Skip to main content

Green Solvents Fundamental and Industrial Applications

  • Chapter
  • First Online:
Green Solvents I

Abstract

The toxicity and volatile nature of many organic solvents, widely utilized in huge amounts for organic reactions, have posed a serious threat to the environment. Thus, the principles of green chemistry direct to use safer and environmentally friendly solvents. The alternative solvent systems such as water, supercritical fluids, ionic liquids, and fluorinated solvents are employed for a wide range of chemical applications including synthetic, extractions, and materials chemistry. This chapter provides an overview about the use of these alternative solvents in various academic and industrial fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brennecke JF, Maginn EJ (2001) Ionic liquids: innovative fluids for chemical processing. AIChE J 47:2384

    Article  CAS  Google Scholar 

  2. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem. Comm. (Camb) 2399

    Google Scholar 

  3. Lancaster M (2002) Green chemistry: an introductory text. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  5. Kerton FM (2009) Alternative solvents for green chemistry. RSC publishing, Cambridge

    Google Scholar 

  6. Mikami K (2005) Green reaction media in organic synthesis. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  7. Adams DJ, Dyson PJ, Taverner SJ (2004) Chemistry in alternative reaction media. Wiley, Chichester

    Google Scholar 

  8. Nelson WM (2003) Green solvents for chemistry: perspective and practice. Oxford University Press, Oxford

    Google Scholar 

  9. Martins MAP, Frizzo CP, Moreira DN, Buriol L, Machado P (2009) Solvent-free heterocyclic synthesis. Chem Rev 109:4140–4182

    Article  CAS  Google Scholar 

  10. Nagendrappa G (2002) Organic synthesis under solvent-free condition: an environmentally benign procedure – I. Resonance 7:59–68

    Article  CAS  Google Scholar 

  11. Tanaka K (2003) Solvent-free organic synthesis. Wiley-VHC, Weinheim

    Book  Google Scholar 

  12. Varma RS (1999) Solvent-free organic syntheses. Green Chem 1:43–55

    Article  CAS  Google Scholar 

  13. Toda F, Tanaka K (2000) Solvent-free organic synthesis. Chem Rev 100:1025–1074

    Article  CAS  Google Scholar 

  14. Garay AL, Pichon A, James SL (2007) Solvent-free synthesis of metal complexes. Chem Soc Rev 36:846–855

    Article  CAS  Google Scholar 

  15. Walsh PJ, Li H, de Parrodi CA (2007) A green chemistry approach to asymmetric catalysis: solvent-free and highly concentrated reactions. Chem Rev 107:2503–2545

    Article  CAS  Google Scholar 

  16. Cave GWV, Raston CL, Scott JL (2001) Recent advances in solventless organic reactions: towards benign synthesis with remarkable versatility. Chem Commun 21:2159–2169

    Article  CAS  Google Scholar 

  17. Dunk B, Jachuck R (2000) A novel continuous reactor for UV irradiated reactions. Green Chem 2:G13–G14

    Article  Google Scholar 

  18. Waddell DC, Mack J (2009) An environmentally benign solvent-free Tishchenko reaction. Green Chem 11:79–82

    Article  CAS  Google Scholar 

  19. Rothenberg G, Downie AP, Raston CL, Scott JL (2001) Understanding solid/solid organic reactions. J Am Chem Soc 123:8701–8708

    Article  CAS  Google Scholar 

  20. Wegenhart BL, Abu-Omar MM (2010) A solvent-free method for making dioxolane and dioxane from the biorenewables glycerol and furfural catalyzed by oxorhenium(V) oxazoline. Inorg Chem 49:4741–4743

    Article  CAS  Google Scholar 

  21. Wang B, Zhang H, Jing X, Zhu J (2010) Solvent free catalytic synthesis of 2-methylallylidene diacetate using cation-exchange resin. Catal Commun 11:753–757

    Article  CAS  Google Scholar 

  22. Bao K, Fan A, Dai Y, Zhang L, Zhang W, Cheng M, Yao X (2009) Selective demethylation and debenzylation of aryl ethers by magnesium iodide under solvent-free conditions and its application to the total synthesis of natural products. Org Biomol Chem 7:5084–5090

    Article  CAS  Google Scholar 

  23. Waddell DC, Thiel I, Clark TD, Marcum ST, Mack J (2010) Making kinetic and thermodynamic enolates via solvent-free high speed ball milling. Green Chem 12:209–211

    Article  CAS  Google Scholar 

  24. Gora M, Kozik B, Jamrozy K, Łuczynski MK, Brzuzan P, Wozny M (2009) Solvent-free condensations of ketones with malononitrile catalysed by methanesulfonic acid/morpholine system. Green Chem 11:863–867

    Article  CAS  Google Scholar 

  25. Trotzki R, Hoffmann MM, Ondruschka B (2008) Studies on the solvent-free and waste-free Knoevenagel condensation. Green Chem 10:767–772

    Article  CAS  Google Scholar 

  26. Sudheesh N, Sharma SK, Shukla RS (2010) Chitosan as an eco-friendly solid base catalyst for the solvent-free synthesis of jasminaldehyde. J Mol Catal A Chem 321:77–82

    Article  CAS  Google Scholar 

  27. Madhav JV, Reddy YT, Reddy PN, Reddy MN, Kuarm S, Crooks PA, Rajitha B (2009) Cellulose sulfuric acid: an efficient biodegradable and recyclable solid acid catalyst for the one-pot synthesis of aryl-14H-dibenzo[a.j]xanthenes under solvent-free conditions. J Mol Catal A Chem 304:85–87

    Article  CAS  Google Scholar 

  28. Banon-Caballero A, Guillena G, Najera C (2010) Solvent-free direct enantioselective aldol reaction using polystyrene-supported N-sulfonyl-(R a)-binam-D-prolinamide as a catalyst. Green Chem 12:1599–1606

    Article  CAS  Google Scholar 

  29. Thorwirth R, Stolle A, Ondruschka B (2010) Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill. Green Chem 12:985–991

    Article  CAS  Google Scholar 

  30. Fulmer DA, Shearouse WC, Medonza ST, Mack J (2009) Solvent-free Sonogashira coupling reaction via high speed ball milling. Green Chem 11:1821–1825

    Article  CAS  Google Scholar 

  31. Kniese M, Meier MAR (2010) A simple approach to reduce the environmental impact of olefin metathesis reactions: a green and renewable solvent compared to solvent-free reactions. Green Chem 12:169–173

    Article  CAS  Google Scholar 

  32. Huertas D, Florscher M, Dragojlovic V (2009) Solvent-free Diels-Alder reactions of in situ generated cyclopentadiene. Green Chem 11:91–95

    Article  CAS  Google Scholar 

  33. Bellezza F, Cipiciani A, Costantino U, Fringuelli F, Orru M, Piermatti O, Pizzo F (2010) Aza-Diels-Alder reaction of Danishefsky’s diene with immines catalyzed by porous α-zirconium hydrogen phosphate and SDS under solvent-free conditions. Catal Today 152:61–65

    Article  CAS  Google Scholar 

  34. Ma X, Zhou Y, Zhang J, Zhu A, Jiang T, Han B (2008) Solvent-free Heck reaction catalyzed by a recyclable Pd catalyst supported on SBA-15 via an ionic liquid. Green Chem 10:59–66

    Article  CAS  Google Scholar 

  35. Yue CB, Yi TF, Zhu CB, Liu G (2009) Mannich reaction catalyzed by a novel catalyst under solvent-free conditions. J Ind Eng Chem 15:653–656

    CAS  Google Scholar 

  36. Wang ZJ, Zhou HF, Wang TL, He YM, Fan QH (2009) Highly enantioselective hydrogenation of quinolines under solvent-free or highly concentrated conditions. Green Chem 11:767–769

    Article  CAS  Google Scholar 

  37. Chang F, Kim H, Lee B, Park S, Park J (2010) Highly efficient solvent-free catalytic hydrogenation of solid alkenes and nitro-aromatics using Pd nanoparticles entrapped in aluminum oxy-hydroxide. Tetrahedron Lett 51:4250–4252

    Article  CAS  Google Scholar 

  38. Gang L, Xinzong L, Eli W (2007) Solvent-free esterification catalyzed by surfactant-combined catalysts at room temperature. New J Chem 31:348–351

    Article  CAS  Google Scholar 

  39. Jida M, Deprez-Poulain R, Malaquin S, Roussel P, Agbossou-Niedercorn F, Deprez B, Laconde G (2010) Solvent-free microwave-assisted Meyers’ lactamization. Green Chem 12:961–964

    Article  CAS  Google Scholar 

  40. Zhao Y, Li J, Li C, Yin K, Ye D, Jia X (2010) PTSA-catalyzed green synthesis of 1,3, 5-triarylbenzene under solvent-free conditions. Green Chem 12:1370–1372

    Article  CAS  Google Scholar 

  41. Monnereau L, Semeril D, Matt D (2010) Calix[4]arene-diphosphite rhodium complexes in solvent-free hydroaminovinylation of olefins. Green Chem 12:1670–1673

    Article  CAS  Google Scholar 

  42. Wang T, Ma R, Liu L, Zhan Z (2010) Solvent-free solid acid-catalyzed nucleophilic substitution of propargylic alcohols: a green approach for the synthesis of 1,4-diynes. Green Chem 12:1576–1579

    Article  CAS  Google Scholar 

  43. Wang D, Li J, Li N, Gao T, Hou S, Chen B (2010) An efficient approach to homocoupling of terminal alkynes: solvent-free synthesis of 1,3-diynes using catalytic Cu(II) and base. Green Chem 12:45–48

    Article  CAS  Google Scholar 

  44. Epane G, Laguerre JC, Wadouachi A, Marek D (2010) Microwave-assisted conversion of D-glucose into lactic acid under solvent-free conditions. Green Chem 12:502–506

    Article  CAS  Google Scholar 

  45. Patil PR, Kartha KPR (2009) Solvent-free synthesis of thioglycosides by ball milling. Green Chem 11:953–956

    Article  CAS  Google Scholar 

  46. Favrelle A, Bonnet V, Avondo C, Aubry F, Djedaïni-Pilard F, Sarazin C (2010) Lipase-catalyzed synthesis and characterization of novel lipidyl-cyclodextrins in solvent free medium. J Mol Catal B Enzym 66:224–227

    Article  CAS  Google Scholar 

  47. Wang C, Zhao W, Li H, Guo L (2009) Solvent-free synthesis of unsaturated ketones by the Saucy-Marbet reaction using simple ammonium ionic liquid as a catalyst. Green Chem 11:843–847

    Article  CAS  Google Scholar 

  48. Mao W, Ma H, Wang B (2009) A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts. J Hazard Mater 167:707–712

    Article  CAS  Google Scholar 

  49. Gao J, He LN, Miao CX, Chanfreau S (2010) Chemical fixation of CO2: efficient synthesis of quinazoline-2,4(1H, 3H)-diones catalyzed by guanidines under solvent-free conditions. Tetrahedron 66:4063–4067

    Article  CAS  Google Scholar 

  50. Fu YL, Huang W, Li CL, Wang LY, Wei YS, Huang Y, Zhang XH, Wen ZY, Zhang ZX (2009) Monomethine cyanine dyes with an indole nucleus: microwave-assisted solvent-free synthesis, spectral properties and theoretical studies. Dyes Pigments 82:409–415

    Article  CAS  Google Scholar 

  51. Tyagi B, Mishra MK, Jasra RV (2010) Solvent free synthesis of acetyl salicylic acid over nano-crystalline sulfated zirconia solid acid catalyst. J Mol Catal A Chem 317:41–45

    Article  CAS  Google Scholar 

  52. Matsumoto K, Yamaguchi T, Katsuki T (2008) Asymmetric oxidation of sulfides under solvent-free or highly concentrated conditions. Chem Commun 1704–1706

    Google Scholar 

  53. Figiel PJ, Kopylovich MN, Lasri J, Guedes da Silva MFC, Frausto da Silva JJR, Pombeiro AJL (2010) Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper(II) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chem Commun 46:2766–2768

    Article  CAS  Google Scholar 

  54. Wang H, Deng SX, Shen ZR, Wang JG, Ding DT, Chen TH (2009) Facile preparation of Pd/organoclay catalysts with high performance in solvent-free aerobic selective oxidation of benzyl alcohol. Green Chem 11:1499–1502

    Article  CAS  Google Scholar 

  55. Ni J, Yu WJ, He L, Sun H, Cao Y, He HY, Fan KN (2009) A green and efficient oxidation of alcohols by supported gold catalysts using aqueous H2O2 under organic solvent-free conditions. Green Chem 11:756–759

    Article  CAS  Google Scholar 

  56. Zhang J, Wang Z, Wang Y, Wan C, Zheng X, Wang Z (2009) A metal-free catalytic system for the oxidation of benzylic methylenes and primary amines under solvent-free conditions. Green Chem 11:1973–1978

    Article  CAS  Google Scholar 

  57. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Bethell D, Hutchings GJ (2009) Solvent-free oxidation of benzyl alcohol using Au-Pd catalysts prepared by sol immobilization. Phys Chem Phys 11:5142–5153

    Article  CAS  Google Scholar 

  58. Liu G, Hou M, Song J, Zhang Z, Wu T, Han B (2010) Ni2+-containing ionic liquid immobilized on silica: effective catalyst for styrene oxidation with H2O2 at solvent-free condition. J Mol Catal A Chem 316:90–94

    Article  CAS  Google Scholar 

  59. Wang C, Wang G, Mao J, Yao Z, Li H (2010) Metal and solvent-free oxidation of α-isophorone to ketoisophorone by molecular oxygen. Catal Commun 11:758–762

    Article  CAS  Google Scholar 

  60. Choudhary VR, Dumbre DK (2009) Magnesium oxide supported nano-gold: a highly active catalyst for solvent-free oxidation of benzyl alcohol to benzaldehyde by TBHP. Catal Commun 10:1738–1742

    Article  CAS  Google Scholar 

  61. Kirumakki S, Samarajeewa S, Harwell R, Mukherjee A, Herber RH, Clearfield A (2008) Sn(IV) phosphonates as catalysts in solvent-free Baeyer-Villiger oxidations using H2O2. Chem Commun 5556–5558

    Google Scholar 

  62. Szuppa T, Stolle A, Ondruschka B, Hopfe W (2010) Solvent-free dehydrogenation of γ-terpinene in a ball mill: investigation of reaction parameters. Green Chem 12:1288–1294

    Article  CAS  Google Scholar 

  63. Pham PD, Bertus P, Legoupy S (2009) Solvent-free direct reductive amination by catalytic use of an organotin reagent incorporated on an ionic liquid. Chem Commun 6207–6209

    Google Scholar 

  64. Longhi K, Moreira DN, Marzari MRB, Floss VM, Bonacorso HG, Zanatta N, Martins MAP (2010) An efficient solvent-free synthesis of NH-pyrazoles from β-dimethylaminovinylketones and hydrazine on grinding. Tetrahedron Lett 51:3193–3196

    Article  CAS  Google Scholar 

  65. Rafiee E, Eavani S, Rashidzadeh S, Joshaghani M (2009) Silica supported 12-tungstophosphoric acid catalysts for synthesis of 1,4-dihydropyridines under solvent-free conditions. Inorg Chim Acta 362:3555–3562

    Article  CAS  Google Scholar 

  66. Zhang J-X, Zheng Y-P, Lan L, Mo S, Yu P-Y, Shi W, Wang R-M (2009) Direct synthesis of solvent-free multiwall carbon nanotubes/silica nonionic nanofluid hybrid material. ACS Nano 3:2185–2190

    Article  CAS  Google Scholar 

  67. Pol VG, Daemen LL, Vogel S, Chertkov G (2010) Solvent-free fabrication of ferromagnetic Fe3O4 octahedra. Ind Eng Chem Res 49:920–924

    Article  CAS  Google Scholar 

  68. Pol VG, Thiyagarajan P, Calderon Moreno JM, Popa M (2009) Solvent-free fabrication of rare LaCO3OH luminescent superstructures. Inorg Chem 48:6417–6424

    Article  CAS  Google Scholar 

  69. Tsekova DS, Saez JA, Escuder B, Miravet JF (2009) Solvent-free construction of self-assembled 1D nanostructures from low-molecular-weight organogelators: sublimation vs. gelation. Soft Matter 5:3727–3735

    Article  CAS  Google Scholar 

  70. Li S, Yan W, Zhang W (2009) Solvent-free production of nanoscale zero-valent iron (nZVI) with precision milling. Green Chem 11:1618–1626

    Article  CAS  Google Scholar 

  71. Atkinson MBJ, Bucar DK, Sokolov AN, Friscic T, Robinson CN, Bilal MY, Sinada NG, Chevannes A, MacGillivray LR (2008) General application of mechanochemistry to templated solid-state reactivity: rapid and solvent-free access to crystalline supermolecules. Chem Commun 5713–5715

    Google Scholar 

  72. Ji G, Gong Z, Zhu W, Zheng M, Liao S, Shen K, Liu J, Cao J (2009) Simply synthesis of Co3O4 nanowire arrays using a solvent-free method. J Alloys Comp 476:579–583

    Article  CAS  Google Scholar 

  73. Wang X, He L, He Y, Zhang J, Su CY (2009) Solvent-free synthesis of a Pd(II) coordination networked complex as reusable catalyst based on 3,5-bis(diphenylphosphino)benzoic acid. Inorg Chim Acta 362:3513–3518

    Article  CAS  Google Scholar 

  74. Chmura AJ, Davidson MG, Frankis CJ, Jones MD, Lunn MD (2008) Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem Commun 1293–1295

    Google Scholar 

  75. Kumar Saha T, Rajashekhar B, Gowda RR, Ramkumar V, Chakraborty D (2010) Bis(imino)phenoxide complexes of zirconium: synthesis, structural characterization and solvent-free ring-opening polymerization of cyclic esters and lactides. Dalton Trans 39:5091–5093

    Article  CAS  Google Scholar 

  76. Raynaud J, Ottou WN, Gnanou Y, Taton D (2010) Metal-free and solvent-free access to α, ω-heterodifunctionalized poly(propylene oxide)s by N-heterocyclic carbene-induced ring opening polymerization. Chem Commun 46:3203–3205

    Article  CAS  Google Scholar 

  77. Horchani H, Chaabouni M, Gargouri Y, Sayari A (2010) Solvent-free lipase-catalyzed synthesis of long-chain starch esters using microwave heating: optimization by response surface methodology. Carbohydr Polym 79:466–474

    Article  CAS  Google Scholar 

  78. Lubineau A, Augé J (1999) Water as solvent in organic synthesis. Springer, Berlin

    Google Scholar 

  79. Li CJ (1999) Organic reactions in aqueous media-with a focus on carbon-carbon bond formation. Chem Rev 93:2023–2035

    Article  Google Scholar 

  80. Li CJ, Chan TH (2007) Comprehensive organic reactions in aqueous media. Wiley-Interscience, Hoboken

    Book  Google Scholar 

  81. Lindstrom UM (2007) Organic reactions in water, principles, strategies and applications. Blackwell Publishing, Oxford

    Google Scholar 

  82. Raj M, Singh VK (2009) Organocatalytic reactions in water. Chem Commun 6687–6703

    Google Scholar 

  83. Peng YY, Liu J, Lei X, Yin Z (2010) Room-temperature highly efficient Suzuki-Miyaura reactions in water in the presence of Stilbazo. Green Chem 12:1072–1075

    Article  CAS  Google Scholar 

  84. Prastaro A, Ceci P, Chiancone E, Boffi A, Cirilli R, Colone M, Fabrizi G, Stringaro A, Cacchi S (2009) Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols. Green Chem 11:1929–1932

    Article  CAS  Google Scholar 

  85. Ohtaka A, Teratani T, Fujii R, Ikeshita K, Shimomura O, Nomura R (2009) Facile preparation of linear polystyrene-stabilized Pd nanoparticles in water. Chem Commun 7188–7190

    Google Scholar 

  86. Lipshutz BH, Ghorai S (2010) PQS-2: ring-closing- and cross-metathesis reactions on lipophilic substrates; in water only at room temperature, with in-flask catalyst recycling. Tetrahedron 66:1057–1063

    Article  CAS  Google Scholar 

  87. Vieira AS, Cunha RLOR, Klitzke CF, Zukerman-Schpector J, Stefani HA (2010) Highly efficient palladium-catalyzed Suzuki-Miyaura reactions of potassium aryltrifluoroborates with 5-iodo-1,3-dioxin-4-ones in water: an approach to α-aryl-β-ketoesters. Tetrahedron 66:773–779

    Article  CAS  Google Scholar 

  88. Wu J, Ni B, Headley AD (2009) Di(methylimidazole)prolinol silyl ether catalyzed highly michael addition of aldehydes to nitroolefins in water. Org Lett 11:3354–3356

    Article  CAS  Google Scholar 

  89. Hao WJ, Jiang B, Tu SJ, Cao XD, Wu SS, Yan S, Zhang XH, Han ZG, Shi F (2009) A new mild base-catalyzed Mannich reaction of hetero-arylamines in water: highly efficient stereoselective synthesis of β-aminoketones under microwave heating. Org Biomol Chem 7:1410–1414

    Article  CAS  Google Scholar 

  90. Ko K, Nakano K, Watanabe S, Ichikawa Y, Kotsuki H (2009) Development of new DMAP-related organocatalysts for use in the Michael addition reaction of β-ketoesters in water. Tetrahedron Lett 50:4025–4029

    Article  CAS  Google Scholar 

  91. De Rosa M, Soriente A (2010) A combination of water and microwave irradiation promotes the catalyst-free addition of pyrroles and indoles to nitroalkenes. Tetrahedron 66:2981–2986

    Article  CAS  Google Scholar 

  92. Xu DZ, Liu Y, Shi S, Wang Y (2010) A simple, efficient and green procedure for Knoevenagel condensation catalyzed by [C4dabco][BF4] ionic liquid in water. Green Chem 12:514–517

    Article  CAS  Google Scholar 

  93. Yu JJ, Wang LM, Liu JQ, Guo FL, Liu Y, Jiao N (2010) Synthesis of tetraketones in water and under catalyst-free conditions. Green Chem 12:216–219

    Article  CAS  Google Scholar 

  94. Lin JH, Zhang CP, Xiao JC (2009) Enantioselective aldol reaction of cyclic ketones with aryl aldehydes catalyzed by a cyclohexanediamine derived salt in the presence of water. Green Chem 11:1750–1753

    Article  CAS  Google Scholar 

  95. Jiang Z, Yang H, Han X, Luo J, Wong MW, Lu Y (2010) Direct asymmetric aldol reactions between aldehydes and ketones catalyzed by L-tryptophan in the presence of water. Org Biomol Chem 8:1368–1377

    Article  CAS  Google Scholar 

  96. Fu SD, Fu XK, Zhang SP, Zou XC, Wu XJ (2009) Highly diastereo- and enantioselective direct aldol reactions by 4-tert-butyldimethylsiloxy-substituted organocatalysts derived from N-prolylsulfonamides in water. Tetrahedron Asymmetry 20:2390–2396

    Article  CAS  Google Scholar 

  97. Behr A, Leschinski J (2009) Application of the solvent water in two-phase telomerisation reactions and recycling of the homogeneous palladium catalysts. Green Chem 11:609–613

    Article  CAS  Google Scholar 

  98. Nishikata T, Lipshutz BH (2009) Amination of allylic alcohols in water at room temperature. Org Lett 11:2377–2379

    Article  CAS  Google Scholar 

  99. Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JMJ (2010) Iridium-catalysed amine alkylation with alcohols in water. Chem Commun 46:1541–1543

    Article  CAS  Google Scholar 

  100. Marzaro G, Guiotto A, Chilin A (2009) Microwave-promoted mono-N-alkylation of aromatic amines in water: a new efficient and green method for an old and problematic reaction. Green Chem 11:774–776

    Article  CAS  Google Scholar 

  101. Coutouli-Argyropoulou E, Sarridis P, Gkizis P (2009) Water as the medium of choice for the 1,3-dipolar cycloaddition reactions of hydrophobic nitrones. Green Chem 11:1906–1914

    Article  CAS  Google Scholar 

  102. Jing L, Wei J, Zhou L, Huang Z, Lia Z, Zhou X (2010) Lithium pipecolinate as a facile and efficient ligand for copper-catalyzed hydroxylation of aryl halides in water. Chem Commun 46:4767–4769

    Article  CAS  Google Scholar 

  103. Bernini R, Cacchi S, Fabrizi G, Forte G, Petrucci F, Prastaro A, Niembro S, Shafir A, Vallribera A (2009) Alkynylation of aryl halides with perfluoro-tagged palladium nanoparticles immobilized on silica gel under aerobic, copper- and phosphine-free conditions in water. Org Biomol Chem 7:2270–2273

    Article  CAS  Google Scholar 

  104. Bhadra S, Saha A, Ranu BC (2008) One-pot copper nanoparticle-catalyzed synthesis of S-aryl- and S-vinyl dithiocarbamates in water: high diastereoselectivity achieved for vinyl dithiocarbamates. Green Chem 10:1224–1230

    Article  CAS  Google Scholar 

  105. Pei BJ, Lee AWM (2010) Highly efficient synthesis of extended triptycenes via Diels-Alder cycloaddition in water under microwave radiation. Tetrahedron Lett 51:4519–4522

    Article  CAS  Google Scholar 

  106. Ma Y, Jin S, Kan Y, Zhang YJ, Zhang W (2010) Highly active asymmetric Diels-Alder reactions catalyzed by C2-symmetric bipyrrolidines: catalyst recycling in water medium and insight into the catalytic mode. Tetrahedron 66:3849–3854

    Article  CAS  Google Scholar 

  107. Matveeva EV, Petrovskii PV, Klemenkova ZS, Bondarenko NA, Odinets IL (2010) A practical and efficient green synthesis of β-aminophosphoryl compounds via the aza-Michael reaction in water. C R Chimie 13:964–970

    Article  CAS  Google Scholar 

  108. Rafiee E, Eavani S, Khajooei Nejad F, Joshaghani M (2010) Cs2.5H0.5PW12O40 catalyzed diastereoselective synthesis of β-amino ketones via three component Mannich-type reaction in water. Tetrahedron 66:6858–6863

    Article  CAS  Google Scholar 

  109. Mukhopadhyay C, Datta A, Butcher RJ (2009) Highly efficient one-pot, three-component Mannich reaction catalysed by boric acid and glycerol in water with major ‘syn’ diastereoselectivity. Tetrahedron Lett 50:4246–4250

    Article  CAS  Google Scholar 

  110. Li J, Lu L, Su W (2010) A new strategy for the synthesis of benzoxanthenes catalyzed by proline triflate in water. Tetrahedron Lett 51:2434–2437

    Article  CAS  Google Scholar 

  111. Teimouri MB, Abbasi T, Mivehchi H (2008) Novel multicomponent reactions of primary amines and alkyl propiolates with alloxan derivatives in water. Tetrahedron 64:10425–10430

    Article  CAS  Google Scholar 

  112. Firouzabadi H, Iranpoor N, Gholinejad M (2010) Recyclable palladium-catalyzed Sonogashira-Hagihara coupling of aryl halides using 2-aminophenyl diphenylphosphinite ligand in neat water under copper-free condition. J Mol Catal A Chem 321:110–116

    Article  CAS  Google Scholar 

  113. Suzuka T, Okada Y, Ooshiro K, Uozumi Y (2010) Copper-free Sonogashira coupling in water with an amphiphilic resin-supported palladium complex. Tetrahedron 66:1064–1069

    Article  CAS  Google Scholar 

  114. Panchan W, Chiampanichayakul S, Snyder DL, Yodbuntung S, Pohmakotr M, Reutrakul V, Jaipetch T, Kuhakarn C (2010) Facile oxidative hydrolysis of acetals to esters using hypervalent iodine(III)/LiBr combination in water. Tetrahedron 66:2732–2735

    Article  CAS  Google Scholar 

  115. MacLeod PD, Li Z, Li CJ (2010) Self-catalytic, solvent-free or in/on water protocol: aza-Friedel-Crafts reactions between 3,4-dihydroisoquinoline and 1- or 2-naphthols. Tetrahedron 66:1045–1050

    Article  CAS  Google Scholar 

  116. DeBlase C, Leadbeater NE (2010) Ligand-free CuI-catalyzed cyanation of aryl halides using K4[Fe(CN)6] as cyanide source and water as solvent. Tetrahedron 66:1098–1101

    Article  CAS  Google Scholar 

  117. Sin E, Yi SS, Lee YS (2010) Chitosan-g-mPEG-supported palladium (0) catalyst for Suzuki cross-coupling reaction in water. J Mol Catal A Chem 315:99–104

    Article  CAS  Google Scholar 

  118. Liautard V, Desvergnes V, Martin OR (2008) Novel Galf-disaccharide mimics: synthesis by way of 1,3-dipolar cycloaddition reactions in water. Tetrahedron Asymmetry 19:1999–2002

    Article  CAS  Google Scholar 

  119. Wu XL, Wang GW (2009) Hypervalent iodine-mediated aminobromination of olefins in water. Tetrahedron 65:8802–8807

    Article  CAS  Google Scholar 

  120. Astarita A, Cermola F, DellaGreca M, Iesce MR, Previtera L, Rubino M (2009) Photooxygenation of furans in water and ionic liquid solutions. Green Chem 11:2030–2033

    Article  CAS  Google Scholar 

  121. Kuroboshi M, Yoshida T, Oshitani J, Goto K, Tanaka H (2009) Electroorganic synthesis in oil-in-water (O/W) nanoemulsion: TEMPO-mediated electrooxidation of amphiphilic alcohols in water. Tetrahedron 65:7177–7185

    Article  CAS  Google Scholar 

  122. Shen W, Wang LM, Tian H, Tang J, Yu JJ (2009) Brønsted acidic imidazolium salts containing perfluoroalkyl tails catalyzed one-pot synthesis of 1,8-dioxo-decahydroacridines in water. J Fluorine Chem 130:522–527

    Article  CAS  Google Scholar 

  123. Wang J, Wang H (2009) Clean production of Acid Blue 9 via catalytic oxidation in water. Ind Eng Chem Res 48:5548–5550

    Article  CAS  Google Scholar 

  124. Feng B, Hou Z, Wang X, Hu Y, Li H, Qiao Y (2009) Selective aerobic oxidation of styrene to benzaldehyde catalyzed by water-soluble palladium(II) complex in water. Green Chem 11:1446–1452

    Article  CAS  Google Scholar 

  125. Takenaga N, Goto A, Yoshimura M, Fujioka H, Dohi T, Kita Y (2009) Hypervalent iodine(III)/Et4N+Br combination in water for green and racemization-free aqueous oxidation of alcohols. Tetrahedron Lett 50:3227–3229

    Article  CAS  Google Scholar 

  126. Figiel PJ, Kirillov AM, Karabach YY, Kopylovich MN, Pombeiro AJL (2009) Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds. J Mol Catal A Chem 305:178–182

    Article  CAS  Google Scholar 

  127. Mitsudome T, Noujima A, Mizugaki T, Jitsukawa K, Kaneda K (2009) Supported gold nanoparticle catalyst for the selective oxidation of silanes to silanols in water. Chem Commun 5302–5304

    Google Scholar 

  128. Zeror S, Collin J, Fiaud JC, Aribi Zouioueche L (2010) Enantioselective ketoester reductions in water: a comparison between microorganism- and ruthenium-catalyzed reactions. Tetrahedron Asymmetry 21:1211–1215

    Article  CAS  Google Scholar 

  129. Sant’ Anna Gds, Machado P, Sauzem PD, Rosa FA, Rubin MA, Ferreira J, Bonacorso HG, Zanattaa N, Martins MAP (2009) Ultrasound promoted synthesis of 2-imidazolines in water: a greener approach toward monoamine oxidase inhibitors. Bioorg Med Chem Lett 19:546–549

    Article  CAS  Google Scholar 

  130. Carpita A, Ribecai A, Stabile P (2010) Microwave-assisted synthesis of indole- and azaindole-derivatives in water via cycloisomerization of 2-alkynylanilines and alkynylpyridinamines promoted by amines or catalytic amounts of neutral or basic salts. Tetrahedron 66:7169–7178

    Article  CAS  Google Scholar 

  131. Qu GR, Zhao L, Wang DC, Wu J, Guo HM (2008) Microwave-promoted efficient synthesis of C6-cyclo secondary amine substituted purine analogues in neat water. Green Chem 10:287–289

    Article  CAS  Google Scholar 

  132. Tu SJ, Cao XD, Hao WJ, Zhang XH, Yan S, Wu SS, Han ZG, Shi F (2009) An efficient and chemoselective synthesis of benzo[e][1,4]thiazepin-2-(1H,3H,5H)-ones via a microwave-assisted multi-component reaction in water. Org Biomol Chem 7:557–563

    Article  CAS  Google Scholar 

  133. Tu SJ, Zhang XH, Han ZG, Cao XD, Wu SS, Yan S, Hao WJ, Zhang G, Ma N (2009) Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water. J Comb Chem 11:428–432

    Article  CAS  Google Scholar 

  134. Baruwati B, Polshettiwar V, Varma RS (2009) Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chem 11:926–930

    Article  CAS  Google Scholar 

  135. Jessop PG, Leitner W (1999) Chemical synthesis using supercritical fluids. Wiley-VCH, Weinheim

    Book  Google Scholar 

  136. Williams JR, Clifford AA (2000) Supercritical fluid methods and protocols. Humana Press Totowa, Totowa

    Book  Google Scholar 

  137. Hyde JR, Licence P, Carter D, Poliakoff M (2001) Continuous catalytic reactions in supercritical fluids. Appl Catal A Gen 222:119–131

    Article  CAS  Google Scholar 

  138. Señoráns FJ, Ibañez E (2002) Analysis of fatty acids in foods by supercritical fluid chromatography. Anal Chim Acta 465:131–144

    Article  Google Scholar 

  139. Sarrade S, Guizard C, Rios GM (2003) New applications of supercritical fluids and supercritical fluids processes in separation. Sep Purif Technol 32:57–63

    Article  CAS  Google Scholar 

  140. Goodship V, Ogur EO (2004) Polymer processing with supercritical fluids, Rapra review reports. Rapra Technology Ltd, Shawbury

    Google Scholar 

  141. Prajapati D, Gohain M (2004) Recent advances in the application of supercritical fluids for carbon-carbon bond formation in organic synthesis. Tetrahedron 60:815–833

    Article  CAS  Google Scholar 

  142. Yeo SD, Kiran E (2005) Formation of polymer particles with supercritical fluids: a review. J Supercrit Fluid 34:287–308

    Article  CAS  Google Scholar 

  143. Aymonier C, Loppinet-Serani A, Reveron H, Garrabos Y, Cansell F (2006) Review of supercritical fluids in inorganic materials science. J Supercrit Fluid 38:242–251

    Article  CAS  Google Scholar 

  144. Martínez JL (2008) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  145. Mishima K (2008) Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas. Adv Drug Deliv Rev 60:411–432

    Article  CAS  Google Scholar 

  146. Sunarso J, Ismadji S (2009) Decontamination of hazardous substances from solid matrices and liquids using supercritical fluids extraction: a review. J Hazard Mater 161:1–20

    Article  CAS  Google Scholar 

  147. Ramsey E, Sun Q, Zhang Z, Zhang C, Gou W (2009) Mini-review: green sustainable processes using supercritical fluid carbon dioxide. J Environ Sci 21:720–726

    Article  CAS  Google Scholar 

  148. Herrero M, Mendiola JA, Cifuentes A, Ibanez E (2010) Supercritical fluid extraction: recent advances and applications. J Chromatogr A 1217:2495–2511

    Article  CAS  Google Scholar 

  149. Egydio JA, Moraes AM, Rosa PTV (2010) Supercritical fluid extraction of lycopene from tomato juice and characterization of its antioxidation activity. J Supercrit Fluid 54:159–164

    Article  CAS  Google Scholar 

  150. Hanif M, Atsuta Y, Fujie K, Daimon H (2010) Supercritical fluid extraction of microbial phospholipid fatty acids from activated sludge. J Chromatogr A 1217:6704–6708

    Article  CAS  Google Scholar 

  151. Nguyen-Phan TD, Pham HD, Kim S, Oh ES, Kim EJ, Shin EW (2010) Surfactant removal from mesoporous TiO2 nanocrystals by supercritical CO2 fluid extraction. J Ind Eng Chem 16:823–828

    CAS  Google Scholar 

  152. Arias M, Penichet I, Ysambertt F, Bauza R, Zougagh M, Ríos A (2009) Fast supercritical fluid extraction of low- and high-density polyethylene additives: comparison with conventional reflux and automatic Soxhlet extraction. J Supercrit Fluid 50:22–28

    Article  CAS  Google Scholar 

  153. Tian G, Liao W, Wai CM, Rao L (2008) Extraction of trivalent lanthanides with oxa-diamides in supercritical fluid carbon dioxide. Ind Eng Chem Res 47:2803–2807

    Article  CAS  Google Scholar 

  154. Sotelo JL, Rodrıguez A, Agueda VI, Gomez P (2010) Supercritical fluids as reaction media in the ethylbenzene disproportionation on ZSM-5. J Supercrit Fluid 55:241–245

    Article  CAS  Google Scholar 

  155. Sparks DL, Estevez LA, Hernandez R (2009) Supercritical-fluid-assisted oxidation of oleic acid with ozone and potassium permanganate. Green Chem 11:986–993

    Article  CAS  Google Scholar 

  156. Lopez-Periago AM, Garcıa-Gonzalez CA, Domingo C (2010) Towards the synthesis of Schiff base macrocycles under supercritical CO2 conditions. Chem Commun 46:4315–4317

    Article  CAS  Google Scholar 

  157. Chatterjee M, Matsushima K, Ikushima Y, Sato M, Yokoyama T, Kawanami H, Suzuki T (2010) Production of linear alkane via hydrogenative ring opening of a furfural-derived compound in supercritical carbon dioxide. Green Chem 12:779–782

    Article  CAS  Google Scholar 

  158. Grignard B, Phan T, Bertin D, Gigmes D, Jerome C, Detrembleur C (2010) Dispersion nitroxide mediated polymerization of methyl methacrylate in supercritical carbon dioxide using in situ formed stabilizers. Polym Chem 1:837–840

    Article  CAS  Google Scholar 

  159. Li J, Peng J, Zhang G, Bai Y, Lai G, Li X (2010) Hydrosilylation catalysed by a rhodium complex in a supercritical CO2/ionic liquid system. New J Chem 34:1330–1334

    Article  CAS  Google Scholar 

  160. Han X, Bourne RA, Poliakoff M, George MW (2009) Strategies for cleaner oxidations using photochemically generated singlet oxygen in supercritical carbon dioxide. Green Chem 11:1787–1792

    Article  CAS  Google Scholar 

  161. Manoi K, Rizvi SSH (2010) Physicochemical characteristics of phosphorylated cross-linked starch produced by reactive supercritical fluid extrusion. Carbohyd Polym 81:687–694

    Article  CAS  Google Scholar 

  162. Cheng WT, Chih YW (2010) Manipulation of silver nanostructures using supercritical fluids in the presence of polyvinylpyrrolidone and ethylene glycol. J Supercrit Fluid 54:272–280

    Article  CAS  Google Scholar 

  163. Wang Q, Guan YX, Yao SJ, Zhu ZQ (2010) Microparticle formation of sodium cellulose sulfate using supercritical fluid assisted atomization introduced by hydrodynamic cavitation mixer. Chem Eng J 159:220–229

    Article  CAS  Google Scholar 

  164. da Silva MS, Vão ER, Temtem M, Mafr L, Caldeira J, Aguiar-Ricardo A, Casimiro T (2010) Clean synthesis of molecular recognition polymeric materials with chiral sensing capability using supercritical fluid technology. Application as HPLC stationary phases. Biosens Bioelectron 25:1742–1747

    Article  CAS  Google Scholar 

  165. Chen Z, Li S, Xue F, Sun G, Luo C, Chen J, Xu Q (2010) A simple and efficient route to prepare inorganic hollow microspheres using polymer particles as template in supercritical fluids. Colloids Surf A Physicochem Eng Aspects 355:45–52

    Article  CAS  Google Scholar 

  166. Duarte ARC, Caridade SG, Mano JF, Reis RL (2009) Processing of novel bioactive polymeric matrixes for tissue engineering using supercritical fluid technology. Mater Sci Eng C 29:2110–2115

    Article  CAS  Google Scholar 

  167. Padrela L, Rodrigues MA, Velaga SP, Matos HA, de Azevedo EG (2009) Formation of indomethacin-saccharin cocrystals using supercritical fluid technology. Eur J Pharm Sci 38:9–17

    Article  CAS  Google Scholar 

  168. Duarte ARC, Mano JF, Reis RL (2009) Preparation of chitosan scaffolds loaded with dexamethasone for tissue engineering applications using supercritical fluid technology. Eur Polym J 45:141–148

    Article  CAS  Google Scholar 

  169. Ramírez R, Garay I, Álvarez J, Martí M, Parra JL, Coderch L (2008) Supercritical fluid extraction to obtain ceramides from wool fibers. Sep Purif Technol 63:552–557

    Article  CAS  Google Scholar 

  170. Reverchon E, Cardea S, Rapuano C (2008) A new supercritical fluid-based process to produce scaffolds for tissue replacement. J Supercrit Fluid 45:365–373

    Article  CAS  Google Scholar 

  171. Hoshi T, Sawaguchi T, Matsuno R, Konno T, Takai M, Ishihara K (2010) Control of surface modification uniformity inside small-diameter polyethylene/poly(vinyl acetate) composite tubing prepared with supercritical carbon dioxide. J Mater Chem 20:4897–4904

    Article  CAS  Google Scholar 

  172. Zhang X, Chang D, Liu J, Luo Y (2010) Conducting polymer aerogels from supercritical CO2 drying PEDOT-PSS hydrogels. J Mater Chem 20:5080–5085

    Article  CAS  Google Scholar 

  173. Sun Z, Zhang H, An G, Yang G, Liu Z (2010) Supercritical CO2-facilitating large-scale synthesis of CeO2 nanowires and their application for solvent-free selective hydrogenation of nitroarenes. J Mater Chem 20:1947–1952

    Article  CAS  Google Scholar 

  174. Urbanczyk L, Calberg C, Benali S, Bourbigot S, Espuche E, Gouanve F, Dubois P, Germain A, Jerome C, Detrembleur C, Alexandre M (2008) Poly(caprolactone)/clay masterbatches prepared in supercritical CO2 as efficient clay delamination promoters in poly(styrene-co-acrylonitrile). J Mater Chem 18:4623–4630

    Article  CAS  Google Scholar 

  175. Shi J, Khatri M, Xue SJ, Mittal GS, Ma Y, Li D (2009) Solubility of lycopene in supercritical CO2 fluid as affected by temperature and pressure. Sep Purif Technol 66:322–328

    Article  CAS  Google Scholar 

  176. Welton T (1999) Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem Rev 99:2071–2083

    Article  CAS  Google Scholar 

  177. Wasserscheid P, Welton T (2008) Ionic liquids in synthesis. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  178. Keskin S, Kayrak-Talay D, Akman U, Hortacsu O (2007) A review of ionic liquids towards supercritical fluid applications. J Supercrit Fluid 43:150–180

    Article  CAS  Google Scholar 

  179. Parvulescu VI, Hardacre C (2007) Catalysis in ionic liquids. Chem Rev 107:2615–2665

    Article  CAS  Google Scholar 

  180. Sledz P, Mauduit M, Grela K (2008) Olefin metathesis in ionic liquids. Chem Soc Rev 37:2433–2442

    Article  CAS  Google Scholar 

  181. Zhu S, Wu Y, Chen Q, Yu Z, Wang C, Jin S, Ding Y, Wu G (2006) Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem 8:325–327

    Article  CAS  Google Scholar 

  182. Antonietti M, Kuang D, Smarsly B, Zhou Y (2004) Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angew Chem Int Ed 43:4988–4992

    Article  CAS  Google Scholar 

  183. Martins MAP, Frizzo CP, Moreira DN, Zanatta N, Bonacorso HG (2008) Ionic liquids in heterocyclic synthesis. Chem Rev 108:2015–2050

    Article  CAS  Google Scholar 

  184. Cao Y, Wu J, Zhang J, Li H, Zhang Y, He J (2009) Room temperature ionic liquids (RTILs): a new and versatile platform for cellulose processing and derivatization. Chem Eng J 147:13–21

    Article  CAS  Google Scholar 

  185. Kubisa P (2009) Ionic liquids as solvents for polymerization processes-progress and challenges. Prog Polym Sci 34:1333–1347

    Article  CAS  Google Scholar 

  186. Plechkova NV, Seddon KR (2008) Applications of ionic liquids in the chemical industry. Chem Soc Rev 37:123–150

    Article  CAS  Google Scholar 

  187. Rogers RD, Seddon KR (2002) Ionic liquids: industrial applications to green chemistry, vol 818, ACS symposium series. American Chemical Society, Washington, DC

    Book  Google Scholar 

  188. Rogers RD, Seddon KR (2003) Ionic liquids–solvents of the future? Science 302:792–793

    Article  Google Scholar 

  189. Moniruzzaman M, Nakashima K, Kamiya N, Goto M (2010) Recent advances of enzymatic reactions in ionic liquids. Biochem Eng J 48:295–314

    Article  CAS  Google Scholar 

  190. Noritomi H, Suzuki K, Kikuta M, Kato S (2009) Catalytic activity of α-chymotrypsin in enzymatic peptide synthesis in ionic liquids. Biochem Eng J 47:27–30

    Article  CAS  Google Scholar 

  191. Shen ZL, Zhou WJ, Liu YT, Ji SJ, Loh TP (2008) One-pot chemoenzymatic syntheses of enantiomerically-enriched O-acetyl cyanohydrins from aldehydes in ionic liquid. Green Chem 10:283–286

    Article  CAS  Google Scholar 

  192. Kahveci D, Guo Z, Ozcelik B, Xu X (2009) Lipase-catalyzed glycerolysis in ionic liquids directed towards diglyceride synthesis. Process Biochem 44:1358–1365

    Article  CAS  Google Scholar 

  193. Kurata A, Kitamura Y, Irie S, Takemoto S, Akai Y, Hirota Y, Fujita T, Iwai K, Furusawa M, Kishimoto N (2010) Enzymatic synthesis of caffeic acid phenethyl ester analogues in ionic liquid. J Biotechnol 148:133–138

    Article  CAS  Google Scholar 

  194. Liang JH, Ren XQ, Wang JT, Jinag M, Li ZJ (2010) Preparation of biodiesel by transesterification from cottonseed oil using the basic dication ionic liquids as catalysts. J Fuel Chem Technol 38:275–280

    Article  CAS  Google Scholar 

  195. de los AP Rıos, Hernandez-Fernandez FJ, Tomas-Alonso F, Gomez D, Vıllora G (2008) Synthesis of esters in ionic liquids. The effect of vinyl esters and alcohols. Process Biochem 43:892–895

    Article  CAS  Google Scholar 

  196. Vidya P, Chadha A (2010) Pseudomonas cepacia lipase catalyzed esterification and transesterification of 3-(furan-2-yl) propanoic acid/ethyl ester: a comparison in ionic liquids vs hexane. J Mol Catal B Enzym 65:68–72

    Article  CAS  Google Scholar 

  197. Abe Y, Kude K, Hayase S, Kawatsura M, Tsunashima K, Itoh T (2008) Design of phosphonium ionic liquids for lipase-catalyzed transesterification. J Mol Catal B Enzym 51:81–85

    Article  CAS  Google Scholar 

  198. Yang J, Zhou H, Lu X, Yuan Y (2010) Brønsted acidic ionic liquid as an efficient and recyclable promoter for hydroesterification of olefins catalyzed by a triphenylphosphine-palladium complex. Catal Commun 11:1200–1204

    Article  CAS  Google Scholar 

  199. Chiappe C, Malvaldi M, Pomelli CS (2010) The solvent effect on the Diels-Alder reaction in ionic liquids: multiparameter linear solvation energy relationships and theoretical analysis. Green Chem 12:1330–1339

    Article  CAS  Google Scholar 

  200. Bortolini O, De Nino A, Garofalo A, Maiuolo L, Procopio A, Russo B (2010) Erbium triflate in ionic liquids: a recyclable system of improving selectivity in Diels-Alder reactions. Appl Catal A Gen 372:124–129

    Article  CAS  Google Scholar 

  201. Zheng X, Qian Y, Wang Y (2010) Direct asymmetric aza Diels-Alder reaction catalyzed by chiral 2-pyrrolidinecarboxylic acid ionic liquid. Catal Commun 11:567–570

    Article  CAS  Google Scholar 

  202. Van Buu ON, Aupoix A, Hong NDT, Vo-Thanh G (2009) Chiral ionic liquids derived from isosorbide: synthesis, properties and applications in asymmetric synthesis. New J Chem 33:2060–2072

    Article  CAS  Google Scholar 

  203. Buu ONV, Aupoix A, Vo-Thanh G (2009) Synthesis of novel chiral imidazolium-based ionic liquids derived from isosorbide and their applications in asymmetric aza Diels-Alder reaction. Tetrahedron 65:2260–2265

    Article  CAS  Google Scholar 

  204. Wang WH, Wang XB, Kodama K, Hirose T, Zhang GY (2010) Novel chiral ammonium ionic liquids as efficient organocatalysts for asymmetric Michael addition of aldehydes to nitroolefins. Tetrahedron 66:4970–4976

    Article  CAS  Google Scholar 

  205. Guo H, Li X, Wang JL, Jin XH, Lin XF (2010) Acidic ionic liquid [NMP]H2PO4 as dual solvent-catalyst for synthesis of β-alkoxyketones by the oxa-Michael addition reactions. Tetrahedron 66:8300–8303

    Article  CAS  Google Scholar 

  206. Meciarova M, Toma Š, Šebesta R (2009) Asymmetric organocatalyzed Michael addition of aldehydes to β-nitrostyrene in ionic liquids. Tetrahedron Asymmetry 20:2403–2406

    Article  CAS  Google Scholar 

  207. Zhang Q, Ni B, Headley AD (2008) Asymmetric Michael addition reactions of aldehydes with nitrostyrenes catalyzed by functionalized chiral ionic liquids. Tetrahedron 64:5091–5097

    Article  CAS  Google Scholar 

  208. Chen W, Yin H, Zhang Y, Lu Z, Wang A, Shen Y, Jiang T, Yu L (2010) Acylation of salicylamide to 5-acetylsalicylamide using ionic liquids as dual catalyst and solvent. J Ind Eng Chem 16:800–804

    CAS  Google Scholar 

  209. Lin JH, Zhang CP, Zhu ZQ, Chen QY, Xiao JC (2009) A novel pyrrolidinium ionic liquid with 1,1,2,2-tetrafluoro-2-(1,1,2,2-tetrafluoroethoxy)ethanesulfonate anion as a recyclable reaction medium and efficient catalyst for Friedel-Crafts alkylations of indoles with nitroalkenes. J Fluorine Chem 130:394–398

    Article  CAS  Google Scholar 

  210. Aupoix A, Pegot B, Vo-Thanh G (2010) Synthesis of imidazolium and pyridinium-based ionic liquids and application of 1-alkyl-3-methylimidazolium salts as pre-catalysts for the benzoin condensation using solvent-free and microwave activation. Tetrahedron 66:1352–1356

    Article  CAS  Google Scholar 

  211. Saha D, Saha A, Ranu BC (2009) Remarkable influence of substituent in ionic liquid in control of reaction: simple, efficient and hazardous organic solvent free procedure for the synthesis of 2-aryl benzimidazoles promoted by ionic liquid, [pmim]BF4. Green Chem 11:733–737

    Article  CAS  Google Scholar 

  212. Moreira DN, Longhi K, Frizzo CP, Bonacorso HG, Zanatta N, Martins MAP (2010) Ionic liquid promoted cyclocondensation reactions to the formation of isoxazoles, pyrazoles and pyrimidines. Catal Commun 11:476–479

    Article  CAS  Google Scholar 

  213. Frizzo CP, Marzari MRB, Buriol L, Moreira DN, Rosa FA, Vargas PS, Zanatta N, Bonacorso HG, Martins MAP (2009) Ionic liquid effects on the reaction of β-enaminones and tert-­butylhydrazine and applications for the synthesis of pyrazoles. Catal Commun 10:1967–1970

    Article  CAS  Google Scholar 

  214. Dong F, Zhenghao F, Zuliang L (2009) Functionalized ionic liquid as the recyclable catalyst for Mannich-type reaction in aqueous media. Catal Commun 10:1267–1270

    Article  CAS  Google Scholar 

  215. Feng LC, Sun YW, Tang WJ, Xu LJ, Lam KL, Zhou Z, Chan ASC (2010) Highly efficient chemoselective construction of 2,2-dimethyl-6-substituted 4-piperidones via multi-component tandem Mannich reaction in ionic liquids. Green Chem 12:949–952

    Article  CAS  Google Scholar 

  216. Zhang Z, Li C, Wang Q, Zhao ZK (2009) Efficient hydrolysis of chitosan in ionic liquids. Carbohyd Polym 78:685–689

    Article  CAS  Google Scholar 

  217. Lima S, Neves P, Antunes MM, Pillinger M, Ignatyev N, Valente AA (2009) Conversion of mono/di/polysaccharides into furan compounds using 1-alkyl-3-methylimidazolium ionic liquids. Appl Catal A Gen 363:93–99

    Article  CAS  Google Scholar 

  218. Zhang Z, Zhao ZK (2009) Solid acid and microwave-assisted hydrolysis of cellulose in ionic liquid. Carbohyd Res 344:2069–2072

    Article  CAS  Google Scholar 

  219. Li C, Zhao ZK, Wang A, Zheng M, Zhang T (2010) Production of 5-hydroxymethylfurfural in ionic liquids under high fructose concentration conditions. Carbohyd Res 345:1846–1850

    Article  CAS  Google Scholar 

  220. Gabriele B, Mancuso R, Lupinacci E, Spina R, Salerno G, Veltri L, Dibenedetto A (2009) Recyclable catalytic synthesis of substituted quinolines: copper-catalyzed heterocyclization of 1-(2-aminoaryl)-2-yn-1-ols in ionic liquids. Tetrahedron 65:8507–8512

    Article  CAS  Google Scholar 

  221. Qi X, Watanabe M, Aida TM, Smith RL Jr (2009) Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chem 11:1327–1331

    Article  CAS  Google Scholar 

  222. Teixeira J, Silva AR, Branco LC, Afonso CAM, Freire C (2010) Asymmetric alkene epoxidation by Mn(III)salen catalyst in ionic liquids. Inorg Chim Acta 363:3321–3329

    Article  CAS  Google Scholar 

  223. Wu J, Liu C, Jiang Y, Hu M, Li S, Zhai Q (2010) Synthesis of chiral epichlorohydrin by chloroperoxidase-catalyzed epoxidation of 3-chloropropene in the presence of an ionic liquid as co-solvent. Catal Commun 11:727–731

    Article  CAS  Google Scholar 

  224. Bibal C, Daran JC, Deroover S, Poli R (2010) Ionic Schiff base dioxidomolybdenum(VI) complexes as catalysts in ionic liquid media for cyclooctene epoxidation. Polyhedron 29:639–647

    Article  CAS  Google Scholar 

  225. Herbert M, Montilla F, Moyano R, Pastor A, Álvarez E, Galindo A (2009) Olefin epoxidations in the ionic liquid [C4mim][PF6] catalysed by oxodiperoxomolybdenum species in situ generated from molybdenum trioxide and urea-hydrogen peroxide: the synthesis and molecular structure of [Mo(O)(O2)2(4-MepyO)2].H2O. Polyhedron 28:3929–3934

    Article  CAS  Google Scholar 

  226. Zang H, Su Q, Mo Y, Cheng BW, Jun S (2010) Ionic liquid [EMIM]OAc under ultrasonic irradiation towards the first synthesis of trisubstituted imidazoles. Ultrason Sonochem 17:749–751

    Article  CAS  Google Scholar 

  227. Wang Y, Gong X, Wang Z, Dai L (2010) SO3H-functionalized ionic liquids as efficient and recyclable catalysts for the synthesis of pentaerythritol diacetals and diketals. J Mol Catal A Chem 322:7–16

    Article  CAS  Google Scholar 

  228. Prikhod’ko SA, Adonin NY, Parmon VN (2010) The ionic liquid [bmim]Br as an alternative medium for the catalytic cleavage of aromatic C-F and C-Cl bonds. Tetrahedron Lett 51:2265–2268

    Article  CAS  Google Scholar 

  229. Azizov AH, Aliyeva RV, Kalbaliyeva ES, Ibrahimova MJ (2010) Selective synthesis and the mechanism of formation of the oligoalkylnaphthenic oils by oligocyclization of 1-hexene in the presence of ionic-liquid catalysts. Appl Catal A Gen 375:70–77

    Article  CAS  Google Scholar 

  230. Zhang Z, Zhao ZK (2010) Microwave-assisted conversion of lignocellulosic biomass into furans in ionic liquid. Bioresour Technol 101:1111–1114

    Article  CAS  Google Scholar 

  231. Arai S, Nakashima K, Tanino T, Ogino C, Kondo A, Fukuda H (2010) Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme Microb Technol 46:51–55

    Article  CAS  Google Scholar 

  232. Junming XU, Jianchun J, Zhiyue Z, Jing L (2010) Synthesis of tributyl citrate using acid ionic liquid as catalyst. Process Saf Environ Protect 88:28–30

    Article  CAS  Google Scholar 

  233. Wang H, Lu B, Wang X, Zhang J, Cai Q (2009) Highly selective synthesis of dimethyl carbonate from urea and methanol catalyzed by ionic liquids. Fuel Process Technol 90:1198–1201

    Article  CAS  Google Scholar 

  234. Fang D, Shi QR, Cheng J, Gong K, Liu ZL (2008) Regioselective mononitration of aromatic compounds using Brnsted acidic ionic liquids as recoverable catalysts. Appl Catal A Gen 345:158–163

    Article  CAS  Google Scholar 

  235. Liu Y, Hu R, Xu C, Su H (2008) Alkylation of isobutene with 2-butene using composite ionic liquid catalysts. Appl Catal A Gen 346:189–193

    Article  CAS  Google Scholar 

  236. Frizzo CP, Moreira DN, Guarda EA, Fiss GF, Marzari MRB, Zanatta N, Bonacorso HG, Martins MAP (2009) Ionic liquid as catalyst in the synthesis of N-alkyl trifluoromethyl pyrazoles. Catal Commun 10:1153–1156

    Article  CAS  Google Scholar 

  237. Ruther T, Ross T, Mensforth EJ, Hollenkamp AF (2009) N-alkylation of N-heterocyclic ionic liquid precursors in ionic liquids. Green Chem 11:804–809

    Article  CAS  Google Scholar 

  238. Gunaratne HQN, Lotz TJ, Seddon KR (2010) Chloroindate(III) ionic liquids as catalysts for alkylation of phenols and catechol with alkenes. New J Chem 34:1821–1824

    Article  CAS  Google Scholar 

  239. Bui TLT, Korth W, Aschauer S, Jess A (2009) Alkylation of isobutane with 2-butene using ionic liquids as catalyst. Green Chem 11:1961–1967

    Article  CAS  Google Scholar 

  240. Xin-hua Y, Min C, Qi-xun D, Xiao-nong C (2009) Friedel-Crafts acylation of anthracene with oxalyl chloride catalyzed by ionic liquid of [bmim]Cl/AlCl3. Chem Eng J 146:266–269

    Article  CAS  Google Scholar 

  241. Shogren RL, Biswas A (2010) Acetylation of starch with vinyl acetate in imidazolium ionic liquids and characterization of acetate distribution. Carbohyd Polym 81:149–151

    Article  CAS  Google Scholar 

  242. Deb S, Wähälä K (2010) Rapid synthesis of long chain fatty acid esters of steroids in ionic liquids with microwave irradiation: expedient one-pot procedure for estradiol monoesters. Steroids 75:740–744

    Article  CAS  Google Scholar 

  243. Lombardo M, Easwar S, Pasi F, Trombini C, Dhavale DD (2008) Protonated arginine and lysine as catalysts for the direct asymmetric aldol reaction in ionic liquids. Tetrahedron 64:9203–9207

    Article  CAS  Google Scholar 

  244. Zhao X, Gu Y, Li J, Ding H, Shan Y (2008) An environment-friendly method for synthesis of 1,4-dibromo-naphthalene in aqueous solution of ionic liquids. Catal Commun 9:2179–2182

    Article  CAS  Google Scholar 

  245. Forsyth SA, Frohlich U, Goodrich P, Gunaratne HQN, Hardacre C, McKeown A, Seddon KR (2010) Functionalised ionic liquids: synthesis of ionic liquids with tethered basic groups and their use in Heck and Knoevenagel reactions. New J Chem 34:723–731

    Article  CAS  Google Scholar 

  246. Yuan X, Yan N, Xiao C, Li C, Fei Z, Cai Z, Kou Y, Dyson PJ (2010) Highly selective hydrogenation of aromatic chloronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids. Green Chem 12:228–233

    Article  CAS  Google Scholar 

  247. Zhou H, Yang J, Ye L, Lin H, Yuan Y (2010) Effects of acidity and immiscibility of lactam-based Brønsted-acidic ionic liquids on their catalytic performance for esterification. Green Chem 12:661–665

    Article  CAS  Google Scholar 

  248. Singh D, Narayanaperumal S, Gul K, Godoi M, Rodrigues OED, Braga AL (2010) Efficient synthesis of selenoesters from acyl chlorides mediated by CuO nanopowder in ionic liquid. Green Chem 12:957–960

    Article  CAS  Google Scholar 

  249. Osichow A, Mecking S (2010) Alkoxycarbonylation of ethylene with cellulose in ionic liquids. Chem Commun 46:4980–4981

    Article  CAS  Google Scholar 

  250. Van Doorslaer C, Peeters A, Mertens P, Vinckier C, Binnemans K, De Vos D (2009) Oxidation of cyclic acetals by ozone in ionic liquid media. Chem Commun 6439–6441

    Google Scholar 

  251. Harjani JR, Abraham TJ, Gomez AT, Garcia MT, Singer RD, Scammells PJ (2010) Sonogashira coupling reactions in biodegradable ionic liquids derived from nicotinic acid. Green Chem 12:650–655

    Article  CAS  Google Scholar 

  252. Mayer AC, Salit AF, Bolm C (2008) Iron-catalysed aziridination reactions promoted by an ionic liquid. Chem Commun 5975–5977

    Google Scholar 

  253. Guryanov I, Lopez AM, Carraro M, Da Ros T, Scorrano G, Maggini M, Prato M, Bonchio M (2009) Metal-free, retro-cycloaddition of fulleropyrrolidines in ionic liquids under microwave irradiation. Chem Commun 3940–3942

    Google Scholar 

  254. Liu F, Li Z, Yu S, Cui X, Ge X (2010) Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids. J Hazard Mater 174:872–875

    Article  CAS  Google Scholar 

  255. Eichmann M, Keim W, Haumann M, Melcher BU, Wasserscheid P (2009) Nickel catalyzed dimerization of propene in chloroaluminate ionic liquids: detailed kinetic studies in a batch reactor. J Mol Catal A Chem 314:42–48

    Article  CAS  Google Scholar 

  256. Kumar V, Malhotra SV (2008) Synthesis of nucleoside-based antiviral drugs in ionic liquids. Bioorg Med Chem Lett 18:5640–5642

    Article  CAS  Google Scholar 

  257. Chrobok A (2010) The Baeyere-Villiger oxidation of ketones with Oxone® in the presence of ionic liquids as solvents. Tetrahedron 66:6212–6216

    Article  CAS  Google Scholar 

  258. Hu YL, Liu QF, Lu TT, Lu M (2010) Highly efficient oxidation of organic halides to aldehydes and ketones with H5IO6 in ionic liquid [C12mim][FeCl4]. Catal Commun 11:923–927

    Article  CAS  Google Scholar 

  259. Chrobok A (2010) Baeyer-Villiger oxidation of ketones in ionic liquids using molecular oxygen in the presence of benzaldehyde. Tetrahedron 66:2940–2943

    Article  CAS  Google Scholar 

  260. Fan X, Qu Y, Wang Y, Zhang X, Wang J (2010) Ru(III)-catalyzed oxidation of homopropargyl alcohols in ionic liquid: an efficient and green route to 1,2-allenic ketones. Tetrahedron Lett 51:2123–2126

    Article  CAS  Google Scholar 

  261. Zakzeski J, Jongerius AL, Weckhuysen BM (2010) Transition metal catalyzed oxidation of Alcell lignin, soda lignin, and lignin model compounds in ionic liquids. Green Chem 12:1225–1236

    Article  CAS  Google Scholar 

  262. Zang H, Su Q, Mo Y, Cheng B (2010) Ionic liquid under ultrasonic irradiation towards a facile synthesis of pyrazolone derivatives. Ultrason Sonochem 18:68–72

    Article  CAS  Google Scholar 

  263. Kishi Y, Nagura H, Inagi S, Fuchigami T (2008) Facile and highly efficient synthesis of fluorinated heterocycles via Prins cyclization in ionic liquid hydrogen fluoride salts. Chem Commun 3876–3878

    Google Scholar 

  264. Obliosca JM, Arellano IHJ, Huang MH, Arco SD (2010) Double layer micellar stabilization of gold nanocrystals by greener ionic liquid 1-butyl-3-methylimidazolium lauryl sulfate. Mater Lett 64:1109–1112

    Article  CAS  Google Scholar 

  265. Tsuda T, Seino S, Kuwabata S (2009) Gold nanoparticles prepared with a room-temperature ionic liquid-radiation irradiation method. Chem Commun 6792–6794

    Google Scholar 

  266. Redel E, Walter M, Thomann R, Hussein L, Kruger M, Janiak C (2010) Stop-and-go, stepwise and “ligand-free” nucleation, nanocrystal growth and formation of Au-NPs in ionic liquids (ILs). Chem Commun 46:1159–1161

    Article  CAS  Google Scholar 

  267. Khare V, Li Z, Mantion A, Ayi AA, Sonkaria S, Voelkl A, Thunemann AF, Taubert A (2010) Strong anion effects on gold nanoparticle formation in ionic liquids. J Mater Chem 20:1332–1339

    Article  CAS  Google Scholar 

  268. Okazaki K, Kiyama T, Hirahara K, Tanaka N, Kuwabata S, Torimoto T (2008) Single-step synthesis of gold-silver alloy nanoparticles in ionic liquids by a sputter deposition technique. Chem Commun 691–693

    Google Scholar 

  269. An J, Wang D, Luo Q, Yuan X (2009) Antimicrobial active silver nanoparticles and silver/polystyrene core-shell nanoparticles prepared in room-temperature ionic liquid. Mater Sci Eng C 29:1984–1989

    Article  CAS  Google Scholar 

  270. Lorbeer C, Cybinska J, Mudring AV (2010) Facile preparation of quantum cutting GdF3: Eu3+ nanoparticles from ionic liquids. Chem Commun 46:571–573

    Article  CAS  Google Scholar 

  271. Hu H, Yang H, Huang P, Cui D, Peng Y, Zhang J, Lu F, Liand J, Shi D (2010) Unique role of ionic liquid in microwave-assisted synthesis of monodisperse magnetite nanoparticles. Green Chem 12:957–960

    Article  CAS  Google Scholar 

  272. von Prondzinski N, Cybinska J, Mudring AV (2010) Easy access to ultra long-time stable, luminescent europium(II) fluoride nanoparticles in ionic liquids. Chem Commun 46:4393–4395

    Article  CAS  Google Scholar 

  273. Farag HK, Endres F (2008) Studies on the synthesis of nano-alumina in air and water stable ionic liquids. J Mater Chem 18:442–449

    Article  CAS  Google Scholar 

  274. Guo DJ (2010) Novel synthesis of PtRu/multi-walled carbon nanotube catalyst via a microwave-assisted imidazolium ionic liquid method for methanol oxidation. J Power Sources 195:7234–7237

    Article  CAS  Google Scholar 

  275. Xia J, Li H, Luo Z, Shi H, Wang K, Shu H, Yan Y (2009) Microwave-assisted synthesis of flower-like and leaf-like CuO nanostructures via room-temperature ionic liquids. J Phys Chem Solids 70:1461–1464

    Article  CAS  Google Scholar 

  276. Taghvaei V, Habibi-Yangjeh A, Behboudnia M (2009) Preparation and characterization of SnO2 nanoparticles in aqueous solution of [EMIM][EtSO4] as a low cost ionic liquid using ultrasonic irradiation. Powder Technol 195:63–67

    Article  CAS  Google Scholar 

  277. Ma L, Chen WX, Li H, Xu ZD (2009) Synthesis and characterization of MoS2 nanostructures with different morphologies via an ionic liquid-assisted hydrothermal route. Mater Chem Phys 116:400–405

    Article  CAS  Google Scholar 

  278. Shang S, Li L, Yang X, Zheng L (2009) Synthesis and characterization of poly(3-methyl thiophene) nanospheres in magnetic ionic liquid. J Colloid Interface Sci 333:415–418

    Article  CAS  Google Scholar 

  279. Alammar T, Mudring AV (2009) Facile ultrasound-assisted synthesis of ZnO nanorods in an ionic liquid. Mater Lett 63:732–735

    Article  CAS  Google Scholar 

  280. Wang Y, Yang H (2009) Synthesis of iron oxide nanorods and nanocubes in an imidazolium ionic liquid. Chem Eng J 147:71–78

    Article  CAS  Google Scholar 

  281. Redel E, Krämer J, Thomann R, Janiak C (2009) Synthesis of Co, Rh and Ir nanoparticles from metal carbonyls in ionic liquids and their use as biphasic liquid-liquid hydrogenation nanocatalysts for cyclohexene. J Organomet Chem 694:1069–1075

    Article  CAS  Google Scholar 

  282. Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z (2009) Poly(3,4-ethylenedioxythiophene) nanospheres synthesized in magnetic ionic liquid. Mater Lett 63:8–10

    Article  CAS  Google Scholar 

  283. Zhai Y, Zhang Q, Liu F, Gao G (2008) Synthesis of nanostructure rutile TiO2 in a carboxyl-containing ionic liquid. Mater Lett 62:4563–4565

    Article  CAS  Google Scholar 

  284. Xu X, Zhang M, Feng J, Zhang M (2008) Shape-controlled synthesis of single-crystalline cupric oxide by microwave heating using an ionic liquid. Mater Lett 62:2787–2790

    Article  CAS  Google Scholar 

  285. Haldorai Y, Lyoo WS, Noh SK, Shim JJ (2010) Ionic liquid mediated synthesis of silica/polystyrene core-shell composite nanospheres by radical dispersion polymerization. React Funct Polym 70:393–399

    Article  CAS  Google Scholar 

  286. Li X, Gao Y, Yu L, Zheng L (2010) Template-free synthesis of CdS hollow nanospheres based on an ionic liquid assisted hydrothermal process and their application in photocatalysis. J Solid State Chem 183:1423–1432

    Article  CAS  Google Scholar 

  287. Xia J, Li H, Luo Z, Xu H, Wang K, Yin S, Yana Y (2010) Self-assembly and enhanced optical absorption of Bi2WO6 nests via ionic liquid-assisted hydrothermal method. Mater Chem Phys 121:6–9

    Article  CAS  Google Scholar 

  288. Alammar T, Birkner A, Shekhah O, Mudring AV (2010) Sonochemical preparation of TiO2 nanoparticles in the ionic liquid 1-(3-hydroxypropyl)-3-methylimidazolium-bis(trifluoromethylsulfonyl)amide. Mater Chem Phys 120:109–113

    Article  CAS  Google Scholar 

  289. Ju M, Li Q, Gu J, Xu R, Li Y, Wang X, Wang E (2010) Polyoxometalate-assisted electrochemical deposition of ZnO spindles in an ionic liquid. Mater Lett 64:643–645

    Article  CAS  Google Scholar 

  290. Xia J, Li H, Luo Z, Wang K, Yin S, Yan Y (2010) Ionic liquid-assisted hydrothermal synthesis of three-dimensional hierarchical CuO peachstone-like architectures. Appl Surf Sci 256:1871–1877

    Article  CAS  Google Scholar 

  291. Luo H, Zou D, Zhou L, Ying T (2009) Ionic liquid-assisted synthesis of transition metal oxalates via one-step solid-state reaction. J Alloys Compd 481:L12–L14

    Article  CAS  Google Scholar 

  292. Gautam UK, Bando Y, Zhan J, Costa PMFJ, Fang XS, Golberg D (2008) Ga-doped ZnS nanowires as precursors for ZnO/ZnGa2O4 nanotubes. Adv Mater 20:810–814

    Article  CAS  Google Scholar 

  293. Li Z, Luan Y, Mu T, Chen G (2009) Unusual nanostructured ZnO particles from an ionic liquid precursor. Chem Commun 1258–1260

    Google Scholar 

  294. Sadeghzadeh H, Morsali A, Retailleau P (2010) Ultrasonic-assisted synthesis of two new nano-structured 3D lead(II) coordination polymers: precursors for preparation of PbO nano-structures. Polyhedron 29:925–933

    Article  CAS  Google Scholar 

  295. Langi B, Shah C, Singh K, Chaskar A, Kumar M, Bajaj PN (2010) Ionic liquid-induced synthesis of selenium nanoparticles. Mater Res Bull 45:668–671

    Article  CAS  Google Scholar 

  296. Pujari AA, Chadbourne JJ, Ward AJ, Costanzo L, Masters AF, Maschmeyer T (2009) The use of acidic task-specific ionic liquids in the formation of high surface area mesoporous silica. New J Chem 33:1997–2000

    Article  CAS  Google Scholar 

  297. Pang J, Luan Y, Li F, Cai X, Li Z (2010) Ionic liquid-assisted synthesis of silica particles and their application in drug release. Mater Lett 64:2509–2512

    Article  CAS  Google Scholar 

  298. Wheatley PS, Allan PK, Teat SJ, Ashbrook SE, Morris RE (2010) Task specific ionic liquids for the ionothermal synthesis of siliceous zeolites. Chem Sci 1:483–487

    Article  CAS  Google Scholar 

  299. Quijano G, Couvert A, Amrane A (2010) Ionic liquids: applications and future trends in bioreactor technology. Bioresour Technol 101:8923–8930

    Article  CAS  Google Scholar 

  300. Dong WS, Li MY, Liu C, Lin F, Liu Z (2008) Novel ionic liquid assisted synthesis of SnO2 microspheres. J Colloid Interface Sci 319:115–122

    Article  CAS  Google Scholar 

  301. Xiao W, Chen Q, Wu Y, Wu T, Dai L (2010) Ferromagnetism of Zn0.95Mn0.05O controlled by concentration of zinc acetate in ionic liquid precursor. Mater Chem Phys 123:1–4

    Article  CAS  Google Scholar 

  302. Yang Y, Qiu S, He C, He W, Yu L, Xie X (2010) Green chemical functionalization of multiwalled carbon nanotubes with poly(ε-caprolactone) in ionic liquids. Appl Surf Sci 257:1010–1014

    Article  CAS  Google Scholar 

  303. Gao H, Guo C, Xing J, Zhao J, Liu H (2010) Extraction and oxidative desulfurization of diesel fuel catalyzed by a Brønsted acidic ionic liquid at room temperature. Green Chem 12:1220–1224

    Article  CAS  Google Scholar 

  304. Zhai L, Zhong Q, He C, Wang J (2010) Hydroxyl ammonium ionic liquids synthesized by water-bath microwave: synthesis and desulfurization. J Hazard Mater 177:807–813

    Article  CAS  Google Scholar 

  305. Kimura A, Taguchi M, Kondoh T, Yang J, Nagaishi R, Yoshida Y, Hirota K (2010) Decomposition of halophenols in room-temperature ionic liquids by ionizing radiation. Radiat Phys Chem 79:1159–1164

    Article  CAS  Google Scholar 

  306. Park KI, Xanthos M (2009) A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym Degrad Stab 94:834–844

    Article  CAS  Google Scholar 

  307. Lee JS, Mayes RT, Luo H, Dai S (2010) Ionothermal carbonization of sugars in a protic ionic liquid under ambient conditions. Carbon 48:3364–3368

    Article  CAS  Google Scholar 

  308. Hu X, Hu K, Zeng L, Zhao M, Huang H (2010) Hydrogels prepared from pineapple peel cellulose using ionic liquid and their characterization and primary sodium salicylate release study. Carbohyd Polym 82:62–68

    Article  CAS  Google Scholar 

  309. Feng Z, Cheng-Gang F, You-Ting W, Yuan-Tao W, Ai-Min L, Zhi-Bing Z (2010) Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA. Chem Eng J 160:691–697

    Article  CAS  Google Scholar 

  310. Likhanova NV, Domínguez-Aguilar MA, Olivares-Xometl O, Nava-Entzana N, Arce E, Dorantes H (2010) The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment. Corros Sci 52:2088–2097

    Article  CAS  Google Scholar 

  311. Zhang QB, Hua YX (2010) Corrosion inhibition of aluminum in hydrochloric acid solution by alkylimidazolium ionic liquids. Mater Chem Phys 119:57–64

    Article  CAS  Google Scholar 

  312. Ashassi-Sorkhabi H, Es’haghi M (2009) Corrosion inhibition of mild steel in acidic media by [BMIm]Br Ionic liquid. Mater Chem Phys 114:267–271

    Article  CAS  Google Scholar 

  313. Lisenkov A, Zheludkevich ML, Ferreira MGS (2010) Active protective Al-Ce alloy coating electrodeposited from ionic liquid. Electrochem Commun 12:729–732

    Article  CAS  Google Scholar 

  314. Watanabe H (2010) The study of factors influencing the depolymerisation of cellulose using a solid catalyst in ionic liquids. Carbohyd Polym 80:1168–1171

    Article  CAS  Google Scholar 

  315. Wang H, Yan R, Li Z, Zhang X, Zhang S (2010) Fe-containing magnetic ionic liquid as an effective catalyst for the glycolysis of poly(ethylene terephthalate). Catal Commun 11:763–767

    Article  CAS  Google Scholar 

  316. Xiao C, Wibisono N, Adidharma H (2010) Dialkylimidazolium halide ionic liquids as dual function inhibitors for methane hydrate. Chem Eng Sci 65:3080–3087

    Article  CAS  Google Scholar 

  317. Pang J, Luan Y, Wang Q, Du J, Cai X, Li Z (2010) Microwave-assistant synthesis of inorganic particles from ionic liquid precursors. Colloids Surf A Physicochem Eng Aspects 360:6–12

    Article  CAS  Google Scholar 

  318. Park TJ, Lee SH, Simmons TJ, Martin JG, Mousa SA, Snezhkova EA, Sarnatskaya VV, Nikolaev VG, Linhardt RJ (2008) Heparin-cellulose-charcoal composites for drug detoxification prepared using room temperature ionic liquids. Chem Commun 5022–5024

    Google Scholar 

  319. Lu J, Yan F, Texter J (2009) Advanced applications of ionic liquids in polymer science. Prog Polym Sci 34:431–448

    Article  CAS  Google Scholar 

  320. Schmidt-Naake G, Schmalfuß A, Woecht I (2008) Free radical polymerization in ionic liquids-influence of the IL-concentration and temperature. Chem Eng Res Des 86:765–774

    Article  CAS  Google Scholar 

  321. Hou C, Qu R, Sun C, Ji C, Wang C, Ying L, Jiang N, Xiu F, Chen L (2008) Novel ionic liquids as reaction medium for ATRP of acrylonitrile in the absence of any ligand. Polymer 49:3424–3427

    Article  CAS  Google Scholar 

  322. Li Z, Luan Y, Wang Q, Zhuang G, Qi Y, Wang Y, Wang C (2009) ZnO nanostructure construction on zinc foil: the concept from an ionic liquid precursor aqueous solution. Chem Commun 6273–6275

    Google Scholar 

  323. Xie M, Kong Y, Han H, Shi J, Ding L, Song C, Zhang Y (2008) Amphiphilic ABA triblock copolymers via combination of ROMP and ATRP in ionic liquid: synthesis, characterization, and self-assembly. React Funct Polym 68:1601–1608

    Article  CAS  Google Scholar 

  324. Puttick S, Irvine DJ, Licence P, Thurecht KJ (2009) RAFT-functional ionic liquids: towards understanding controlled free radical polymerisation in ionic liquids. J Mater Chem 19:2679–2682

    Article  CAS  Google Scholar 

  325. Dukuzeyezu EM, Lefebvre H, Tessier M, Fradet A (2010) Synthesis of high molar mass poly(12-hydroxydodecanoic acid) in Brønsted acid ionic liquids. Polymer 51:1218–1221

    Article  CAS  Google Scholar 

  326. Dong B, Song D, Zheng L, Xu J, Li N (2009) Electrosynthesis of polyfluorene in an ionic liquid and characterization of its stable electrocatalytic activity for formic acid oxidation. J Electroanal Chem 633:63–70

    Article  CAS  Google Scholar 

  327. Eker B, Zagorevski D, Zhu G, Linhardt RJ, Dordick JS (2009) Enzymatic polymerization of phenols in room-temperature ionic liquids. J Mol Catal B Enzym 59:177–184

    Article  CAS  Google Scholar 

  328. Mallakpour S, Rafiee Z (2008) Use of ionic liquid and microwave irradiation as a convenient, rapid and eco-friendly method for synthesis of novel optically active and thermally stable aromatic polyamides containing N-phthaloyl-L-alanine pendent group. Polym Degrad Stab 93:753–759

    Article  CAS  Google Scholar 

  329. Mallakpour S, Rafiee Z (2008) Safe and fast polyamidation of 5-[4-(2-phthalimidiylpropanoylamino)-benzoylamino]isophthalic acid with aromatic diamines in ionic liquid under microwave irradiation. Polymer 49:3007–3013

    Article  CAS  Google Scholar 

  330. Andrzejewska E, Podgorska-Golubska M, Stepniak I, Andrzejewski M (2009) Photoinitiated polymerization in ionic liquids: kinetics and viscosity effects. Polymer 50:2040–2047

    Article  CAS  Google Scholar 

  331. Biso M, Mastragostino M, Montanino M, Passerini S, Soavi F (2008) Electropolymerization of poly(3-methylthiophene) in pyrrolidinium-based ionic liquids for hybrid supercapacitors. Electrochim Acta 53:7967–7971

    Article  CAS  Google Scholar 

  332. Dong B, Xing Y, Xu J, Zheng L, Hou J, Zhao F (2008) Electrosyntheses of free-standing and highly conducting polyselenophene films in an ionic liquid. Electrochim Acta 53:5745–5751

    Article  CAS  Google Scholar 

  333. Vijayaraghavan R, Pringle JM, MacFarlane DR (2008) Anionic polymerization of styrene in ionic liquids. Eur Polym J 44:1758–1762

    Article  CAS  Google Scholar 

  334. Zhang N, Liu QY, Wang YL, Shan ZM, Yang EL, Hu HC (2010) Ionothermal syntheses of two coordination polymers constructed from 5-sulfoisophthalic acid ligands with 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid as solvent. Inorg Chem Commun 13:706–710

    Article  CAS  Google Scholar 

  335. Poole CF, Poole SK (2010) Extraction of organic compounds with room temperature ionic liquids. J Chromatogr A 1217:2268–2286

    Article  CAS  Google Scholar 

  336. Gómez E, Domínguez I, Calvar N, Domínguez Á (2010) Separation of benzene from alkanes by solvent extraction with 1-ethylpyridinium ethylsulfate ionic liquid. J Chem Thermodyn 42:1234–1239

    Article  CAS  Google Scholar 

  337. Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA (2010) Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 34:1406–1412

    Article  CAS  Google Scholar 

  338. González EJ, González B, Calvar N, Domínguez A (2010) Application of [EMpy][ESO4] ionic liquid as solvent for the liquid extraction of xylenes from hexane. Fluid Phase Equilibria 295:249–254

    Article  CAS  Google Scholar 

  339. Francisco M, Arce A, Soto A (2010) Ionic liquids on desulfurization of fuel oils. Fluid Phase Equilibria 294:39–48

    Article  CAS  Google Scholar 

  340. Yoon SJ, Lee JG, Tajima H, Yamasaki A, Kiyono F, Nakazato T, Tao H (2010) Extraction of lanthanide ions from aqueous solution by bis(2-ethylhexyl)phosphoric acid with room-temperature ionic liquids. J Ind Eng Chem 16:350–354

    CAS  Google Scholar 

  341. Tang F, Zhang Q, Ren D, Nie Z, Liu Q, Yao S (2010) Functional amino acid ionic liquids as solvent and selector in chiral extraction. J Chromatogr A 1217:4669–4674

    Article  CAS  Google Scholar 

  342. Kogelnig D, Stojanovic A, Jirsa F, Körner W, Krachler R, Keppler BK (2010) Transport and separation of iron(III) from nickel(II) with the ionic liquid trihexyl(tetradecyl)phosphonium chloride. Sep Purif Technol 72:56–60

    Article  CAS  Google Scholar 

  343. Gorri D, Ruiz A, Ortiz A, Ortiz I (2009) The use of ionic liquids as efficient extraction medium in the reactive separation of cycloolefins from cyclohexane. Chem Eng J 154:241–245

    Article  CAS  Google Scholar 

  344. Jalili AH, Mehdizadeh A, Shokouhi M, Ahmadi AN, Hosseini-Jenab M, Fateminassab F (2010) Solubility and diffusion of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate. J Chem Thermodyn 42:1298–1303

    Article  CAS  Google Scholar 

  345. Qin Y, Lu X, Sun N, Rogers RD (2010) Dissolution or extraction of crustacean shells using ionic liquids to obtain high molecular weight purified chitin and direct production of chitin films and fibers. Green Chem 12:968–971

    Article  CAS  Google Scholar 

  346. Feng L, Chen Z (2008) Research progress on dissolution and functional modification of cellulose in ionic liquids. J Mol Liquids 142:1–5

    Article  CAS  Google Scholar 

  347. Boros E, Earle MJ, Gılea MA, Metlen A, Mudring AV, Rieger F, Robertson AJ, Seddon KR, Tomaszowska AA, Trusov L, Vyle JS (2010) On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium and phosphorus) in ionic liquids. Chem Commun 46:716–718

    Article  CAS  Google Scholar 

  348. Li G, Zhou Q, Zhang X, Wang L, Zhang S, Li J (2010) Solubilities of ammonia in basic imidazolium ionic liquids. Fluid Phase Equilibria 297:34–39

    Article  CAS  Google Scholar 

  349. Pinkert A, Marsh KN, Pang S, Staiger MP (2009) Ionic liquids and their interactions with cellulose. Chem Rev 108:6712–6728

    Article  CAS  Google Scholar 

  350. Mäki-Arvela P, Anugwom I, Virtanen P, Sjöholma R, Mikkola JP (2010) Dissolution of lignocellulosic materials and its constituents using ionic liquids-a review. Ind Crops Prod 32:175–201

    Article  CAS  Google Scholar 

  351. Carvalho PJ, Álvarez VH, Marrucho IM, Aznar M, Coutinho JAP (2010) High carbon dioxide solubilities in trihexyltetradecylphosphonium-based ionic liquids. J Supercrit Fluid 52:258–265

    Article  CAS  Google Scholar 

  352. Rosol ZP, German NJ, Gross SM (2009) Solubility, ionic conductivity and viscosity of lithium salts in room temperature ionic liquids. Green Chem 11:1453–1457

    Article  CAS  Google Scholar 

  353. Cornils B (1997) Fluorous biphase systems-the new phase-separation and immobilization technique. Angew Chem Int Ed 36:2057–2059

    Article  CAS  Google Scholar 

  354. Curran DP (1998) Strategy-level separations in organic synthesis: from planning to practice. Angew Chem Int Ed 37:1174–1196

    Article  Google Scholar 

  355. Barthel-Rosa LP, Gladysz JA (1999) Chemistry in fluorous media: a user’s guide to practical considerations in the application of fluorous catalysts and reagents. Coord Chem Rev 192:587–605

    Article  Google Scholar 

  356. Cavazzini M, Montanari F, Pozzi G, Quici S (1999) Perfluorocarbon-soluble catalysts and reagents and the application of FBS (fluorous biphase system) to organic synthesis. J Fluorine Chem 94:183–193

    Article  CAS  Google Scholar 

  357. Kitazume T (2000) Green chemistry development in fluorine science. J Fluorine Chem 105:265–278

    Article  CAS  Google Scholar 

  358. Curran D (2001) Fluorous techniques for the synthesis and separation of organic molecules. Green Chem 3(1):G3–G7

    Article  CAS  Google Scholar 

  359. Gladysz JA, Curran DP, Horvath IT (2004) Handbook of fluorous chemistry. Wiley-VCH, Weinheim

    Book  Google Scholar 

  360. Hobbs HR, Thomas NR (2007) Biocatalysis in supercritical fluids, in fluorous solvents, and under solvent-free conditions. Chem Rev 107:2786–2820

    Article  CAS  Google Scholar 

  361. Zhang W, Cai C (2008) New chemical and biological applications of fluorous technologies. Chem Commun 5686–5694

    Google Scholar 

  362. Zhang W (2009) Green chemistry aspects of fluorous techniques-opportunities and challenges for small-scale organic synthesis. Green Chem 11:911–920

    Article  CAS  Google Scholar 

  363. O’Neal KL, Zhang H, Yang Y, Hong L, Lu D, Weber SG (2009) Fluorous media for extraction and transport. J Chromatogr A 1217:2287–2295

    Article  CAS  Google Scholar 

  364. Bailey VA, Clarke D, Routledge A (2010) Extraction of perfluorinated compounds from food matrices using fluorous solvent partitioning. J Fluorine Chem 131:691–697

    Article  CAS  Google Scholar 

  365. Liu S, Xiao J (2007) Toward green catalytic synthesis-transition metal-catalyzed reactions in non-conventional media. J Mol Catal A Chem 270:1–43

    Article  CAS  Google Scholar 

  366. Hong M, Cai C, Yi WB (2010) Hafnium (IV) bis(perfluorooctanesulfonyl)imide complex catalyzed synthesis of polyhydroquinoline derivatives via unsymmetrical Hantzsch reaction in fluorous medium. J Fluorine Chem 131:111–114

    Article  CAS  Google Scholar 

  367. Yi WB, Cai C (2008) Polymer-supported ytterbium perfluorooctanesulfonate [Yb(OPf)3]: a recyclable catalyst for organic reactions. J Fluorine Chem 129:524–528

    Article  CAS  Google Scholar 

  368. Shen MG, Cai C, Yi WB (2008) Ytterbium perfluorooctanesulfonate as an efficient and recoverable catalyst for the synthesis of trisubstituted imidazoles. J Fluorine Chem 129:541–544

    Article  CAS  Google Scholar 

  369. Theberge AB, Whyte G, Frenzel M, Fidalgo LM, Wootton RCR, Huck WTS (2009) Suzuki-Miyaura coupling reactions in aqueous microdroplets with catalytically active fluorous interfaces. Chem Commun 6225–6227

    Google Scholar 

  370. Benaissi K, Poliakoff M, Thomas NR (2010) Solubilisation of α-chymotrypsin by hydrophobic ion pairing in fluorous systems and supercritical carbon dioxide and demonstration of efficient enzyme recycling. Green Chem 12:54–59

    Article  CAS  Google Scholar 

  371. Hong M, Cai C (2009) Sc[N(SO2C8F17)2]3 catalyzed condensation of β-naphthol and aldehydes in fluorous solvent: One-pot synthesis of 14-substituted-14H-dibenzo[a, j]xanthenes. J Fluorine Chem 130:989–992

    Article  CAS  Google Scholar 

  372. Mandal D, Gladysz JA (2010) Syntheses of fluorous quaternary ammonium salts and their application as phase transfer catalysts for halide substitution reactions in extremely nonpolar fluorous solvents. Tetrahedron 66:1070–1077

    Article  CAS  Google Scholar 

  373. Xu BL, Chen JP, Qiao RZ, Fu DC (2008) Facile and efficient synthesis of 2-substituted-N1-carbethoxy-2,3-dihydro-4(1H)-quinazolinones in fluorous solvent. Chinese Chem Lett 19:537–540

    Article  CAS  Google Scholar 

  374. Zhu Y, Ford WT (2009) Hydrolysis of p-nitrophenyl esters in mixtures of water and a fluorous solvent. Langmuir 25:3435–3439

    Article  CAS  Google Scholar 

  375. Chu Q, Yu MS, Curran DP (2008) CBS reductions with a fluorous prolinol immobilized in a hydrofluoroether solvent. Org Lett 10:749–752

    Article  CAS  Google Scholar 

  376. Hollamby MJ, Eastoe J, Mutch KJ, Rogers S, Heenan RK (2010) Fluorinated microemulsions as reaction media for fluorous nanoparticles. Soft Matter 6:971–976

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division Isfahan University of Technology (IUT) for financial support. Further financial supports from National Elite Foundation (NEF) and Center of Excellency in Sensors and Green Research (IUT) are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mallakpour, S., Rafiee, Z. (2012). Green Solvents Fundamental and Industrial Applications. In: Mohammad, A. (eds) Green Solvents I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1712-1_1

Download citation

Publish with us

Policies and ethics