Skip to main content

Experimental Approaches

  • Chapter
  • 1706 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 165))

Abstract

System characterization through experimental means is the most common (and successful) approach to extract mechanical properties, performance, and behavior from complex biological systems. Experiment—as opposed to simulation, modeling, and theory—has the intrinsic advantage of not requiring any assumptions about material structure. Here, we review common experimental techniques that span scales from nano to macro. Multiple scales are discussed, encompassing single molecule assays (e.g., through optical tweezers) that probe molecular mechanics and reaction pathways, to the many uses of atomic force microscopy (such as protein stretching or bending), to microscale techniques applied to cells (e.g., micropipette aspiration) and tissues (e.g., nanoindentation). A well equipped materiomics “toolbox” is necessary to further our understanding of how the mechanical behavior of a material affects its biological function.

Measure what is measurable, and make measurable what is not so.

Galileo Galilei (1564–1642)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    A branch of microscopy that forms images of surfaces using a physical probe that scans the specimen. An image of the surface is obtained by mechanically moving the probe line by line and recording the probe-surface interaction as a function of position.

References

  1. J.C. Kendrew, G. Bodo, H.M. Dintzis, R.G. Parrish, H. Wyckoff, D.C. Phillips, A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181(4610), 662–666 (1958)

    CAS  Google Scholar 

  2. S. Perumal, O. Antipova, J.P.R.O. Orgel, Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. Proc. Natl. Acad. Sci. USA 105(8), 2824–2829 (2008)

    CAS  Google Scholar 

  3. M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 53(2), 493–494 (2005)

    Google Scholar 

  4. J. Li, M. Dao, C.T. Lim, S. Suresh, Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophys. J. 88(5), 3707–3719 (2005)

    CAS  Google Scholar 

  5. K.J. Van Vliet, G. Bao, S. Suresh, The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Mater. 51(19), 5881–5905 (2003)

    Google Scholar 

  6. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues (Springer, Berlin, 1993)

    Google Scholar 

  7. M.S.Z. Kellermayer, C. Bustamante, Folding-unfolding transitions in single titin molecules characterized with laser tweezers (vol. 276, p. 1112, 1997). Science 277(5329), 1117 (1997)

    CAS  Google Scholar 

  8. A. Borgia, P.M. Williams, J. Clarke, Single-molecule studies of protein folding. Annu. Rev. Biochem. 77, 101–125 (2008)

    CAS  Google Scholar 

  9. D.J. Muller, Y.F. Dufrene, Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 3(5), 261–269 (2008)

    Google Scholar 

  10. C.B. Prater, H.J. Butt, P.K. Hansma, Atomic force microscopy. Nature 345(6278), 839–840 (1990)

    Google Scholar 

  11. B.L. Smith, T.E. Schaffer, M. Viani, J.B. Thompson, N.A. Frederick, J. Kindt, A. Belcher, G.D. Stucky, D.E. Morse, P.K. Hansma, Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999)

    CAS  Google Scholar 

  12. S.E. Cross, J. Kreth, L. Zhu, R. Sullivan, W.Y. Shi, F.X. Qi, J.K. Gimzewski, Nanomechanical properties of glucans and associated cell-surface adhesion of streptococcus mutans probed by atomic force microscopy under in situ conditions. Microbiology 153, 3124–3132 (2007)

    CAS  Google Scholar 

  13. Y.L. Sun, Z.P. Luo, A. Fertala, K.N. An, Stretching type ii collagen with optical tweezers. J. Biomech. 37(11), 1665–1669 (2004)

    Google Scholar 

  14. D.M. Ebenstein, L.A. Pruitt, Nanoindentation of biological materials. Nano Today 1(3), 26–33 (2006)

    Google Scholar 

  15. K. Tai, F.J. Ulm, C. Ortiz, Nanogranular origins of the strength of bone. Nano Lett. 6(11), 2520–2525 (2006)

    CAS  Google Scholar 

  16. C.T. Lim, E.H. Zhou, A. Li, S.R.K. Vedula, H.X. Fu, Experimental techniques for single cell and single molecule biomechanics. Materials Sci. Eng. C Biomim. Supramol. Syst. 26(8), 1278–1288 (2006)

    CAS  Google Scholar 

  17. K.A. Addae-Mensah, J.P. Wikswo, Measurement techniques for cellular biomechanics in vitro. Exp. Biol. Med. 233(7), 792–809 (2008)

    CAS  Google Scholar 

  18. D.J. Gardiner, P.R. Graves, H.J. Bowley, Practical Raman Spectroscopy (Springer, Berlin, 1989)

    Google Scholar 

  19. K. Wuthrich, Protein-structure determination in solution by nmr-spectroscopy. J. Biol. Chem. 265(36), 22059–22062 (1990)

    CAS  Google Scholar 

  20. S.B. Shuker, P.J. Hajduk, R.P. Meadows, S.W. Fesik, Discovering high-affinity ligands for proteins: sar by nmr. Science 274(5292), 1531–1534 (1996)

    CAS  Google Scholar 

  21. D.M. Rissin, C.W. Kan, T.G. Campbell, S.C. Howes, D.R. Fournier, L. Song, T. Piech, P.P. Patel, L. Chang, A.J. Rivnak, E.P. Ferrell, J.D. Randall, G.K. Provuncher, D.R. Walt, D.C. Duffy, Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28(6), 595–625 (2010)

    CAS  Google Scholar 

  22. H.J. Lee, A.W. Wark, R.M. Corn, Microarray methods for protein biomarker detection. Analyst 133(8), 975–983 (2008)

    CAS  Google Scholar 

  23. M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers. Biophys. J. 72(3), 1335–1346 (1997)

    CAS  Google Scholar 

  24. M. Streichfuss, F. Erbs, K. Uhrig, R. Kurre, A.E.M. Clemen, C.H.J. Bohm, T. Haraszti, J.P. Spatz, Measuring forces between two single actin filaments during bundle formation. Nano Lett. 11(9), 3676–3680 (2011)

    CAS  Google Scholar 

  25. A. Ashkin, J.M. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235(4795), 1517–1520 (1987)

    CAS  Google Scholar 

  26. J.R. Moffitt, Y.R. Chemla, D. Izhaky, C. Bustamante, Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl. Acad. Sci. USA 103(24), 9006–9011 (2006)

    CAS  Google Scholar 

  27. M.C. Williams, Optical tweezers: measuring piconewton forces, in Single Molecule Techniques, ed. by P. Schwille (Biophysics Textbook Online, 2002)

    Google Scholar 

  28. C. Cecconi, E.A. Shank, C. Bustamante, S. Marqusee, Direct observation of the three-state folding of a single protein molecule. Science 309(5743), 2057–2060 (2005)

    CAS  Google Scholar 

  29. A.D. Mehta, M. Rief, J.A. Spudich, D.A. Smith, R.M. Simmons, Single-molecule biomechanics with optical methods. Science 283(5408), 1689–1695 (1999)

    CAS  Google Scholar 

  30. T.M. Raschke, J. Kho, S. Marqusee, Confirmation of the hierarchical folding of rnase h: a protein engineering study. Nat. Struct. Biol. 6(9), 825–831 (1999)

    CAS  Google Scholar 

  31. R.L. Baldwin, G.D. Rose, Is protein folding hierarchic? ii. folding intermediates and transition states. Trends Biochem. Sci. 24(2), 77–83 (1999)

    CAS  Google Scholar 

  32. K. Svoboda, S.M. Block, Force and velocity measured for single kinesin molecules. Cell 77(5), 773–784 (1994)

    CAS  Google Scholar 

  33. C. Veigel, C.F. Schmidt, Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011)

    CAS  Google Scholar 

  34. M. Bathe, C. Heussinger, M.M.A.E. Claessens, A.R. Bausch, E. Frey, Cytoskeletal bundle mechanics. Biophys. J. 94(8), 2955–2964 (2008)

    CAS  Google Scholar 

  35. A.M. Goldyn, B.A. Rioja, J.P. Spatz, C. Ballestrem, R. Kemkemer, Force-induced cell polarisation is linked to rhoa-driven microtubule-independent focal-adhesion sliding. J. Cell Sci. 122(20), 3644–3651 (2009)

    CAS  Google Scholar 

  36. T. Kuhne, R. Lipowsky, J. Kierfeld, Zipping mechanism for force generation by growing filament bundles. Epl 86(6) (2009)

    Google Scholar 

  37. R. Nambiar, R.E. McConnell, M.J. Tyska, Myosin motor function: the ins and outs of actin-based membrane protrusions. Cell. Mol. Life Sci. 67(8), 1239–1254 (2010)

    CAS  Google Scholar 

  38. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    CAS  Google Scholar 

  39. S.B. Smith, L. Finzi, C. Bustamante, Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 258(5085), 1122–1126 (1992)

    CAS  Google Scholar 

  40. T.R. Strick, J.F. Allemand, D. Bensimon, A. Bensimon, V. Croquette, The elasticity of a single supercoiled DNA molecule. Science 271(5257), 1835–1837 (1996)

    CAS  Google Scholar 

  41. C. Gosse, V. Croquette, Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82(6), 3314–3329 (2002)

    CAS  Google Scholar 

  42. A.R. Bausch, F. Ziemann, A.A. Boulbitch, K. Jacobson, E. Sackmann, Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry. Biophys. J. 75(4), 2038–2049 (1998)

    CAS  Google Scholar 

  43. A.R. Bausch, W. Moller, E. Sackmann, Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys. J. 76(1), 573–579 (1999)

    CAS  Google Scholar 

  44. G. Binnig, C.F. Quate, C. Gerber, Atomic force microscope. Phys. Rev. Lett. 56(9), 930–933 (1986)

    CAS  Google Scholar 

  45. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, 2001)

    Google Scholar 

  46. T.R. Albrecht, S. Akamine, T.E. Carver, C.F. Quate, Microfabrication of cantilever styli for the atomic force microscope. J. Vac. Sci. Technol., A, Vac. Surf. Films 8(4), 3386–3396 (1990)

    CAS  Google Scholar 

  47. N.A. Burnham, X. Chen, C.S. Hodges, G.A. Matei, E.J. Thoreson, C.J. Roberts, M.C. Davies, S.J.B. Tendler, Comparison of calibration methods for atomic-force microscopy cantilevers. Nanotechnology 14(1), 1–6 (2003)

    CAS  Google Scholar 

  48. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma, A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64(2), 403–405 (1993)

    CAS  Google Scholar 

  49. J.E. Sader, J.W.M. Chon, P. Mulvaney, Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70(10), 3967–3969 (1999)

    CAS  Google Scholar 

  50. J.W.M. Chon, P. Mulvaney, J.E. Sader, Experimental validation of theoretical models for the frequency response of atomic force microscope cantilever beams immersed in fluids. J. Appl. Phys. 87(8), 3978–3988 (2000)

    CAS  Google Scholar 

  51. J.L. Hutter, J. Bechhoefer, Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7), 1868–1873 (1993)

    CAS  Google Scholar 

  52. H.J. Butt, M. Jaschke, Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6(1), 1–7 (1995)

    Google Scholar 

  53. C. Rotsch, M. Radmacher, Drug-induced changes of cytoskeletal structure and mechanics in fibroblasts: an atomic force microscopy study. Biophys. J. 78(1), 520–535 (2000)

    CAS  Google Scholar 

  54. M. Radmacher, Measuring the elastic properties of living cells by the atomic force microscope. Atom. Force Microsc. Cell Biol. 68, 67–90 (2002)

    Google Scholar 

  55. G. Charras, P. Lehenkari, M. Horton, Biotechnological applications of atomic force microscopy. Atom. Force Microsc. Cell Biol. 68, 171–191 (2002)

    CAS  Google Scholar 

  56. A. Alessandrini, P. Facci, Afm: a versatile tool in biophysics. Meas. Sci. Technol. 16(6), 65–92 (2005)

    Google Scholar 

  57. B. Chen, M. Gao, J.M. Zuo, S. Qu, B. Liu, Y. Huang, Binding energy of parallel carbon nanotubes. Appl. Phys. Lett. 83(17), 3570–3571 (2003)

    CAS  Google Scholar 

  58. A.E. Cohen, L. Mahadevan, Kinks, rings, and rackets in filamentous structures. Proc. Natl. Acad. Sci. USA 100(21), 12141–12146 (2003)

    CAS  Google Scholar 

  59. J. Adamcik, J.M. Jung, J. Flakowski, P. De Los Rios, G. Dietler, R. Mezzenga, Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat. Nanotechnol. 5(6), 423–428 (2010)

    CAS  Google Scholar 

  60. L.M.C. Sagis, C. Veerman, E. van der Linden, Mesoscopic properties of semiflexible amyloid fibrils. Langmuir 20(3), 924–927 (2004)

    CAS  Google Scholar 

  61. A.K. Chamberlain, C.E. MacPhee, J. Zurdo, L.A. Morozova-Roche, H.A.O. Hill, C.M. Dobson, J.J. Davis, Ultrastructural organization of amyloid fibrils by atomic force microscopy. Biophys. J. 79(6), 3282–3293 (2000)

    CAS  Google Scholar 

  62. R. Khurana, C. Ionescu-Zanetti, M. Pope, J. Li, L. Nielson, M. Ramirez-Alvarado, L. Regan, A.L. Fink, S.A. Carter, A general model for amyloid fibril assembly based on morphological studies using atomic force microscopy. Biophys. J. 85(2), 1135–1144 (2003)

    CAS  Google Scholar 

  63. G. Witz, K. Rechendorff, J. Adamcik, G. Dietler, Conformation of circular DNA in two dimensions. Phys. Rev. Lett. 101(14) (2008)

    Google Scholar 

  64. G.S. Manning, Correlation of polymer persistence length with Euler buckling fluctuations. Phys. Rev. A 34(5), 4467–4468 (1986)

    CAS  Google Scholar 

  65. P. Hinterdorfer, Y.F. Dufrene, Detection and localization of single molecular recognition events using atomic force microscopy. Nat. Methods 3(5), 347–355 (2006)

    CAS  Google Scholar 

  66. M. Rief, M. Gautel, F. Oesterhelt, J.M. Fernandez, H.E. Gaub, Reversible unfolding of individual titin immunoglobulin domains by afm. Science 276(5315), 1109–1112 (1997)

    CAS  Google Scholar 

  67. O.H. Willemsen, M.M.E. Snel, A. Cambi, J. Greve, B.G. De Grooth, C.G. Figdor, Biomolecular interactions measured by atomic force microscopy. Biophys. J. 79(6), 3267–3281 (2000)

    CAS  Google Scholar 

  68. B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. McEver, C. Zhu, Direct observation of catch bonds involving cell-adhesion molecules. Nature 423(6936), 190–193 (2003)

    CAS  Google Scholar 

  69. J.M. Fernandez, H.B. Li, Force-clamp spectroscopy monitors the folding trajectory of a single protein. Science 303(5664), 1674–1678 (2004)

    CAS  Google Scholar 

  70. P.J. Flory, Statistical Mechanics of Chain Molecules, repr. edn. (Hanser, Munich, 1989, distributed in the USA by Oxford University Press, New York)

    Google Scholar 

  71. C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Entropic elasticity of lambda-phage DNA. Science 265(5178), 1599–1600 (1994)

    CAS  Google Scholar 

  72. A.F. Oberhauser, P.E. Marszalek, H.P. Erickson, J.M. Fernandez, The molecular elasticity of the extracellular matrix protein tenascin. Nature 393(6681), 181–185 (1998)

    CAS  Google Scholar 

  73. M. Rief, M. Gautel, A. Schemmel, H.E. Gaub, The mechanical stability of immunoglobulin and fibronectin iii domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75(6), 3008–3014 (1998)

    CAS  Google Scholar 

  74. T.E. Fisher, A.F. Oberhauser, M. Carrion-Vazquez, P.E. Marszalek, J.M. Fernandez, The study of protein mechanics with the atomic force microscope. Trends Biochem. Sci. 24(10), 379–384 (1999)

    CAS  Google Scholar 

  75. E. Evans, K. Ritchie, Dynamic strength of molecular adhesion bonds. Biophys. J. 72, 1541–1555 (1997)

    CAS  Google Scholar 

  76. E. Evans, Probing the relation between force—lifetime—and chemistry in single molecular bonds. Annu. Rev. Biophys. Biomol. Struct. 30, 105–128 (2001)

    CAS  Google Scholar 

  77. G.I. Bell, Models for the specific adhesion of cells to cells. Science 200(4342), 618–627 (1978)

    CAS  Google Scholar 

  78. E. Evans, Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy. Faraday Discuss. 111, 1–16 (1998)

    CAS  Google Scholar 

  79. K.A. Dill, S. Bromberg, K.Z. Yue, K.M. Fiebig, D.P. Yee, P.D. Thomas, H.S. Chan, Principles of protein-folding—a perspective from simple exact models. Protein Sci. 4(4), 561–602 (1995)

    CAS  Google Scholar 

  80. K.A. Dill, H.S. Chan, From Levinthal to pathways to funnels. Nat. Struct. Biol. 4(1), 10–19 (1997)

    CAS  Google Scholar 

  81. K.A. Dill, Polymer principles and protein folding. Protein Sci. 8(6), 1166–1180 (1999)

    CAS  Google Scholar 

  82. J.N. Onuchic, P.G. Wolynes, Z. Lutheyschulten, N.D. Socci, Toward an outline of the topography of a realistic protein-folding funnel. Proc. Natl. Acad. Sci. USA 92(8), 3626–3630 (1995)

    CAS  Google Scholar 

  83. R. Merkel, P. Nassoy, A. Leung, K. Ritchie, E. Evans, Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature 397(6714), 50–53 (1999)

    CAS  Google Scholar 

  84. M. Benoit, D. Gabriel, G. Gerisch, H.E. Gaub, Discrete interactions in cell adhesion measured by single-molecule force spectroscopy. Nat. Cell Biol. 2(6), 313–317 (2000)

    CAS  Google Scholar 

  85. M. Benoit, Cell adhesion measured by force spectroscopy on living cells. Atom. Force Microsc. Cell Biol. 68, 91–114 (2002)

    CAS  Google Scholar 

  86. P. Hinterdorfer, Molecular recognition studies using the atomic force microscope. Atom. Force Microsc. Cell Biol. 68, 115–139 (2002)

    CAS  Google Scholar 

  87. J. Helenius, C.P. Heisenberg, H.E. Gaub, D.J. Muller, Single-cell force spectroscopy. J. Cell Sci. 121(11), 1785–1791 (2008)

    CAS  Google Scholar 

  88. C.A. Bippes, D.J. Muller, High-resolution atomic force microscopy and spectroscopy of native membrane proteins. Rep. Progr. Phys. 74(8) (2011)

    Google Scholar 

  89. E.A. Evans, D.A. Calderwood, Forces and bond dynamics in cell adhesion. Science 316(5828), 1148–1153 (2007)

    CAS  Google Scholar 

  90. A. Noy, D.V. Vezenov, C.M. Lieber, Chemical force microscopy. Annu. Rev. Mater. Sci. 27, 381–421 (1997)

    CAS  Google Scholar 

  91. M. Radmacher, M. Fritz, C.M. Kacher, J.P. Cleveland, P.K. Hansma, Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys. J. 70(1), 556–567 (1996)

    CAS  Google Scholar 

  92. R.E. Mahaffy, S. Park, E. Gerde, J. Kas, C.K. Shih, Quantitative analysis of the viscoelastic properties of thin regions of fibroblasts using atomic force microscopy. Biophys. J. 86(3), 1777–1793 (2004)

    CAS  Google Scholar 

  93. M. Minary-Jolandan, M.F. Yu, Uncovering nanoscale electromechanical heterogeneity in the subfibrillar structure of collagen fibrils responsible for the piezoelectricity of bone. ACS Nano 3(7), 1859–1863 (2009)

    CAS  Google Scholar 

  94. A.J. Engler, S. Sen, H.L. Sweeney, D.E. Discher, Matrix elasticity directs stem cell lineage specification. Cell 126(4), 677–689 (2006)

    CAS  Google Scholar 

  95. A.J. Engler, F. Rehfeldt, S. Sen, D.E. Discher, Microtissue elasticity: measurements by atomic force microscopy and its influence on cell differentiation. Cell Mech. 83, 521 (2007)

    CAS  Google Scholar 

  96. D.E. Ingber, D. Prusty, Z.Q. Sun, H. Betensky, N. Wang, Cell shape, cytoskeletal mechanics, and cell cycle control in angiogenesis. J. Biomech. 28(12), 1471–1484 (1995)

    CAS  Google Scholar 

  97. M. Puig-de-Morales, M. Grabulosa, J. Alcaraz, J. Mullol, G.N. Maksym, J.J. Fredberg, D. Navajas, Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J. Appl. Physiol. 91(3), 1152–1159 (2001)

    CAS  Google Scholar 

  98. J.X. Chen, B. Fabry, E.L. Schiffrin, N. Wang, Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. Am. J. Physiol., Cell Physiol. 280(6), 1475–1484 (2001)

    Google Scholar 

  99. R.J. Pelham, Y.L. Wang, Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA 94(25), 13661–13665 (1997)

    CAS  Google Scholar 

  100. R.J. Pelham, Y.L. Wang, High resolution detection of mechanical forces exerted by locomoting fibroblasts on the substrate. Mol. Biol. Cell 10(4), 935–945 (1999)

    CAS  Google Scholar 

  101. K.A. Beningo, Y.L. Wang, Flexible substrata for the detection of cellular traction forces. Trends Cell Biol. 12(2), 79–84 (2002)

    CAS  Google Scholar 

  102. J.L. Tan, J. Tien, D.M. Pirone, D.S. Gray, K. Bhadriraju, C.S. Chen, Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc. Natl. Acad. Sci. USA 100(4), 1484–1489 (2003)

    CAS  Google Scholar 

  103. O. du Roure, A. Saez, A. Buguin, R.H. Austin, P. Chavrier, P. Silberzan, B. Ladoux, Force mapping in epithelial cell migration. Proc. Natl. Acad. Sci. USA 102(7), 2390–2395 (2005)

    Google Scholar 

  104. T. Braun, M.K. Ghatkesar, N. Backmann, W. Grange, P. Boulanger, L. Letellier, H.P. Lang, A. Bietsch, C. Gerber, M. Hegner, Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nat. Nanotechnol. 4(3), 179–185 (2009)

    CAS  Google Scholar 

  105. R.M. Hochmuth, Micropipette aspiration of living cells. J. Biomech. 33(1), 15–22 (2000)

    CAS  Google Scholar 

  106. J.Y. Shao, R.M. Hochmuth, Micropipette suction for measuring piconewton forces of adhesion and tether formation from neutrophil membranes. Biophys. J. 71(5), 2892–2901 (1996)

    CAS  Google Scholar 

  107. W.R. Jones, H.P. Ting-Beall, G.M. Lee, S.S. Kelley, R.M. Hochmuth, F. Guilak, Alterations in the Young’s modulus and volumetric properties of chondrocytes isolated from normal and osteoarthritic human cartilage. J. Biomech. 32(2), 119–127 (1999)

    CAS  Google Scholar 

  108. D.P. Theret, M.J. Levesque, M. Sato, R.M. Nerem, L.T. Wheeler, The application of a homogeneous half-space model in the analysis of endothelial-cell micropipette measurements. J. Biomech. Eng. Trans. ASME 110(3), 190–199 (1988)

    CAS  Google Scholar 

  109. R.M. Hochmuth, H.P. Tingbeall, B.B. Beaty, D. Needham, R. Transontay, Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64(5), 1596–1601 (1993)

    CAS  Google Scholar 

  110. K. Guevorkian, M.J. Colbert, M. Durth, S. Dufour, F. Brochard-Wyart, Aspiration of biological viscoelastic drops. Phys. Rev. Lett. 104(21) (2010)

    Google Scholar 

  111. Y.S. Chu, W.A. Thomas, O. Eder, F. Pincet, E. Perez, J.P. Thiery, S. Dufour, Force measurements in e-cadherin-mediated cell doublets reveal rapid adhesion strengthened by actin cytoskeleton remodeling through rac and cdc42. J. Cell Biol. 167(6), 1183–1194 (2004)

    CAS  Google Scholar 

  112. A. Yeung, E. Evans, Cortical shell-liquid core model for passive flow of liquid-like spherical cells into micropipets. Biophys. J. 56(1), 139–149 (1989)

    CAS  Google Scholar 

  113. F. Guilak, V.C. Mow, The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33(12), 1663–1673 (2000)

    CAS  Google Scholar 

  114. R.G. Zhao, K. Wyss, C.A. Simmons, Comparison of analytical and inverse finite element approaches to estimate cell viscoelastic properties by micropipette aspiration. J. Biomech. 42(16), 2768–2773 (2009)

    Google Scholar 

  115. E. Kim, F. Guilak, M.A. Haider, An axisymmetric boundary element model for determination of articular cartilage pericellular matrix properties in situ via inverse analysis of chondron deformation. J. Biomech. Eng. Trans. ASME 132(3) (2010)

    Google Scholar 

  116. J. Brugues, B. Maugis, J. Casademunt, P. Nassoy, F. Amblard, P. Sens, Dynamical organization of the cytoskeletal cortex probed by micropipette aspiration. Proc. Natl. Acad. Sci. USA 107(35), 15415–15420 (2010)

    CAS  Google Scholar 

  117. R.G. Zhao, K.L. Sider, C.A. Simmons, Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater. 7(3), 1220–1227 (2011)

    CAS  Google Scholar 

  118. A.J. Heim, W.G. Matthews, T.J. Koob, Determination of the elastic modulus of native collagen fibrils via radial indentation. Appl. Phys. Lett. 89(18) (2006)

    Google Scholar 

  119. K. Sweers, K. van der Werf, M. Bennink, V. Subramaniam, Nanomechanical properties of alpha-synuclein amyloid fibrils: a comparative study by nanoindentation, harmonic force microscopy, and peakforce qnm. Nanoscale Res. Lett. 6 (2011)

    Google Scholar 

  120. N. Kol, Y. Shi, M. Tsvitov, D. Barlam, R.Z. Shneck, M.S. Kay, I. Rousso, A stiffness switch in human immunodeficiency virus. Biophys. J. 92(5), 1777–1783 (2007)

    CAS  Google Scholar 

  121. W.C. Oliver, G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J. Mater. Res. 19(1), 3–20 (2004)

    CAS  Google Scholar 

  122. P.K. Zysset, X.E. Guo, C.E. Hoffler, K.E. Moore, S.A. Goldstein, Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J. Biomech. 32(10), 1005–1012 (1999)

    CAS  Google Scholar 

  123. S. Habelitz, G.W. Marshall, M. Balooch, S.J. Marshall, Nanoindentation and storage of teeth. J. Biomech. 35(7), 995–998 (2002)

    Google Scholar 

  124. K.S. Tai, H.J. Qi, C. Ortiz, Effect of mineral content on the nanoindentation properties and nanoscale deformation mechanisms of bovine tibial cortical bone. J. Mater. Sci., Mater. Med. 16(10), 947–959 (2005)

    CAS  Google Scholar 

  125. M.L. Oyen, Poroelastic nanoindentation responses of hydrated bone. J. Mater. Res. 23(5), 1307–1314 (2008)

    CAS  Google Scholar 

  126. M. Sarikaya, H. Fong, N. Sunderland, B.D. Flinn, G. Mayer, A. Mescher, E. Gaino, Biomimetic model of a sponge-spicular optical fiber—mechanical properties and structure. J. Mater. Res. 16(5), 1420–1428 (2001)

    CAS  Google Scholar 

  127. A. Woesz, J.C. Weaver, M. Kazanci, Y. Dauphin, J. Aizenberg, D.E. Morse, P. Fratzl, Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21(8), 2068–2078 (2006)

    CAS  Google Scholar 

  128. D. Losic, K. Short, J.G. Mitchell, R. Lal, N.H. Voelcker, Afm nanoindentations of diatom biosilica surfaces. Langmuir 23(9), 5014–5021 (2007)

    CAS  Google Scholar 

  129. B.J.F. Bruet, H.J. Qi, M.C. Boyce, R. Panas, K. Tai, L. Frick, C. Ortiz, Nanoscale morphology and indentation of individual nacre tablets from the gastropod mollusc trochus niloticus. J. Mater. Res. 20(9), 2400–2419 (2005)

    CAS  Google Scholar 

  130. F. Barthelat, C.M. Li, C. Comi, H.D. Espinosa, Mechanical properties of nacre constituents and their impact on mechanical performance. J. Mater. Res. 21(8), 1977–1986 (2006)

    CAS  Google Scholar 

  131. A. Perez-Huerta, M. Cusack, W.Z. Zhu, J. England, J. Hughes, Material properties of brachiopod shell ultrastructure by nanoindentation. J. R. Soc. Interface 4(12), 33–39 (2007)

    Google Scholar 

  132. B.J.F. Bruet, J.H. Song, M.C. Boyce, C. Ortiz, Materials design principles of ancient fish armour. Nat. Mater. 7(9), 748–756 (2008)

    CAS  Google Scholar 

  133. H.M. Yao, M. Dao, T. Imholt, J.M. Huang, K. Wheeler, A. Bonilla, S. Suresh, C. Ortiz, Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod. Proc. Natl. Acad. Sci. USA 107(3), 987–992 (2010)

    CAS  Google Scholar 

  134. D. Zhu, C.F. Ortega, R. Motamedi, L. Szewciw, F. Vernerey, F. Barthelat, Structure and mechanical performance of a “modern” fish scale. Eng. Mater. 14(4), B185–B194 (2012)

    Google Scholar 

  135. Y. Seki, M.S. Schneider, M.A. Meyers, Structure and mechanical behavior of a toucan beak. Acta Mater. 53(20), 5281–5296 (2005)

    CAS  Google Scholar 

  136. Y. Seki, S.G. Bodde, M.A. Meyers, Toucan and hornbill beaks: a comparative study. Acta Biomater. 6(2), 331–343 (2010)

    Google Scholar 

  137. G.H. Wei, B. Bhushan, P.M. Torgerson, Nanomechanical characterization of human hair using nanoindentation and sem. Ultramicroscopy 105(1–4), 248–266 (2005)

    CAS  Google Scholar 

  138. G.H. Wei, B. Bhushan, Nanotribological and nanomechanical characterization of human hair using a nanoscratch technique. Ultramicroscopy 106(8–9), 742–754 (2006)

    CAS  Google Scholar 

  139. G.M. Pharr, W.C. Oliver, F.R. Brotzen, On the generality of the relationship among contact stiffness, contact area, and elastic-modulus during indentation. J. Mater. Res. 7(3), 613–617 (1992)

    CAS  Google Scholar 

  140. C.M. Cheng, Y.T. Cheng, On the initial unloading slope in indentation of elastic-plastic solids by an indenter with an axisymmetric smooth profile. Appl. Phys. Lett. 71(18), 2623–2625 (1997)

    CAS  Google Scholar 

  141. H.J. Gao, T.W. Wu, A note on the elastic contact stiffness of a layered medium. J. Mater. Res. 8(12), 3229–3232 (1993)

    Google Scholar 

  142. N. Barbakadze, S. Enders, S. Gorb, E. Arzt, Local mechanical properties of the head articulation cuticle in the beetle pachnoda marginata (coleoptera, scarabaeidae). J. Exp. Biol. 209(4), 722–730 (2006)

    CAS  Google Scholar 

  143. S. Enders, N. Barbakadse, S.N. Gorb, E. Arzt, Exploring biological surfaces by nanoindentation. J. Mater. Res. 19(3), 880–887 (2004)

    CAS  Google Scholar 

  144. J.F.V. Vincent, Arthropod cuticle: a natural composite shell system. Composites, Part A, Appl. Sci. Manuf. 33(10), 1311–1315 (2002)

    Google Scholar 

  145. J.F.V. Vincent, U.G.K. Wegst, Design and mechanical properties of insect cuticle. Arthropod Struct. Devel. 33(3), 187–199 (2004)

    Google Scholar 

  146. S.O. Andersen, M.G. Peter, P. Roepstorff, Cuticular sclerotization in insects. Comp. Biochem. Physiol., Part B Biochem. Mol. Biol. 113(4), 689–705 (1996)

    Google Scholar 

  147. J.E. Hillerton, S.E. Reynolds, J.F.V. Vincent, On the indentation hardness of insect cuticle. J. Exp. Biol. 96(Feb), 45 (1982)

    Google Scholar 

  148. E. Arzt, S. Enders, S. Gorb, Towards a micromechanical understanding of biological surface devices. Z. Met.kd. 93(5), 345–351 (2002)

    CAS  Google Scholar 

  149. J.H. Song, S. Reichert, I. Kallai, D. Gazit, M. Wund, M.C. Boyce, C. Ortiz, Quantitative microstructural studies of the armor of the marine threespine stickleback (gasterosteus aculeatus). J. Struct. Biol. 171(3), 318–331 (2010)

    Google Scholar 

  150. J.H. Song, C. Ortiz, M.C. Boyce, Threat-protection mechanics of an armored fish. J. Mech. Behav. Biomed. Mat. 4(5), 699–712 (2011)

    Google Scholar 

  151. B.J. Briscoe, L. Fiori, E. Pelillo, Nano-indentation of polymeric surfaces. J. Phys. D, Appl. Phys. 31(19), 2395–2405 (1998)

    CAS  Google Scholar 

  152. O. Franke, M. Goken, A.M. Hodge, The nanoindentation of soft tissue: current and developing approaches. J. Met. 60(6), 49–53 (2008)

    CAS  Google Scholar 

  153. T.M. Freyman, I.V. Yannas, R. Yokoo, L.J. Gibson, Fibroblast contraction of a collagen-gag matrix. Biomaterials 22(21), 2883–2891 (2001)

    CAS  Google Scholar 

  154. D.P. Pioletti, J. Muller, L.R. Rakotomanana, J. Corbeil, E. Wild, Effect of micromechanical stimulations on osteoblasts: development of a device simulating the mechanical situation at the bone-implant interface. J. Biomech. 36(1), 131–135 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cranford, S.W., Buehler, M.J. (2012). Experimental Approaches. In: Biomateriomics. Springer Series in Materials Science, vol 165. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1611-7_5

Download citation

Publish with us

Policies and ethics