Skip to main content
Book cover

Anoxia pp 369–401Cite as

Meiobenthos of the Oxic/Anoxic Interface in the Southwestern Region of the Black Sea: Abundance and Taxonomic Composition

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 21))

Abstract

The Black Sea contains the World’s largest body of anoxic water. Based on new and published data, we describe trends among selected protozoan and metazoan meiofaunal taxa at water depths of 120–240 m in the northwestern part of the Black Sea near the submarine Dnieper Canyon. This transect spans the transition between increasingly hypoxic but non-sulfidic bottom water and the deeper anoxic/sulfidic zone, the boundary between these two domains being located at approximately 150–180 m depth. This transition zone supports a rich rose-Bengal-stained fauna. Among the protozoans, gromiids are common only at 120 and 130 m. All other groups exhibit more or less distinct abundance maxima near the base of the hypoxic zone. Foraminifera peak sharply at ∼160 m while ciliates are most abundant at 120, 160–190, and 240 m, where they are possibly associated with concentrations of bacterial cells. The three most abundant metazoan taxa also exhibit maxima in the hypoxic zone, the nematodes and polychaetes at 160 m, and the harpacticoid copepods at 150 m. Most of the polychaetes belong to two species, Protodrilus sp. and Vigtorniella zaikai, the larvae of which are widely distributed in severely hypoxic water just above the anoxic/sulfidic zone of the Black Sea. Both protozoans and metazoans are usually concentrated in the 0–1 cm layer of the sediment, except at the shallowest (120–130 m) site where deeper layers may yield a substantial proportion of the assemblage. The concentration of nematodes in the 3–5 cm layer at 120 m is particularly notable. Our data suggest that some benthic species can tolerate anoxic/sulfidic conditions in the Black Sea. An important caveat is that anoxia or severe hypoxia may lead to the corpses of nonindigenous organisms being preserved in our samples. However, we argue that the morphological integrity of specimens, the high population densities (associated with high bacterial concentrations in the case of ciliates), the presence of taxa often found in hypoxic settings, and the presence of all life stages (including gravid females) among nematodes and harpacticoids, suggests that at least some of the organisms are indigenous. Further comparative studies of shallow- and deep-water meiobenthic communities in the Black Sea are necessary in order to establish which species are characteristic and indicative of hypoxic/anoxic conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anikeeva OV (2003) Monothalamous soft-shelled foraminifera in Sevastopol bay (Crimea, the Black Sea): biodiversity of coastal marine ecosystems functional aspects. In: High-level scientific conference, Renesse, 11–15 May 2003. Renesse Abstract, pp 69–70

    Google Scholar 

  • Anikeeva OV, Sergeeva NG (2001) Distribution of the foraminifera on the Crimean shelf (Black Sea). In: Book of abstracts, conference on ecology problems of Azov–Black Sea basin: modern state and prediction, Sevastopol, Sept 2001, pp 42–44 (In Russian)

    Google Scholar 

  • Bacesco M (1963) Contribution a la biocenologie de la mer Noir. L’etage periazoique et la facies dreissenifere leurs caracteristiques. Rapp Commun Int Mer Mediterr 17:107–122

    Google Scholar 

  • Barnett PR, Watson J, Conelly J (1984) A multiple corer for taking virtually undisturbed samples from shelf, bathyal and abyssal sediments. Oceanol Acta 7:399–408

    Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner H-W, Alla V, Stoeck T (2006) Microeukaryote community pattern along O2/H2S gradient in supersulphuridic anoxic fjord (Framvaren, Norwey). Appl Environ Microbiol 72:3626–3636

    Article  PubMed  CAS  Google Scholar 

  • Bernhard JM (2000) Distinguishing live from dead foraminifera: methods review and proper applications. Micropaleontology 46(suppl 1):38–46

    Google Scholar 

  • Bernhard JM, Sen Gupta BK (1999) Foraminifera in oxygen-depleted environments. In: Sen Gupta BK (ed) Modern foraminifera. Kluwer Academic, Dordrecht/Boston/London, pp 201–216

    Google Scholar 

  • Bernhard JM, Ostermann DR, Williams DS, Blanks JK (2006) Comparison of two methods to identify live benthic foraminifera: a test between rose Bengal and CellTracker Green with implications for stable isotope paleoreconstructions. Paleoceanography 21:PA4210. doi:10.1029/2006PA001290

    Article  Google Scholar 

  • Boetius A (2007) R/V Meteor Cruise 72–2 MICROHAB. Istanbul (Turkey) – Istanbul (Turkey) Short cruise report, Max Planck Institute for Marine Microbiology, 23 Feb–13 Mar 2007, 11 pp

    Google Scholar 

  • Bougis B (1950) Mèthode pour l’etude quantitative de la microfaune de fonde marine (meiobenthos). Vie Milieu 1:23–38

    Google Scholar 

  • Chislenko LL (1961) On the existence of dimensional gap in the marine fauna of the littoral and sublittoral. In: Proceedings of academy of sciences of the USSR, New Series 137:431–435 (In Russian)

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458

    Google Scholar 

  • Cowie G (2005) The biogeochemistry of Arabian Sea surficial sediments: a review of recent studies. Prog Oceanogr 65:260–289

    Article  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 2010(8):30

    Article  Google Scholar 

  • Egorov VN, Luth U, Luth C, Gulin MB (1998) Gas seeps in the submarine Dnieper Canyon Black Sea: acoustics, video and trawl data. In: Luth U, Luth C, Thiel H (eds) MEGASEEPS-methane gas seeps exploration in the Black Sea, vol 14. Berichte aus dem Zentrum für Meeres- und Klimatoforsch, Hamburg, pp 11–21

    Google Scholar 

  • Egorov VN, Polykarpov GG, Gulin SB, Artemov J, Stokozov MA, Kostova SK (2003) Modern conception about forming-casting and ecological role of methane gas seeps from bottom of the Black Sea. Mar Ecol J 7:5–26 (In Russian)

    Google Scholar 

  • Eremeev VN, Konovalov SK (2006) On the budget and the distribution of oxygen and sulfide in the Black Sea water. Mar Ecol J 5:5–30

    Google Scholar 

  • Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds. Oxford University Press, Oxford

    Google Scholar 

  • Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Mar Ecol Prog Serv 62:1–10

    Article  Google Scholar 

  • Finlay BJ, Maberly SC, Esteban GF (1996) Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements. FEMS Microbiol Ecol 20:229–235

    Article  CAS  Google Scholar 

  • Golemansky VG (1974) Lagenidopsis valkanovi gen. n., sp. n – un nouveau thécamoebien (Rhizopoda: Testacea) du psammal supralittoral des mers. Acta Protozoologica 13:1–4

    Google Scholar 

  • Golemansky VG (1999) Lagynis pontica n. sp., a new monothalamous rhizopod (Granuloreticulosea: Lagynidae) from the Black Sea littoral. Acta Zool Bulg 51:3–13

    Google Scholar 

  • Golemansky VG (2007) Testate amoebas and monothalamous foraminifera (Protozoa) from the Bulgarian Black Sea coast. In: Fet V, Popov A (eds) Biogeography and ecology of Bulgaria. Springer, Dodrecht, pp 555–570

    Chapter  Google Scholar 

  • Gomoiu M-T, Begun T, Teaca A (2008) Macrobenthos distribution along the depth gradient on the North-western Black Sea. IGCP 521 “Black Sea-Mediterranean Corridor during last 30 ky: Sea level change and human adaptation”. Extended Abstracts, pp 63–65

    Google Scholar 

  • Gooday AJ, Anikeeva OV, Sergeeva NG (2006) Tinogullmia lukyanovae sp. nov. – a monothalamous, organic-walled foraminiferan from the coastal Black Sea. J Mar Biol Assoc UK 86:43–49

    Article  Google Scholar 

  • Gooday AJ, Levin LA, Aranda da Silva A, Bett BJ, Cowie GL, Dissard D, Gage JD, Hughes DJ, Jeffreys R, Lamont PA, Larkin KE, Murty SJ, Schumacher S, Whitcraft C, Woulds C (2009) Faunal responses to oxygen gradients on the Pakistan margin: a comparison of foraminiferans, macrofauna and megafauna. Deep-Sea Res II 56:488–502

    Article  CAS  Google Scholar 

  • Gulin MB (1991) The study of microbial processes of sulfate reduction and chemosynthesis in the water environment of the Black Sea. PhD. Sevastopol, 20 p (In Russian)

    Google Scholar 

  • Jorissen FJ, Buzas MA, Culver SJ, Kuehl SA (1994) Vertical distribution of living benthic foraminifera in submarine canyons off New Jersey. J Foramin Res 24:28–36

    Article  Google Scholar 

  • Kiseleva MI (1959) Distribution of polychaete larvae in the plankton of the Black Sea. Proc Sevastopol Biol Station 12:160–167 (In Russian)

    Google Scholar 

  • Kiseleva MI (1979) Zoobenthos. The principles of biological productivity of the Black Sea. Naukova Dumka Publication House, Kiev, pp 208–241 (In Russian)

    Google Scholar 

  • Kiseleva MI (1990) On the absence of larvae of pelagic polychaete in the Black Sea. Zool J 69:132–133 (In Russian)

    Google Scholar 

  • Kiseleva MI (1992) New genus and species of the family Chrysopetalidae Polychaeta from the Black sea. Zool J 71:128–132 (In Russian)

    Google Scholar 

  • Kiseleva MI (1998) Peculiarity of vertical distribution of polychaetes family Protodrilidae and Nerilidae in the Black Sea. Zool J 77:533–539 (In Russian)

    Google Scholar 

  • Klenov MV (1948) The geology of sea. Uchpedgiz, Moscow, 495p (In Russian)

    Google Scholar 

  • Korovchinsky NM, Sergeeva NG (2008) A new family of the order Ctenopoda (Crustacea: Cladocera) from the depths of the Black Sea. Zootaxa 1795:57–66

    Google Scholar 

  • Kriss AE (1959) Marine microbiology (deepwater). M. Publishing house USSR Academy Science, Moscow, 455p

    Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. Oceanogr Mar Biol 41:1–45

    Google Scholar 

  • Luth C, Luth U (1997) A benthic approach to determine long-term changes of the oxic/anoxic interface in the water column of the Black Sea. In: Hawkins LE, Hutchinson S (eds) The responses of marine organisms to their environments. Proceedings of the 30th European marine biology symposium, Southampton, United Kingdom, 18–22 Sept 1995. Southampton Oceanography Centre, Southampton, pp 231–242

    Google Scholar 

  • Luth U, Luth C (1998) Benthic meiofauna and macrofauna of a methane seep area south-west of the Crimean Peninsula, Black Sea. In: Luth U, Luth C, Thiel H (eds) MEGASEEPS-methane gas seeps exploration in the Black Sea, vol 14. Berichte aus dem Zentrum für Meeres- und Klimatoforsch, Hamburg, 113–126

    Google Scholar 

  • Marinov T (1978) Qualitative composition and quantitative distribution of the meiobenthos of the Bulgarian Black sea waters, 1. Proc Inst of Fish, Varna 16:35–49 (In Bulgarian)

    Google Scholar 

  • Massana R, Pedros-Alio C (1994) Role of anaerobic ciliates in planktonic food webs: abundance, ­feeding, and impact on bacteria in the field. Appl Environ Microbiol 60:1325–1334

    PubMed  CAS  Google Scholar 

  • Murina VV, Kideis AE, Ustin F, Toklu B (2006) Occurrence of bathypelagic larvae of the polychaete, Vigtorniella zaikai in the southern part of Black Sea. Mar Ecol J 5:57–62

    Google Scholar 

  • Nikitin VN (1938) The lower boundary of benthic fauna and its distribution in the Black Sea. Rep Ac Sci USSR 21:341–345 (In Russian)

    Google Scholar 

  • Pimenov NV, Rusanov II, Poglazova MN, Mityushina LL, Sorokin DYu, Khmelenina VN, Trotsenko YuA (1998) Bacterial mats on coral-shaped carbonate structures in methane areas of the Black Sea. In: Luth U, Luth C, Thiel H (eds) MEGASEEPS-methane gas seeps exploration in the Black Sea, vol 14. Berichte aus dem Zentrum für Meeres- und klimatoforsch, Hamburg, pp 37–50

    Google Scholar 

  • Piña-Ochoa E, Høgslund S, Geslin E, Cedhagen T, Revsbech NP, Nielsen LP, Schweizer M, Jorissen F, Rysgaard S, Risgaard-Petersen N (2010) Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida. Proc Natl Acad Sci 107:1148–1153

    Article  PubMed  Google Scholar 

  • Revkov NK, Sergeeva NG (2004) Current state of the zoobenthos at the Crimean shores of the Black Sea. In: Ozturk B, Mokievsky VO, Topalogˇlu B (eds) International workshop of the Black Sea Benthos, Istanbul, 18–23 Apr 2004, pp 189–217

    Google Scholar 

  • Risgaard-Petersen N, Langezaal AM, Ingvardsen S, Schmid MC, Jetten MS, Op den Camp HJ, Derksen JW, Pina-Ochoa E, Eriksson SP, Nielsen LP, Revsbech NP, Cedhagen T, van der Zwaan GJ (2006) Evidence for complete denitrification in a benthic foraminifer. Nature 443:93–96

    Article  PubMed  CAS  Google Scholar 

  • Rothe N, Gooday AJ, Cedhagen T, Hughes JA (2010) Biodiversity and distribution of the genus Gromia (Protista, Rhizaria) in the deep Weddell Sea (Southern Ocean). Polar Biol 33. doi:10.1007/s00300-010-0859-z

    Google Scholar 

  • Sergeeva NG (2000a) Biological diversity of bottom sediments in hydrogen-sulphide zone of the Black Sea: the distribution by depths, the stratification in sediment depth. In: The geology of the Black and the Azov Seas, Kiev, pp 314–330 (In Russian)

    Google Scholar 

  • Sergeeva NG (2000b) About the problem of biological diversity in the Black Sea deep-water benthos. Ekologiya Morya 50:57–62 (In Russian)

    Google Scholar 

  • Sergeeva NG (2001) Meiobenthos of deep-water hydrogen sulphide zone of the Black Sea. Hydrobiology J 37:3–9 (In Russian)

    Google Scholar 

  • Sergeeva NG (2003a) Meiobenthos in the region with the methane gas seeps. In: Eremeev VN, Gaevskaya AV (eds) Modern conditions of biological diversity in the nearshore zone of Crimea Peninsula (the Black Sea sector). Ekosi-Gidrophizika, Sevastopol, pp 258–267 (In Russian)

    Google Scholar 

  • Sergeeva NG (2003b) Meiobenthos of the Crimean fluffy bottom bed. In: Eremeev VN, Gaevskaya AV (eds) Modern condition of biological diversity in near-shore zone of the Crimea (the Black Sea sector). Ekosi-Gidrophizika, Sevastopol, pp 248–251 (In Russian)

    Google Scholar 

  • Sergeeva NG (2004a) Structure and distribution of meiobenthos in the region of methane gas seeps from the Black Sea bottom. Hydrobiological J 40:45–56

    Google Scholar 

  • Sergeeva NG (2004b) Pseudopenilia bathyalis gen. n., sp. n. (Crustacea, Branchiopoda, Ctenopoda) – the inhabitant of hydrogen-sulphide zone of the Black Sea. In: Proceedings of the 30th international conference pacem in Maribus, Kiev/Sevastopol, 27–30 Oct 2003, pp 556–560

    Google Scholar 

  • Sergeeva NG (2004c) Pseudopenilia bathyalis gen. n., sp. n. (Crustacea, Branchiopoda, Ctenopoda), an inhabitant of the hydrogen-sulphide zone of the Black Sea. Vestnik Zoologii 38:37–42

    Google Scholar 

  • Sergeeva NG, Anikeeva OV (2004) New Black Sea foraminifera from the Allogromiidae family. In: 4th international congress “Environmental Micropaleontology, Microbiology and Meiobenthology”, Isparta, 13–18 Sept 2004, pp 179–180

    Google Scholar 

  • Sergeeva NG, Anikeeva OV (2008) Goodayia rostellatum gen. nov. sp. n. (PROTOZOA) – a monothalamous foraminiferan from the Black Sea. Vestnik Zoologii 42:467–471

    Article  Google Scholar 

  • Sergeeva NG, Anikeeva OV, Gooday AJ (2010) Soft-shelled (monothalamous) foraminifera from the oxic/anoxic interface (NW Black Sea). Micropaleontology 56:393–407

    Google Scholar 

  • Sergeeva NG, Gulin MB (2007) Meiobenthos from an active methane seepage area in the NW Black Sea. Mar Ecol-Evol Persp 28:152–159

    Google Scholar 

  • Sergeeva N, Gulin S (2009) Benthic fauna of the methane seeps in the Dnieper Paleo-Delta: comparative analysis IGCP 521-INQUA 0501 Fifth Plenary Meeting and Field Trip, Turkey, 22–31 Aug 2009, pp 151–152

    Google Scholar 

  • Sergeeva NG, Kolesnikova EA (1996) The results of meiobenthic studies in the Black Sea. Ekologiya Morya 45:54–62 (In Russian)

    Google Scholar 

  • Sergeeva NG, Zaika VE (2000) Ecology of Polychaeta from bordering pelagic and benthic communities of the Black Sea. Rep Acad Sci Ukraine 1:197–201

    Google Scholar 

  • Sergeeva NG, Zaika VE (2008) Ciliophora in hydrogen sulfide zone of the Black Sea. Mar Ecol J 7:80–85

    Google Scholar 

  • Sergeeva NG, Zaika VE, Kisseleva MI (1996) Life cycle and ecological demands of larval and adult Vigtorniella zaikai Kisseleva 1992 (Chrysopetalidae) in the Black Sea. Bull Mar Sci 60:622–623

    Google Scholar 

  • Sergeeva NG, Zaika VE, Lichtschlag A (2008) Preliminary data on the presence of diverse benthic ciliate species in deep anoxic Black Sea. In: 5th international conference “Environmental Micropaleontology, Microbiology and Meiobenthology”, Chennai, India, 17–25 Feb 2008. Chennai, pp 279– 282

    Google Scholar 

  • Sorokin Yu (1962) Microflora of the Black Sea bottom. Microbiologia 31:899–903

    Google Scholar 

  • Sorokin YuI, Sorokina OV (2008) Primary production and bacterioplankton dynamics in the Black Sea during the cold season. Mar Ecol J 7:65–75

    Google Scholar 

  • Stoeck T, Taylor G, Epstein S (2003) Novel eukaryotes from the permanently anoxic Cariaco basin (Caribbean Sea). Appl Environ Microbiol 2003:5656–5663

    Article  Google Scholar 

  • Stunzhas PA, Yakushev EV (2006) On fine hydrochemical structure of redox-zone in the Black Sea by the measurements results of the open oxygen sensor and by the bathometric data. Oceanology 46:650–672 (In Russian)

    Article  Google Scholar 

  • Surugiu V. (2005) The use of polychaetes as indicators of eutrophication and organic enrichment of coastal waters: a study case – Romanian Black Sea Coast. Analele Stiintifice ale Universitatii “Al.I. Cuza” Iasi, s. Biologie animala, LI

    Google Scholar 

  • Temelkov BK, Golemansky VG, Todorov MT (2006) Updated checklist of the recent foraminifera from the Bulgarian Black Sea coast. Acta Zool Bulg 58:17–36

    Google Scholar 

  • van der Weijden CH, Reichart GH, Visser HJ (1999) Enhanced preservation of organic matter in sediments deposited within the oxygen minimum zone in the northeastern Arabian Sea. Deep-Sea Res I 46:807–830

    Article  Google Scholar 

  • Vinogradov AA, Flint MV (1987) Current state of the Black Sea ecosystem. Nauka, Moscow, 232 pp (In Russian)

    Google Scholar 

  • Winkler LW (1888) The determination of dissolved oxygen in water. Ber Dtsch Chem Ges 21:2843–2857

    Article  Google Scholar 

  • Yanko VV, Troitskaya TS (1987) Late Quaternary foraminifera of the Black Sea. Nauka, Moscow (In Russian)

    Google Scholar 

  • Yanko VV, Vorobjeva LV (1990) Modern foraminifera of Sea of Azov and Kerch strait. Ekologiya Morya 35:29–34 (In Russian)

    Google Scholar 

  • Yanko VV, Vorobyova LV (1991) Foraminifera of the Bosphorus and the Black Sea. Ekologiya Morya 39:47–51 (In Russian)

    Google Scholar 

  • Zaika VE (1999) Specific pelagic and benthic communities of the Black Sea in the hydrogen sulfide zone. Biology of the Sea. Vladivostok 25:480–482 (In Russian)

    Google Scholar 

  • Zaika VE (2008) Is there animal life at the Black sea great depths? Mar Ecol J 7:5–11

    Google Scholar 

  • Zaika VE, Sergeeva NG (2008) The boundary change of benthic settlement of polychaetes Protodrilus sp. and Vigtorniella zaikai in the Black Sea. Mar Ecol J 7:49–53 (In Russian)

    Google Scholar 

  • Zaika VE, Sergeeva NG (2009) The vertical distribution of the deep-water ciliates in the Black sea. Mar Ecol J 8:30–34 (In Russian)

    Google Scholar 

  • Zaika VE, Sergeeva NG, Kisseleva MI (1999) Two polychaete species bordering deep anoxic waters in the Black Sea. Tavricheskiy Medico-Biologicheskiy Vestnik, no 1–2: 56–60

    Google Scholar 

  • Zhizhchenko BP (1974) Methods of palaeogeographical investigations at oil and gas fields. Nedra Publishing House, Moscow, 375 pp (In Russian)

    Google Scholar 

  • Zubkov MV, Sazhin AF, Flint MV (1992) The microplankton organisms at the oxic-anoxic interface in the pelagial of the Black Sea. FEMS Microbiol Lett 101:245–250

    Article  Google Scholar 

Download references

Acknowledgements

A part of this work was supported from EC 7th FP project HYPOX 226213 and 6th FP project HERMES GOCE-CT-2005-511324. AJG was supported by the Oceans 2025 project funded by the Natural Environment Research Council, UK, and the Collaborative Project HERMIONE (contract number 226354) funded under the European Commission’s Framework seven program. We thank an anonymous reviewer for detailed comments that helped to improve the paper ­considerably. We are grateful to Professor Antje Boetius for providing an opportunity to participate in RV Meteor cruise 72/2 and RV M.S. Merian cruise 15/1, and Katerina Ivanova for sample collection, Felix Janssen for help with the O2 and H2S data, and Evgenia Babich for support in preparing the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelli G. Sergeeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sergeeva, N.G. et al. (2012). Meiobenthos of the Oxic/Anoxic Interface in the Southwestern Region of the Black Sea: Abundance and Taxonomic Composition. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_20

Download citation

Publish with us

Policies and ethics