Skip to main content
Book cover

Anoxia pp 463–478Cite as

Ophel, the Newly Discovered Hypoxic Chemolithotrophic Groundwater Biome: A Window to Ancient Animal Life

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

Abstract

The discovery of the chemolithotrophy-based groundwater ecosystem at Ayyalon in Israel served to propose the new speleological paradigm of the Ophel biome. After briefly dealing with the biota of Ayyalon and their biology, some aspects of possible physiological adaptation of the subterranean crustacean fauna to subterranean hypoxia and anoxia are presented. The extremophily of ophelic crustaceans and its paleo-historical significance is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

 References

  • Barker D (1959) The distribution and systematic position of the Thermosbaenacea. Hydrobiologia 13:209–235

    Article  Google Scholar 

  • Bishop RE, Kakuk B, Torres JJ (2004) Life in the hypoxic and anoxic zones: metabolism and proximate composition of Caribbean troglobitic crustaceans, with observations on the water chemistry of anchialine caves. J Crustac Biol 24(3):379–393

    Article  Google Scholar 

  • Burmester T (2001) Molecular evolution of the of the arthropod hemocyanin superfamily. Mol Biol Evol 18:184–195

    PubMed  CAS  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, New York

    Google Scholar 

  • Čurčič BPM (2008) Ayyalonia dimentmani n. g., n. sp. (Ayyaloniini,n. trib.,Chthoniidae, Pseudoscorpiones) from a cave in Israel. Arch Biol Sci Belgrade 60(1):331–339

    Google Scholar 

  • Danielopol DL, Pospisil P, Rouch R (2000) Biodiversity in groundwater: a large-scale view. Tree 15(6):223–225

    PubMed  Google Scholar 

  • Defaye D, Por FD (2010) Metacyclops (Copepoda, Cyclopidae) from Ayyalon Cave, Israel. Crustaceana 83(4):399–423

    Article  Google Scholar 

  • Fenchel T, Riedl R (1970) The sulfide system: a new biotic system underneath the oxidized layer of marine sand bottoms. Mar Biol 7:225–268

    Article  Google Scholar 

  • Frumkin A, Gvirtzman H (2006) Cross-formational rising groundwater at an artesian karstic basin: the Ayyalon Saline Anomaly, Israel. J Hydrol 318:316–333

    Article  Google Scholar 

  • Hochachka PW, Somero GN (2002) Biochemical adaptation. Mechanism and process in physiological evolution. Oxford University Press, New York

    Google Scholar 

  • Hourdez S, Lallier FH (2007) Adaptations to hypoxia in hydrothermal vent and cold-seep invertebrates. Rev Environ Sci Biotechnol 6:143–159

    Article  CAS  Google Scholar 

  • Hüppop K (2000) How do cave animals cope with food scarcity in caves? In: Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30, Subterranean ecosystems. Elsevier, Amsterdam, pp 159–188

    Google Scholar 

  • Levy G (2007) The first troglobite scorpion from Israel and a new chaetoid family (Arachnida: Scorpiones). Zool Middle East 40:91–96

    Google Scholar 

  • Little C (1983) The colonisation of land. Cambridge University Press, New York

    Google Scholar 

  • Platt HM (1981) Meiofaunal dynamics and the origin of the Metazoa. In: Forey PL (ed) The evolving biosphere. Cambridge University Press, London, pp 207–216

    Google Scholar 

  • Por FD (1962) Un nouveau thermosbenacé, Monodella relicta n.sp. dans la depression de la Mer Morte. Crustaceana 3(4):304–310

    Article  Google Scholar 

  • Por FD (2007) Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds. Hydrobiologia 592:1–10

    Article  CAS  Google Scholar 

  • Por FD (2011) Groundwater life: New biospeleological views resulting from the Ophel paradigm. Travaux de l’ Institut de Speleologie “Emile Racovitza” t.L. pp 61–76

    Google Scholar 

  • Por FD, Masry D (1968) Survival of a nematode and an oligochaeta species in the anaerobic benthal of Lake Tiberias. Oikos 19:388–391

    Article  Google Scholar 

  • Porter ML, Engel AS, Kane TC, Kane BK (2009) Productivity-diversity relationship from chemolithoautotrophically based sulfidic karst systems. Int J Speleol 38(1):27–40

    Google Scholar 

  • Reiber CL (1995) Physiological adaptations of crayfish in the hypoxic environment. Am Zool 35:1–11

    Google Scholar 

  • Sarbu SM (2000) Movile cave a chemoautotrophically based groundwater ecosystem. In: Wilkens H, Culver DC, Humphreys WF (eds) Ecosystems of the world, vol 30, Subterranean ecosystems. Elsevier, Amsterdam, pp 319–343

    Google Scholar 

  • Sarbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based groundwater. Science 272:1953–1955

    Article  PubMed  CAS  Google Scholar 

  • Schmidt-Rhaesa A (2007) The evolution of organ systems. Oxford University Press, New York

    Book  Google Scholar 

  • Shapiro AZ, Bobkova AN (1975) The role of malate dehydrogenase in adaptation to hypoxia in invertebrates. J Evol Biochem Physiol 11:478–479

    Google Scholar 

  • Shillito B, Le Bris N, Hourdez S, Ravaux J, Clottin D, Caprais J-C, Jollivet D, Gaill F (2006) Temperature resistance studies on the deep-sea vent shrimp Mirocaris fortunata. J Exp Biol 209:945–955

    Article  PubMed  Google Scholar 

  • Summers-Engel A (2007) Observations on the biodiversity of sulfidic karst habitats. J Cave and Karst Stud 69(1):187–206

    Google Scholar 

  • Tsurnamal M (1978) The biology and ecology of the blind prawn Typhlocaris galilea Calman (Decapoda, Caridea). Crustaceana 34(3):195–213

    Article  Google Scholar 

  • Tsurnamal M (2008) A new species of the stygobitic blind prawn Typhlocaris Calman 1906 (Decapoda, Palaemonidae, Typhlocaridinae) from Israel. Crustaceana 81(4):487–501

    Article  Google Scholar 

  • Tsurnamal M, Por FD (1968) The subterranean fauna associated with the blind palaemonid prawn Typhlocaris galilea Calman. Int J Speleol 3:219–223

    Google Scholar 

  • Wagner HP (1994) A monographic review of the Thermosbaenacea (Crustacea: Peracarida). Zoologische Verhandelingen 291:1–338

    Google Scholar 

  • Wagner HP (in press) Tethysbaena ophelicola (Crustacea, Thermosbaenacea), a new prime consumer of the Ophel biota, Ayyalon Cave, Israel.Crustaceana

    Google Scholar 

  • Waloszek D (2003) Cambrian “Örsten”-type preserved arthropods and the phylogeny of crustacea. In: Legakis A, Sfenthourakis S, Polymeni R, Thessalou-Legaki M (eds) The new panorama of animal evolution. Proceedings of the XVIII international congress of zoology, Athens, pp 67–89

    Google Scholar 

  • WhitmanWB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci USA 95:6578–6583

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Dov Por .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Por, F.D. (2012). Ophel, the Newly Discovered Hypoxic Chemolithotrophic Groundwater Biome: A Window to Ancient Animal Life. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_24

Download citation

Publish with us

Policies and ethics