Skip to main content

Energy Awareness in Video Codec Design

  • Chapter
Book cover Energy-Aware System Design

Abstract

In portable multimedia devices, one of the most critical issues is to minimize the energy consumption and thereby prolong the operational lifetime of the system while maintaining the required video quality. In this chapter, we discuss several methods for minimizing the energy consumption of video codec. First, we review the H.264/AVC codec and analyze the computational complexity of the H.264/AVC codec functional blocks. Second, we describe the method of low power integer and fractional motion estimation which occupies a significant part of the total computational complexity. We also explain embedded compression to reduce the power consumed by memory access. Finally, we introduce a power–rate–distortion (PRD) model for a video coding system to maximize its lifetime. The PRD video encoder model is generated in two steps. The first step is modeling the relationship between the power consumption and the distortion of video encoder based power-scalable architecture of the H.264/AVC encoder using the power consumption data of each functional module. The second step is generating the unified PRD model based on the PD model and the conventional rate–distortion (RD) model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Draft ITU-T recommendation and final draft international standard of Joint Video Specification (ITU-T Rec. H264-ISO/IEC 14496-10:2005 AVC). JVT G050 (2005)

    Google Scholar 

  2. Joch, A., Kossentini, F., Schwars, H., Wiegand, T., Sullivan, G.: Performance comparison of video coding standards using Lagrangian coder control. In: Proc. IEEE Intl. Conf. Image Processing, ICIP, part II, Sept. 2002, pp. 501–504 (2002)

    Google Scholar 

  3. Wiegand, T., Schwars, H., Joch, A., Kossentini, F.: Rate-constrained coder control and comparison of video coding standards. IEEE Trans. Circuits Syst. Video Technol. 13(1), 688–702 (2003)

    Article  Google Scholar 

  4. Chen, T.-C., Huang, Y.-W., Chen, L.-G.: Analysis and design of macroblock pipelining for H.264/AVC VLSI architecture. In: Proc. IEEE Int. Symp. Circuits Syst., ISCAS, May 2004, pp. 273–276 (2004)

    Google Scholar 

  5. Joint Video Team (JVT) reference software version 14.0. http://iphome.hhi.de/suehring/tml/download/old_jm/

  6. Kim, G., Kim, J., Kyung, C.-M.: A low cost single-pass fractional motion estimation architecture using bit clipping for H.264 video codec. In: Proc. IEEE Intl. Conf. Multimedia and Expo, ICME, July 2010, pp. 661–666 (2010)

    Google Scholar 

  7. Yang, L., Yu, K., Li, J., Li, S.: Prediction-based directional fractional pixel motion estimation for H.264 video coding. In: Proc. IEEE Intl. Conf. Acoustic, Speech and Signal Processing, ICASSP, March 2005, pp. 901–904 (2005)

    Google Scholar 

  8. De With, P.H.N., Frencken, P.H., Scharr-Mitrea, M.: An MPEG decoder with embedded compression for memory reduction. IEEE Trans. Consum. Electron. 44(3), 545–555 (1998)

    Article  Google Scholar 

  9. Lee, S.-H., Chung, M.-K., Park, S.-M., Kyung, C.-M.: Lossless frame memory recompression for video codec preserving random accessibility of coding unit. IEEE Trans. Consum. Electron. 55(4), 2105–2113 (2009)

    Article  Google Scholar 

  10. Huffman, D.A.: A method for the construction of minimum-redundancy codes. In: Proc. Inst. Radio Engineers, vol. 40, Sep. 1952, pp. 1098–1101 (1952)

    Google Scholar 

  11. Golomb, S.W.: Run-length encodings. IEEE Trans. Inf. Theory 12(3), 399–401 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chang, H.-C., Chen, J.-W., Su, C.-L., Yang, Y.-C., Li, Y., Chang, C.-H., Chen, Z.-M., Yang, W.-S., Lin, C.-C., Chen, C.-W., Wang, J.-S., Quo, J.-I.: A 7 mW-to-183 mW dynamic quality-scalable H.264 video encoder chip. In: Proc. IEEE Intl. Solid-State Circuits Conf., ISSCC, Feb. 2007, pp. 280–603 (2007)

    Google Scholar 

  13. Chen, Y.-H., Chen, T.-C., Tsai, C.-Y., Tsai, S.-F., Chen, L.-G.: Algorithm and architecture design of power-oriented H.264/AVC baseline profile encoder for portable devices. IEEE Trans. Circuits Syst. Video Technol. 19(8), 1118–1128 (2009)

    Article  MathSciNet  Google Scholar 

  14. Chang, H.-C., Chen, J.-W., Wu, B.-T., Su, C.-L., Wang, J.-S., Guo, J.-I.: A dynamic quality-adjustable H.264 video encoder for power-aware video applications. IEEE Trans. Circuits Syst. Video Technol. 19(12), 1739–1754 (2009)

    Article  Google Scholar 

  15. Nikara, J., Vassiliadis, S., Takala, J., Liuha, P.: Multiple-symbol parallel decoding for variable length codes. IEEE Trans. Very Large Scale Integr. Syst. 12(7), 676–685 (2004)

    Article  Google Scholar 

  16. Kim, J., Kyung, C.-M.: A lossless embedded compression using significant bit truncation for HD video coding. IEEE Trans. Circuits Syst. Video Technol. 20(6), 848–860 (2010)

    Article  Google Scholar 

  17. Lin, Y.-K., Li, D.-W., Lin, C.-C., Kuo, T.-Y., Wu, S.-J., Tai, W.-C., Chang, W.-C., Chang, T.-S.: A 242 mW 10 mm2 1080p H.264/AVC high-profile encoder chip. In: Proc. IEEE Intl. Solid-State Circuits Conf., ISSCC, Feb. 2008, pp. 314–615 (2008)

    Google Scholar 

  18. He, Z., Mitra, S.K.: A unified rate-distortion analysis framework for transform coding. IEEE Trans. Circuits Syst. Video Technol. 11(12), 1221–1236 (2001)

    Article  Google Scholar 

  19. He, Z., Kim, Y.K., Mitra, S.K.: Low delay rate control for DCT video coding via ρ-domain source modeling. IEEE Trans. Circuits Syst. Video Technol. 11(8), 928–940 (2001)

    Article  Google Scholar 

  20. Kamaci, N., Altunbasak, Y., Mersereau, R.M.: Frame bit allocation for the H.264/AVC video coder via Cauchy-density-based rate and distortion models. IEEE Trans. Circuits Syst. Video Technol. 15(8), 994–1006 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaemoon Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kim, J., Kim, G., Kyung, CM. (2011). Energy Awareness in Video Codec Design. In: Kyung, CM., Yoo, S. (eds) Energy-Aware System Design. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1679-7_6

Download citation

Publish with us

Policies and ethics