soil extracts from two heavily polluted sites in Prague using Tradescantia staminal hair and micronucleus (MNC) assays. Mut Res 426:163–166

    Article  CAS  Google Scholar 

  • Gichner T (2003) DNA damage induced by indirect and direct acting mutagens in catalase-deficient transgenic tobacco: cellular and acellular comet assays. Mut Res/Genetic Toxicol Environ Mut 535:187–193

    Article  CAS  Google Scholar 

  • Gichner T, Patková Z, Száková J, Demnerová K (2004) Cadmium induces DNA damage in tobacco roots, but no DNA damage, somatic mutations or homologous recombination in tobacco leaves. Mut Res/Genetic Toxicol Environ Mut 559:49–57

    Article  CAS  Google Scholar 

  • Gichner T, Zdeňka P, Jiřina S, Kateřina D (2006) Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals. Ecotoxicol Environ Saf 65:420–426

    Article  CAS  Google Scholar 

  • Grant WF (1994) The present status of higher plant bioassays for the detection of environmental mutagens. Mut Res 310:175–185

    Article  CAS  Google Scholar 

  • Hamid N, Bukhari N, Jawaid F (2010) Physiological responses of Phaseolus vulgaris to different lead concentrations. Pak J Bot 42:239–246

    CAS  Google Scholar 

  • Hansen LH, Sorensen SJ (2001) The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb Ecol 42:83–494

    Article  CAS  Google Scholar 

  • Hatzinger PB, Alexander M (1995) Effect of aging of chemicals in soil on their biodegradability and extractability. Environ Sci Technol 29:537–545

    Article  CAS  Google Scholar 

  • Hughes TJ, Claxton LD, Brooks L, Warren S, Brenner R, Kremer F (1998) Genotoxicity of bioremediated soils from the Reilly Tar site, St. Louis Park, Minnesota. Environ Health Perspect 106:1427–1433

    Article  CAS  Google Scholar 

  • Hund-Rinke K, Kordel W (2003) Underlying issues in bioaccessibility and bioavailability: experimental methods. Ecotoxicol Environ Saf 56:52–62

    Article  CAS  Google Scholar 

  • ISO (1993) Soil quality effects of pollutants on earthworms (Eisenia fetida). Part 1: determination of acute toxicity using artificial soil substrate. International Standards Organization, Geneva

    Google Scholar 

  • ISO (1999) Soil quality inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. International Standards Organisation, Geneva

    Google Scholar 

  • ISO (2004) Soil quality effects of pollutants on Enchytraeidae (Enchytraeus sp.). Determination of effects on reproduction and survival. International Standards Organisation, Geneva

    Google Scholar 

  • Jana S, Chaudhury MA (1984) Synergistic effect of heavy metals pollutants on senescence in submerged aquatic plants. Water Air Soil Pollut 21:351–357

    Article  CAS  Google Scholar 

  • Katnoria JK, Arora S, Nagpal A (2008) Genotoxic potential of agricultural soils of Amritsar. Asian J Sci Res 1:122–129

    Article  CAS  Google Scholar 

  • Kim Y, Park J, Shin YC (2007) Dye-manufacturing workers and bladder cancer in South Korea. Arch Toxicol 81:381–384

    Article  CAS  Google Scholar 

  • Knasmüller S, Gottmann E, Steinkellner H, Fomin A, Pickl C, Paschke A, Göd R, Kundi M (1998) Detection of genotoxic effects of heavy metal contaminated soils with plant bioassays. Mut Res 420:37–48

    Google Scholar 

  • Knight AW, Keenan PO, Goddard NJ, Fielden PR, Walmsley RM (2004) A yeast-based cytotoxicity and genotoxicity assay for environmental monitoring using novel portable instrumentation. J Environ Monit 6:71–79

    Article  CAS  Google Scholar 

  • Knize MG, Takemoto BT, Lewis PR, Felton GS (1987) The characterization of the mutagenic activity of soil. Mut Res 192:23–30

    Article  CAS  Google Scholar 

  • Kong MS, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mut Res 426:221–228

    Article  CAS  Google Scholar 

  • Kool HJ, Vankreyl CF, Prasad S (1989) Mutagenic activity in groundwater in relation to mobilization of organic mutagens in soil. Sci Total Environ 84:185–199

    Article  CAS  Google Scholar 

  • Koppen G, Verschaeve L (1996) The alkaline comet test on plant cells: a new genotoxicity test for DNA strand breaks in Vicia faba root cells. Mut Res 360:193–200

    CAS  Google Scholar 

  • Lah B, Vidic T, Glasencnik E, Cepeljnik T, Gorjanc G, Marinsek-Logar R (2008) Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environ Monit Assess 139:107–118

    Article  CAS  Google Scholar 

  • Leveau JHJ, Lindow SE (2002) Bioreporters in microbial ecology. Curr Opin Microbiol 5:259–265

    Article  Google Scholar 

  • Liu D, Jiang W, Gao X (2004) Effects of cadmium on root growth, cell division and nucleoli in root tips of garlic. Physiol Plant 47:79–83

    Google Scholar 

  • Liu W, Li PJ, Qi XM, Zhou QX, Zheng L, Sun TH, Yang YS (2005) DNA changes in barley (Hordeum vulgare) seedlings induced by cadmium pollution using RAPD analysis. Chemosphere 61:158–167

    Article  CAS  Google Scholar 

  • Liu W, Yang YS, Zhou Q, Xie L, Li P, Sun T (2007) Impact assessment of cadmium contamination on rice (Oryza sativa L.) seedlings at molecular and population levels using multiple biomarkers. Chemosphere 67:1155–1163

    Article  CAS  Google Scholar 

  • Lock K, Janssen CR (2003) Influence of ageing on zinc bioavailability in soils. Environ Pollut 126:371–374

    Article  CAS  Google Scholar 

  • Lock K, De Schamphelaere KAC, Janssen CR (2002) The effect of lindane on terrestrial invertebrates. Arch Environ Contam Toxicol 42:217–221

    Article  CAS  Google Scholar 

  • Ma TH (2001) Tradescantia-micronucleus bioassay for detection of carcinogens. Folia Histochem Cytobiol 39((Suppl) 2):54–55

    Google Scholar 

  • Ma TH, Cabrera GL, Owens E (2005) Genotoxic agents detected by plant bioassays. Rev Environ Health 20:1–13

    Article  CAS  Google Scholar 

  • Maron DM, Ames NB (1983) Revised methods for the Salmonella mutagenicity assay. Mut Res 113:173–215

    CAS  Google Scholar 

  • McDaniels AE, Reyes AL, Wymer LJ, Rankin CC, Stelma GN Jr (1993) Genotoxic activity detected in soils from a hazardous waste site by the Ames test and an SOS colorimetric test. Environ Mol Mutagen 22:115–122

    Article  CAS  Google Scholar 

  • Mitrov G, Chernozemski I (1985) Nutrition and cancer. Medicina i Fizkultura, Sofia, pp 67–98

    Google Scholar 

  • Monarca S, Feretti D, Zerbini I, Alberti A, Zani C, Resola S, Gelatti U, Nardi G (2002) Soil contamination detected using bacterial and plant mutagenicity tests and chemical analyses. Environ Res 88:64–69

    Article  CAS  Google Scholar 

  • Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mut Res 455:29–60

    Article  CAS  Google Scholar 

  • Munkittrick KR, Power EA, Sergy GA (1991) The relative sensitivity of microtox daphnid, rainbow-trout, and fathead minnow acute lethality tests. Environ Toxicol Water Qual 6:35–62

    Article  CAS  Google Scholar 

  • Nieboer E, Richardson DHS (1980) The replacement of the nondescript term heavy metals by a biologically and chemically significant classification of metal ions. Environ Pollut 1:3–26

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • OECD (1984a) Chemicals testing guidelines: 207 earthworm, acute toxicity tests. Organization for Economic Co-operation and Development, Paris

    Book  Google Scholar 

  • OECD (1984b) Chemicals testing guidelines: 208 terrestrial plants, growth test. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • OECD (2003) Chemicals testing guidelines: 208 seedling emergence and seedling growth test. Organisation for Economic Co-operation and Development, Paris

    Google Scholar 

  • Okuyama M, Kobayashi N, Takeda W, Anjo T, Matsuki Y, Goto J, Kambegawa A, Hod S (2004) Enzyme-linked immunosorbent assay for monitoring toxic dioxin congeners in milk based on a newly generated monoclonal anti-dioxin antibody. Anal Chem 76:1948–1956

    Article  CAS  Google Scholar 

  • Panda BB, Panda KK (2002) Genotoxicity and mutagenicity of metals in plants. In: Prasad KNV, Strzałka K (eds) Physiology and biochemistry of metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht, pp 395–414

    Google Scholar 

  • Pardue JH, Kongara S, Jones WJ (1996) Effect of cadmium on reductive dechlorination of trichloroaniline. Environ Toxicol Chem 15:1083–1088

    Article  CAS  Google Scholar 

  • Pereira R, Marques CR, Silva Ferreira MJ, Neves MFJV, Caetano AL, Antunes SC, Mendo S, Gonçalves F (2009) Phytotoxicity and genotoxicity of soils from an abandoned uranium mine area. Appl Soil Ecol 42:209–220

    Article  Google Scholar 

  • Periyakaruppan A, Kumar F, Sarkar S, Chidananda SS, Ramesh GT (2007) Uranium induces oxidative stress in lung epithelial cells. Arch Toxicol 81:389–395

    Article  CAS  Google Scholar 

  • Prasad MNV, Strzalka K (2002) Physiology and biochemistry of heavy metal toxicity and tolerance in plants. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Quillardet P, Huisman O, Dari R, Hofnung M (1982) SOS chromotest, a direct assay of induction of an SOS function in Escherichia coli K-12 to measure genotoxicity. Proc Natl Acad Sci USA 79:5971–5975

    Article  CAS  Google Scholar 

  • Rabbow E, Rettberg P, Baumstark-Khan C, Horneck G (2003) The SOS-LUX-LAC-FLUOROtoxicity test on the International Space Station (ISS). Adv Space Res 31:1513–1524

    Article  CAS  Google Scholar 

  • Radetski CM, Ferrari B, Cotelle S, Masfaraud JF, Ferard JF (2004) Evaluation of genotoxic, mutagenic and oxidative stress potentials of municipal solid waste incinerator bottom ash leachates. Sci Total Environ 333:204–216

    Google Scholar 

  • Reid BJ, Stokes JD, Jones KC, Semple KT (2000) Nonexhaustive cyclodextrin-based extraction technique for the evaluation of PAH bioavailability. Environ Sci Technol 34:3174–3179

    Article  CAS  Google Scholar 

  • Renella G, Mench M, Landi L, Nannipieri P (2005) Microbial diversity and hydrolase synthesis in long-term Cd contaminated soils. Soil Biol Biochem 37:133–139

    Article  CAS  Google Scholar 

  • Rensing C, Maier RM (2003) Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140–147

    Article  CAS  Google Scholar 

  • Roos PH, Angerer J, Dieter H, Wilhelm M, Wölfle D, Hengstler JG (2008) Perfuorinated compounds (PFC) hit the headlines: meeting report on a satellite symposium of the annual meeting of the German society of toxicology. Arch Toxicol 82:57–59

    Article  CAS  Google Scholar 

  • Sarkar T, Anand KGV, Reddy MP (2010) Effect of nickel on regeneration in Jatropha curcas L. and assessment of genotoxicity using RAPD markers. Biometals. doi: 10.1007/s10534-010-9364-7

  • Savva D (1998) Use of DNA fingerprinting to detect genotoxic effects. Ecotoxicol Environ Saf 41:103–106

    Article  CAS  Google Scholar 

  • Savva D (2000) The use of arbitrarily primed PCR (AP-PCR) fingerprinting detects exposure to genotoxic chemicals. Ecotoxicology 9:341–353

    Article  CAS  Google Scholar 

  • Schmidt W (1996) Influence of chromium (lll) on root associated Fe (lll) reductase in Plantago isnceolata L. J Exp Bot 47:805–810

    Article  CAS  Google Scholar 

  • Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S (2005) Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of zinc mineralized area in Thailand: implications for public health. Environ Geochem Health 27:501–511

    Article  CAS  Google Scholar 

  • Smith JW (1982) Mutagenecity of extracts from agricultural soils in the Salmonella microsome test. Environ Mut 4:369–370

    Google Scholar 

  • Steinkellner H, Mun-Sik K, Helma C, Ecker S, Ma TH, Horak O, Kundi M, Knasmüller S (1998) Genotoxic effects of heavy metals: comparative investigation with plant bioassays. Environ Mol Mutagen 31:183–191

    Article  CAS  Google Scholar 

  • Sturzenbaum SR, Kille P, Morgan AJ (1998a) Heavy metal-induced molecular responses in the earthworm, Lumbricus rubellus genetic fingerprinting by directed differential display. Appl Soil Ecol 9:495–500

    Article  Google Scholar 

  • Sturzenbaum SR, Kille P, Morgan AJ (1998b) The identification, cloning and characterization of earthworm metallothionein. FEBS Lett 431:437–442

    Article  CAS  Google Scholar 

  • Sturzenbaum SR, Cater S, Morgan AJ, Kille P (2001) Earthworm pre- procarboxypeptidase: a copper responsive enzyme. Biometals 14:85–94

    Article  CAS  Google Scholar 

  • Tiryakioglu M, Eker S, Ozkutlu F, Husted S, Cakmak I (2006) Antioxidant defense system and cadmium uptake in barley genotypes differing in cadmium tolerance. J Trace Elem Med Biol 20:181–189

    Article  CAS  Google Scholar 

  • Tzonevski D, Sapundzhiev K, Vodenicharov E (1998) Studying the contents of lead and cadmium in the blood of children up to 15 years old from the region of the non- ferrous-metal works near Plovdiv. Higiena i Zdraveopazvane 2(3):20–22

    Google Scholar 

  • Unhalekhaka U, Kositanont C (2009) Microbial composition in cadmium contaminated soils around zinc mining area, Thailand. Modern Appl Sci 3:1–8

    Google Scholar 

  • Ünyayar S, Çelik A, Çekiç FÖ, Güzel A (2006) Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Vicia faba. Mutagen 21:77–81

    Article  Google Scholar 

  • Vodenicharska TZ, Petrov I, Razboinikova F (1992) A study for heavy metal (lead, cadmium, zinc, copper, manganese) contamination among the population from the 3 rd metallurgical base region. Higiena i Zdraveopazvane 2:59–62

    Google Scholar 

  • Waalkes MP (2000) Cadmium carcinogenesis in review. J Inorg Biochem 79:241–244

    Article  CAS  Google Scholar 

  • Waalkes MP (2003) Cadmium carcinogenesis. Mut Res 533:107–120

    Article  CAS  Google Scholar 

  • Wang H (1999) Clastogenecity of chromium contaminated soil samples evaluated by Vicia root-micronucleus assay. Mut Res 426:147–149

    Article  CAS  Google Scholar 

  • Wang J, Lu Y, Shen G (2007) Combined effects of cadmium and butachlor on soil enzyme activities and microbial community structure. Environ Geol 51:1221–1228

    Article  CAS  Google Scholar 

  • Watanabe T, Hirayama T (2001) Genotoxicity of soil. J Health Sci 47:433–438

    Article  CAS  Google Scholar 

  • Wegrzyn G, Czyz A (2003) Detection of mutagenic pollution of natural environment using microbiological assays. J Appl Microbiol 95:1175–1181

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1985) Guide to short-term tests for detecting mutagenic and carcinogenic chemicals. Environ Health Criteria 51:208

    Google Scholar 

  • Yi M, Yi H, Li H, Wu L (2010) Aluminum induces chromosome aberrations, micronuclei, and cell cycle dysfunction in root cells of Vicia faba. Environ Toxicol 25:124–129

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Musarrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Musarrat, J., Zaidi, A., Khan, M.S., Siddiqui, M.A., Al-Khedhairy, A.A. (2011). Genotoxicity Assessment of Heavy Metal–Contaminated Soils. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_14

Download citation

Publish with us

Policies and ethics