Skip to main content

Standard Candles in Astronomy

  • Chapter
  • First Online:
Astronomy at the Frontiers of Science

Part of the book series: Integrated Science & Technology Program ((ISTP,volume 1))

  • 935 Accesses

Abstract

One of the basic missions of Astronomy is to measure distances in the cosmos. This is usually done using the method of standard candles, which requires identifying astronomical objects or phenomena with a repeatable luminosity, and to measure that luminosity. Objects suitable as standard candles range from stars to supernovae, but also properties of the light of galaxies and the distribution of galaxies in clusters are useful standard candles. more luminous objects can be used to measure larger distances, looking back into the evolution of the Universe. We review here some of the history of determining astronomical distances, and discuss some of the most recent applications and results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here we distinguish between the term “luminous” which refers to the effective light output of a star, and the terms “bright” vs. “faint”, which are relative statements that refer to the observed flux and hence depend on the distance to the source.

  2. 2.

    Magnitudes are logarithmic units of flux, and a larger magnitude implies a fainter object. This somewhat confusing system stems from the early days of astronomy, before the telescope was even invented, and reflects the way the human eye perceives light. The brightest stars were assigned to “first magnitude”, somewhat fainter stars “second magnitude”, etc. A difference of 5 magnitudes is equivalent to a difference of 100 times in flux. Objects visible with the naked eye have apparent magnitudes between ∼ 5 (the faintest ones) and ∼ − 1 (a bright star like Sirius). The Sun in daytime has apparent magnitude − 26. 7, the full Moon at night − 12. 6.

  3. 3.

    The unit of the Hubble “constant” is of course the inverse of time, but astronomers use km s − 1 Mpc − 1 so that when it is multiplied by the distance in Megaparsecs, the resulting speed of recession is in km/s (Hubble’s law).

  4. 4.

    The absolute magnitude of a celestial object is the magnitude it would have if it was observed from a distance of 1 pc.

  5. 5.

    This is difference between absolute and apparent magnitude, and is related to the distance in parsecs as \(\mu = m - M = -5 + 5\log D(pc)\).

  6. 6.

    The HRD displays stars according to their spectral type (i.e. temperature) and their luminosity. During the course of their evolution, stars move in the HRD following well-known “evolutionary tracks”. Initially, stars sit on a line known as the “Main Sequence” After exhausting their core hydrogen, stars expand and become cooler, moving to the top right of the HRD, where “Red Giants” (RG) are located. The most massive stars become Red supergiants (RSG).

  7. 7.

    In astronomy, “metals” include all elements heavier than helium.

  8. 8.

    The parameter Ω measures the density ρ in the Universe in units of the critical density ρ c : \(\Omega \equiv \rho /{\rho }_{c} = 8\pi G\rho /3{H}^{2}\).

References

  1. A.N. Aguirre, Astrophys. J. 512, L19 (1999)

    Article  ADS  Google Scholar 

  2. L. Amati et al., Astron. Astrophys. 390, 81 (2002)

    Article  ADS  Google Scholar 

  3. W. Baade, Astrophys. J. 88, 285 (1938)

    Article  ADS  Google Scholar 

  4. W. Baade, F. Zwicky, Phys. Rev. 46, 76 (1934)

    Article  ADS  Google Scholar 

  5. W. Baade, F. Zwicky, Proc. Natl. Acad. Sci. 20, 259 (1934)

    Article  ADS  Google Scholar 

  6. Z. Barkat, G. Rakavy, N. Sack, Phys. Rev. Lett. 18, 379 (1967)

    Article  ADS  Google Scholar 

  7. E. Baron, P.E. Nugent, D. Branch, P.H. Hauschildt, Astrophys. J. 616, L91 (2004)

    Article  ADS  Google Scholar 

  8. C.L. Bennett et al., Astrophys. J. 464, L1 (1996)

    Article  ADS  Google Scholar 

  9. C. Blake et al., Mon. Not. R. Astron. Soc. 406, 803 (2010)

    ADS  Google Scholar 

  10. S. Blondin et al., Astron. J. 131, 1648 (2006)

    Article  ADS  Google Scholar 

  11. J.R. Bond, W.D. Arnett, B.J. Carr, Astrophys. J. 280, 825 (1984)

    Article  ADS  Google Scholar 

  12. D. Branch, D.L. Miller, Astrophys. J. 405, L5 (1993)

    Article  ADS  Google Scholar 

  13. D. Branch, J.B. Doggett, K. Nomoto, F.-K. Thielemann, Astrophys. J. 294, 619 (1985)

    Article  ADS  Google Scholar 

  14. D.H. Clark, F.R. Stephenson, Historical Supernovae (Pergamon Press, Oxford/New York, 1977)

    Google Scholar 

  15. S.A. Colgate, C. McKee, Astrophys. J. 157, 623 (1969)

    Article  ADS  Google Scholar 

  16. G. Contardo, B. Leibundgut, W.D. Vacca, Astron. Astrophys. 359, 876 (2000)

    ADS  Google Scholar 

  17. D.J. Eisenstein et al., Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  18. S.M. Faber, R.E. Jackson, Astrophys. J. 204, 668 (1976)

    Article  ADS  Google Scholar 

  19. A.V. Filippenko, Annu. Rev. Astron. Astrophys. 35, 309 (1997)

    Article  ADS  Google Scholar 

  20. A.V. Filippenko et al., Astrophys. J. 384, L15 (1992)

    Article  ADS  Google Scholar 

  21. A.V. Filippenko et al., Astron. J. 104, 1543 (1992)

    Article  ADS  Google Scholar 

  22. M. Fink, F.K. Röpke, W. Hillebrandt, I.R. Seitenzahl, S.A. Sim, M. Kromer, Annu. Rev. Astron. Astrophys. 514, A53 (2010)

    Article  ADS  Google Scholar 

  23. R.J. Foley et al., Astrophys. J. 684, 68 (2008)

    Article  ADS  Google Scholar 

  24. D.A. Frail et al., Astrophys. J. 562, L55 (2001)

    Article  ADS  Google Scholar 

  25. W.L. Freedman et al., Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  26. C.L. Fryer, Astrophys. J. 522, 413 (1999)

    Article  ADS  Google Scholar 

  27. T.J. Galama et al., Nature 395, 670 (1998)

    Article  ADS  Google Scholar 

  28. A. Gal-Yam, et al., Nature 462, 624 (2009)

    Article  ADS  Google Scholar 

  29. G. Ghirlanda, G. Ghisellini, D. Lazzati, Astrophys. J. 616, 331 (2004)

    Article  ADS  Google Scholar 

  30. M. Hamuy, S.C. Trager, P.A. Pinto, M.M. Phillips, R.A. Schommer, V. Ivanov, N.B. Suntzeff, Astron. J. 120, 1479 (2000)

    Article  ADS  Google Scholar 

  31. A. Heger, S.E. Woosley, Astrophys. J. 567, 532 (2002)

    Article  ADS  Google Scholar 

  32. W. Hillebrandt, J.C. Niemeyer, Annu. Rev. Astron. Astrophys. 38, 191 (2000)

    Article  ADS  Google Scholar 

  33. E. Hubble, Proc. Natl. Acad. Sci. 15, 168 (1929)

    Article  ADS  MATH  Google Scholar 

  34. K. Iwamoto et al., Nature 395, 672 (1998)

    Article  ADS  Google Scholar 

  35. D. Kasen, F.K. Röpke, S.E. Woosley, Nature 460, 869 (2009)

    Article  ADS  Google Scholar 

  36. A.M. Khokhlov, Astron. Astrophys. 245, 114 (1991)

    ADS  Google Scholar 

  37. R.P. Kirshner, J. Kwan, Astrophys. J. 193, 27 (1974)

    Article  ADS  Google Scholar 

  38. E. Komatsu et al., Astrophys. J. Suppl. S. 180, 330 (2009)

    Article  ADS  Google Scholar 

  39. C.T. Kowal, Astron. J. 73, 1021 (1968)

    Article  ADS  Google Scholar 

  40. R.-P. Kudritzki, Astron. Nachr. 331, 459 (2010)

    Article  ADS  Google Scholar 

  41. B. Leibundgut, Annu. Rev. Astron. Astrophys. 39, 67 (2001)

    Article  ADS  Google Scholar 

  42. B. Leibundgut et al., Astron. J. 105, 301 (1993)

    Article  ADS  Google Scholar 

  43. E. Livne, D. Arnett, Astrophys. J. 452, 62 (1995)

    Article  ADS  Google Scholar 

  44. A.I. MacFadyen, S.E. Woosley, Astrophys. J. 524, 262 (1999)

    Article  ADS  Google Scholar 

  45. P.A. Mazzali, I.J. Danziger, M. Turatto, Astron. Astrophys. 297, 509 (1995)

    ADS  Google Scholar 

  46. P.A. Mazzali, N. Chugai, M. Turatto, L.B. Lucy, I.J. Danziger, E. Cappellaro, M. della Valle, S. Benetti, Mon. Not. R. Astron. Soc. 284, 151 (1997)

    Google Scholar 

  47. P.A. Mazzali, E. Cappellaro, I.J. Danziger, M. Turatto, S. Benetti, Astrophys. J. 499, L49 (1998)

    Article  ADS  Google Scholar 

  48. P.A. Mazzali, P. Podsiadlowski, Mon. Not. R. Astron. Soc. 369, L19 (2006)

    Article  ADS  Google Scholar 

  49. P.A. Mazzali, F.K. Röpke, S. Benetti, W. Hillebrandt, Science 315, 825 (2007)

    Article  ADS  Google Scholar 

  50. M.R. Metzger, S.G. Djorgovski, S.R. Kulkarni, C.C. Steidel, K.L. Adelberger, D.A. Frail, E. Costa, F. Frontera, Nature 387, 878 (1997)

    Article  ADS  Google Scholar 

  51. R. Minkowski, Publ. Astron. Soc. Pac. 53, 224 (1941)

    Article  ADS  Google Scholar 

  52. E. Nakar, T. Piran, Mon. Not. R. Astron. Soc. 360, L73 (2005)

    Article  ADS  Google Scholar 

  53. H.U. Norgaard-Nielsen, L. Hansen, H.E. Jorgensen, A. Aragon Salamanca, R.S. Ellis, Nature 339, 523 (1989)

    Article  ADS  Google Scholar 

  54. B. Paczynski, Astrophys. J. 308, L43 (1986)

    Article  ADS  Google Scholar 

  55. R. Pakmor, M. Kromer, F.K. Röpke, S.A. Sim, A.J. Ruiter, W. Hillebrandt, Nature 463, 61 (2010)

    Article  ADS  Google Scholar 

  56. W.J. Percival et al., Mon. Not. R. Astron. Soc. 327, 1297 (2001)

    Article  ADS  Google Scholar 

  57. S. Perlmutter et al., Astrophys. J. 440, L41 (1995)

    Article  ADS  Google Scholar 

  58. S. Perlmutter et al., Astrophys. J. 483, 565 (1997)

    Article  ADS  Google Scholar 

  59. S. Perlmutter et al., Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  60. M.M. Phillips, Astrophys. J. 413, L105 (1993)

    Article  ADS  Google Scholar 

  61. M.M. Phillips, L.A. Wells, N.B. Suntzeff, M. Hamuy, B. Leibundgut, R.P. Kirshner, C.B. Foltz, Astron. J. 103, 1632 (1992)

    Article  ADS  Google Scholar 

  62. D. Poznanski, A. Gal-Yam, D. Maoz, A.V. Filippenko, D.C. Leonard, T. Matheson, Publ. Astron. Soc. Pac. 114, 833 (2002)

    Article  ADS  Google Scholar 

  63. J.L. Racusin et al., Nature 455, 183 (2008)

    Article  ADS  Google Scholar 

  64. A.G. Riess, W.H. Press, R.P. Kirshner, Astrophys. J. 438, L17 (1995)

    Article  ADS  Google Scholar 

  65. A.G. Riess, et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  66. R. Salvaterra et al., Nature 461, 1258 (2009)

    Article  ADS  Google Scholar 

  67. B.P. Schmidt, R.P. Kirshner, R.G. Eastman, M.M. Phillips, N.B. Suntzeff, M. Hamuy, J. Maza, R. Aviles, Astrophys. J. 432, 42 (1994)

    Article  ADS  Google Scholar 

  68. D.N. Spergel et al., Astrophys. J. Suppl. S. 148, 175 (2003)

    Article  ADS  Google Scholar 

  69. M. Sullivan et al., Mon. Not. R. Astron. Soc. 406, 782 (2010)

    ADS  Google Scholar 

  70. S.H. Suyu, P.J. Marshall, M.W. Auger, S. Hilbert, R.D. Blandford, L.V.E. Koopmans, C.D. Fassnacht, T. Treu, Astrophys. J. 711, 201 (2010)

    Article  ADS  Google Scholar 

  71. G.A. Tammann, A. Sandage, B. Reindl, Astron. Astrophys. Rev. 15, 289 (2008)

    Article  ADS  Google Scholar 

  72. N.R. Tanvir et al., Nature 461, 1254 (2009)

    Article  ADS  Google Scholar 

  73. F.X. Timmes, E.F. Brown, J.W. Truran, Astrophys. J. 590, L83 (2003)

    Article  ADS  Google Scholar 

  74. J.L. Tonry, A. Dressler, J.P. Blakeslee, E.A. Ajhar, A.B. Fletcher, G.A. Luppino, M.R. Metzger, C.B. Moore, Astrophys. J. 546, 681 (2001)

    Article  ADS  Google Scholar 

  75. R.B. Tully, J.R. Fisher, Astron. Astrophys. Rev. 54, 661 (1977)

    ADS  Google Scholar 

  76. J. van Paradijs et al., Nature 386, 686 (1997)

    Article  ADS  Google Scholar 

  77. X. Wang, L. Wang, X. Zhou, Y.-Q. Lou, Z. Li, Astrophys. J. 620, L87 (2005)

    Article  ADS  Google Scholar 

  78. J. Whelan, I. Iben Jr., Astrophys. J. 186, 1007 (1973)

    Article  ADS  Google Scholar 

  79. S.E. Woosley, S. Blinnikov, A. Heger, Nature 450, 390 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful to Brian Schmidt and Elena Pian for critically reading earlier versions of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo A. Mazzali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mazzali, P.A. (2011). Standard Candles in Astronomy. In: Lasota, JP. (eds) Astronomy at the Frontiers of Science. Integrated Science & Technology Program, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1658-2_2

Download citation

Publish with us

Policies and ethics