Skip to main content

The Potential of Rhizosphere Microorganisms to Promote the Plant Growth in Disturbed Soils

  • Chapter
  • First Online:
Book cover Environmental Protection Strategies for Sustainable Development

Part of the book series: Strategies for Sustainability ((STSU))

Abstract

The significance of rhizosphere microorganisms, especially mycorrhizal fungi and bacteria, in polluted soils can be enormous, since they are able to increase the tolerance of plants against abiotic stress, stimulate plant growth and contribute in this way to an accelerated remediation of disturbed soils. The majority of known higher plant species is associated with mycorrhizal fungi, which can increase the tolerance of plants against abiotic stress, e.g. by an improved nutrient supply or by detoxification of pollutants. Rhizosphere bacteria can strongly promote the growth of plants solely and in interaction with mycorrhizal fungi. They can contribute to the mobilization of nutrients and degradation of organic pollutants. Co-inoculation of plants with mycorrhizal fungi and rhizosphere bacteria is a very promising biotechnological approach for the promotion of plant growth and soil remediation. The application of microbial inoculum for the remediation of disturbed soils was tested with several plant species, e.g., fast growing tree species, but mostly on a small scale. Main reasons for the lack of field applications in a larger scale are the lack of suitable time- and cost-effective strategies for a site-specific selection, preparation and application of microbial inoculum and the strong restriction of information on on-site efficiency of inoculated microbial strains.

This chapter focuses on fundamental and applied aspects of soil microorganisms associated with the rhizosphere of plants at various disturbed sites. Major objectives are to present strategies for the promotion of phytoremediation of disturbed soils with the use of microbial inoculum and to indicate potentials and limitations of such microbial inoculation in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abler RAB (2004) Trace metal effects on ectomycorrhizal growth, diversity, and colonisation of host seedlings. Doctoral Thesis, Blackburg, Virginia

    Google Scholar 

  • Agerer R (1991) Ectomycorrhizae of Sarcodon imbricatus on Norway spruce and their chlamydospores. Mycorrhiza 1:21–30

    Article  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. A proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Alexander M (1999) Biodegradation and Bioremediation, 2nd edn. Academic Press, New York

    Google Scholar 

  • Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere: plant roots and associated microbes clean contaminated soil. Environ Sci Technol 27:2630–2636

    Article  CAS  Google Scholar 

  • Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic, New York

    Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  Google Scholar 

  • Ashford AE, Peterson CA, Carpenter JL, Cairney JWG, Allaway WG (1988) Structure and permeability of the fungal sheath in the Pisonia mycorrhiza. Protoplasma 147:149–161

    Article  Google Scholar 

  • Azcón-Aguilar C, Barea JM (1997) Applying mycorrhiza biotechnology to horticulture: significance and potentials. Scientia Horticulturae 68:1–24

    Article  Google Scholar 

  • Barea JM, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie van Leeuwenhoek 81:343–351

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aquilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Barriuso J, Pereyra MT, Lucas Garcia JA, Megias M, Gutierrez Manero FJ, Ramos B (2005) Screening for putative PGPR to improve establishment of the symbiosis Lactarius deliciosus-Pinus sp. Microb Ecol 50:82–89

    Article  CAS  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bateman DF, Miller RL (1966) Pectic enzymes in tissue degradation. Ann Rev Phytopathol 4:119–146

    Article  CAS  Google Scholar 

  • Baum C, Hrynkiewicz K, Leinweber P, Meißner R (2006) Heavy-metal mobilization and uptake by mycorrhizal and nonmycorrhizal willows (Salix×dasyclados). J Plant Nutr Soil Sci 169:516–522

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA (2001) Characterisation of plant growth-promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  CAS  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, FreyKlett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microb 69:4243–4248

    Article  CAS  Google Scholar 

  • Berthelsen BO, Lamble GM, MacDowell AA, Nicholson DG (2000) Analysis of metal speciation and distribution in symbiotic fungi (ectomycorrhiza) studied by micro X-ray absorption spectroscopy and X-ray fluorescence. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, FL, pp 149–164

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microb 62:3005–3010

    CAS  Google Scholar 

  • Blaudez D, Jacob C, Turnau K, Colpaert JV, Ahonen-Jonnarth U, Finlay R, Botton B, Chalot M (2000) Differential response of ectomycorrhizal fungi to heavy metals in vitro. Mycol Res 104:1366–1371

    Article  CAS  Google Scholar 

  • de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Bouchez T, Patureau D, Dabert P, Juretschko S, Dorés J, Delgenes P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2:179–190

    Article  CAS  Google Scholar 

  • Brimecombe MJ, De Leij FAAM, Lynch JM (2007) Rhizodeposition and microbial populations. In: R Pinton, Z Varanini, P Nannipieri (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. CRC Press, Taylor & Francis Group, Boca Raton, London, New York, pp 73–109

    Google Scholar 

  • Brown MT, Wilkins DA (1985) Zinc tolerance of mycorrhizal Betula. New Phytol 99:101–106

    Article  CAS  Google Scholar 

  • van Bruggen AHC, Semenom AM, van Diepeningen AD, de Vos OJ, Blok WJ (2006) Relation between soil health, wave-like fluctuations in microbial populations, and soil-borne plant disease management. Eur J Plant Pathol 115:105–122

    Article  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73

    Article  CAS  Google Scholar 

  • Brussaard L, Behan-Pelletier VM, Bignell DE, Brown VK, Didden WAM, Folgarait PJ, Fragoso C, Freckman DW, Gupta VVSR, Hattori T, Hawksworth DL, Klopatek C, Lavelle P, Malloch D, Rusek J, Söderström B, Tiedje JM, Virginia RA (1997) Biodiversity and ecosystem functioning in soil. Ambio 26:563–570

    Google Scholar 

  • Burd GI, Dixon DG, Glick BR (1998) A plant growth promoting bacterium that decreases nickel toxicity in plant seedlings. Appl Environ Microbiol 64:3663–3668

    CAS  Google Scholar 

  • Buyer JS, Leong J (1986) Iron transport mediated antagonism between plant growth-promoting and plant-deleterious Pseudomonas strains. J Biol Chem 261:791–794

    CAS  Google Scholar 

  • Cakmak I (2002) Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    Article  CAS  Google Scholar 

  • Chanmugathas P, Bollag J (1987) Microbial role in immobilisation and subsequent mobilisation of cadmium in soil suspensions. Soil Sci Soc Am J 51:1184–1191

    Article  CAS  Google Scholar 

  • Chaineau CH, Rougeux G, Yepremian C, Oudot J (2005) Effects of nutrient concentration on the biodegradation of crude oil and associated microbial populations in the soil. Soil Biol Biochem 37:1490–1497

    Article  CAS  Google Scholar 

  • Chaturvedi S, Chandra R, Rai V (2006) Isolation and characterization of Phragmites australis (L.): rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Eco Eng 27:202–207

    Article  Google Scholar 

  • Colpaert JV, Van Laere A (1996) A comparison of the extracellular enzyme activities of two ectomycorrhizal and leaf-saprotrophic basidiomycete colonizing beech leaf litter. New Phytol 134:133–141

    Article  CAS  Google Scholar 

  • Colpaert JV, Asche JA (1993) The effects of cadmium on ectomycorrhizal Pinus sylvestris L. New Phytol 123:325–333

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clèment C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  CAS  Google Scholar 

  • Das K, Mukherjee AK (2007) Comparison of lipopeptide biosurfactants production by Bacillus subtilis strains in submerged and solid state fermentation systems using a cheap carbon source: Some industrial applications of biosurfactants. Process Biochem 42:1191–1199

    Article  CAS  Google Scholar 

  • de la Peňa E, Rodriguez-Echeverria S, Putten WH, Freitas H, Moens M (2006) Mechanism of control of root-feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytol 169:829–840

    Article  Google Scholar 

  • Derry AM, Staddon WJ, Trevors JT (1998) Functional diversity and community structure of microorganisms in uncontaminated and creosote contaminated soils as determined by sole-carbon-source-utilization. World J Microbiol Biotechnol 14:571–578

    Article  Google Scholar 

  • Dighton J (1991) Acquisition of nutrients from organic resources by mycorrhizal autotrophic plants. Experientia 47:362–369

    Article  Google Scholar 

  • Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro- and natural ecosystems. Outlook Agric 29:55–62

    Article  Google Scholar 

  • Duchesne LC (1994) Role of ectomycorrhizal fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS Press, St. Paul, MN, pp 27–45

    Google Scholar 

  • Duchesne LC, Peterson RL, Ellis BE (1987) The accumulation of plant-produced antimicrobial compounds in response to ectomycorrhizal fungi: a review. Phytoprotection 68:17–27

    CAS  Google Scholar 

  • Duponnois R, Plenchette C (2003) A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhial symbiosis of Australian Acacia species. Mycorrhiza 13:85–91

    Article  CAS  Google Scholar 

  • Duxbury T (1985) Ecological aspects of heavy metal responses in microorganisms In: Marshall KC (ed) Advances in microbial ecology. Plenum Press, New York, pp 185–235

    Chapter  Google Scholar 

  • Erland S, Taylor FS (2002) Diversity of ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, Heidelberg, New York, pp 163–200

    Chapter  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci USA 103:626–631

    Article  CAS  Google Scholar 

  • Fomina MA, Alexander IJ, Colpaert JV, Gadd GM (2005) Solubilization of toxic metal minerals and metal tolerance of mycorrhizal fungi. Soil Biol Biochem 37:851–866

    Article  CAS  Google Scholar 

  • Founone H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza helper bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89

    Article  Google Scholar 

  • Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122:109–119

    Article  CAS  Google Scholar 

  • Gange AC (2006) Insect–mycorrhizal interactions: patterns, processes, and consequences. In: Ohgushi T, Craig TP, Price PW (eds) Indirect interaction webs: nontrophic linkages through induced plant traits. Cambridge University Press, Cambridge , pp 124–144

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen GD (1989) Stimulation of mycorrhizal infection of Pinus radiate by some micro-organisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • George E, Marschner H (1996) Nutrient and water uptake by roots of forest trees. Z. Pflanzenernähr. Bodenkd 159:11–21

    CAS  Google Scholar 

  • Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7

    Article  CAS  Google Scholar 

  • Hartley J, Cairney JWG, Meharg AA (1997) Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant Soil 189:303–319

    Article  CAS  Google Scholar 

  • He LM, Neu MP, Vanderberg LA (2000) Bacillus lichenformis γ-glutamyl exopolymer: physicochemical characterization and U(VI) interaction. Environ Sci Technol 34:1694–1701

    Article  CAS  Google Scholar 

  • Herrera-Estrella L (1999) Transgenic plants for tropical regions: Some considerations about their development and their transfer to the small farmer. Proc Natl Acad Sci USA 96:5978–5981

    Article  CAS  Google Scholar 

  • Hiifte M, Vande Woestyne M, Verstraete W (1994) Role of siderophores in plant growth promotion and plant protection by fluorescent pseudomonads. In: Manthey JA , Crowley DE , Luster DG (eds) Biochemistry of metal micronutrients in the rhizosphere. Lewis Publishers, Boca Raton, FL,  pp 81–92

    Google Scholar 

  • Hildebrandt U, Janetta K, Bothe H (2002) Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol 68:1919–1924

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Haug I, Baum C (2008) Ectomycorrhizal community structure under willows at former ore mining sites. Eur J Soil Biol 44:37–44

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C, NiedojadÅ‚o J, Dahm H (2009) Promotion of mycorrhiza formation and growth of willows by the bacterial strain Sphingomonas sp. 23L on fly ash. Biol Fertil Soil 45:385–394

    Article  Google Scholar 

  • Hrynkiewicz K, Baum C, Leinweber P (2010a) Density, metabolic activity and identity of cultivable rhizosphere bacteria on Salix viminalis in disturbed arable and landfill soils. J Plant Nutr Soil Sci 173:747–756

    Article  CAS  Google Scholar 

  • Hrynkiewicz K, Ciesielska A, Haug I, Baum C,(2010b) Conditionality of ectomycorrhiza formation and willow growth promotion by associated bacteria: role of microbial metabolites and use of C sources. Biol Fertil Soils 46:139–150

    Article  CAS  Google Scholar 

  • Hu X, Boyer GL (1996) Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048

    CAS  Google Scholar 

  • Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677

    Article  CAS  Google Scholar 

  • Jacob C, Courbot M, Brun A, Steinman HM, Jacquot JP, Botton B, Chalot M (2001) Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. Eur J Biochem 268:3223–3232

    Article  CAS  Google Scholar 

  • Jana TK, Srivastava AK, Csery K, Aroran DK (2000) Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can J Microbiol 46:28–37

    Article  CAS  Google Scholar 

  • Jentschke G, Godbold DL (2000) Metal toxicity and ectomycorrhizas. Physiol Plant 109:107–116

    Article  CAS  Google Scholar 

  • Jing Y, He Z, Yang X (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207

    CAS  Google Scholar 

  • Johnson NC, Graham J-H, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Johansen JE, Binnerup SJ (2002) Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen, and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgare L.). Microb Ecol 43:298–306

    Article  CAS  Google Scholar 

  • Karabaghli C, Frey-Klett P, Sotta M, Bonnet M, Le Tacon F (1998) In vitro effects of Laccaria bicolor S238N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce. Tree Physiol 18:103–111

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture: a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kuffner M, Puschenreiter M, Wieshammer G, Gorfer M, Sessitsch A (2008) Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant Soil 304:35–44

    Article  CAS  Google Scholar 

  • Kumpfer W, Heyser W (1986) Effects of stem flow Beech (Fagus sylvatica L.). In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological aspects and genetical aspects of mycorrhizae. Proceedings of the 1st European Symposium on Mycorrhizae. Dijon, 1–5 July 1985, INRA, pp 745–750

    Google Scholar 

  • Labud V, Garcia C, Hernandez T (2007) Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil. Chemosphere 66:1863–1871

    Article  CAS  Google Scholar 

  • Leake JR, Read DJ (1997) Mycorrhizal fungi in terrestrial ecosystems. In: Wicklow D, SoderstrÅ‘m B (eds) The Mycota IV. Experimental and microbial relationships. Springer, Berlin, pp 281–301

    Google Scholar 

  • Leyval C, Binet P (1998) Effect of polyaromatic hydrocarbons (PAHs) in soil on arbuscular mycorrhizal plants. J Environ Qual 27:402–407

    Article  CAS  Google Scholar 

  • Leyval C, Joner EJ (2000) Bioavailability of metals in the mycorhizosphere. In: Gobran GR, Wenzel WW, Lombi E (eds) Trace elements in the rhizosphere. CRC, Boca Raton, USA, pp 165–185

    Google Scholar 

  • Li XL, Marschner H, George E (1991) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    Article  CAS  Google Scholar 

  • Liu A, Hamel C, Hamilton RI, Ma BL, Smith DL (2000) Acquisition of Cu, Zn, Mn and Fe by mycorrhizal maize (Zea mays L.) grown in soil at different P and micronutrient levels. Mycorrhiza 9:331–336

    Article  CAS  Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrjizae in Populus and Salix. Plant Soil 117:255–262

    Article  Google Scholar 

  • Lynch JM (1990) Introduction: some cosequences of microbial rhizosphere competence for plant and soil. In JM Lynch (ed) The rhizosphere. John Wiley and Sons, Chichester, UK, p 1

    Google Scholar 

  • Maila MP, Randima P, Dronen K, Cloete TE (2006) Soil microbial communities: influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310

    Article  CAS  Google Scholar 

  • Marschner H (1991) Mechanisms of adaptation of plants to acid soils. Plant Soil 134:1–20

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London

    Google Scholar 

  • Marschner H (1998) Soil-root interface: biological and biochemical process. In: Soil chemistry and ecosystem health. SSSA Special Publication No 52. Madison, WI, pp 191–231

    Google Scholar 

  • McGonigle TP, Miller MH (1999) Winter survival of extraradical hyphae and spores of arbuscular mycorrhizal fungi in the field. Appl Soil Ecol 12:41–50

    Article  Google Scholar 

  • Maila MP, Randimaa P, Drønenb K, Cloete TE (2006) Soil microbial communities: Influence of geographic location and hydrocarbon pollutants. Soil Biol Biochem 38:303–310

    Article  CAS  Google Scholar 

  • Malajczuk N (1988) Interaction between Phytophthora cinnamomi zoospores and micro-organisms on non-mycorrhizal and ectomycorrhizal roots of Eucalyptus marginata. Trans Br Mycol Soc 90:375–382

    Article  Google Scholar 

  • Martino E, Perotto S, Parsons R, Gadd GM (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biol Biochem 34:133–141

    Article  Google Scholar 

  • Meharg AA, Cairney JWG (2000) Ectomycorrhizas—extending the capabilities of rhizosphere remediation? Soil Biol Bioch 32:1475–1484

    Article  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  Google Scholar 

  • Mirsal I (2004) Soil pollution: origin, monitoring and remediation. Springer, New York

    Book  Google Scholar 

  • Mohanty G, Mukherji S (2008) Biodegradation rate of diesel range n-alkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. Int Biodeterior Biodegrad 61:240–250

    Article  CAS  Google Scholar 

  • Morgan JAW, Bending GD, White PJ (2005) Biological costs and benefits to plant–microbe interactions in the rhizosphere. J Exp Bot 56:1729–1739

    Article  CAS  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant–microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    Article  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (eds) (1990) Physiology of the bacterial cell. Sinauer Associates, Sunderland

    Google Scholar 

  • Neubauer SC, Emerson D, Megonigal JP (2002) Life at the energetic edge: kinetics circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere. Appl Environ Microbiol 68:3988–3995

    Article  CAS  Google Scholar 

  • Niemi K, Scagel C, Haggman H (2004) Application of ectomycorrhizal fungi in vegetative propagation of conifers. Plant Cell Tiss Organ Cult 78:83–91

    Article  Google Scholar 

  • Niemi K, Scagel CF (2007) Root induction of Pinus sylvestris L. hypocotyls cuttings using specific ectomycorrhizal fungi in vitro. In: Jain SM, Haggman H (eds) Protocols for micropropagation of woody trees and fruits. Springer, Berlin, pp 147–152

    Chapter  Google Scholar 

  • Normand L, Bartschi H, Debaud JC, Gay G (1996) Rooting and aclimatization of micropropagated cuttings of Pinus pinaster and Pinus sylvestris are enhanced by the ectomycorrhizal fungus Hebeloma cylindrosporum. Physiol Plant 98:759–766

    Article  CAS  Google Scholar 

  • Oliveira RS, Castro PML, Dodd JC, Vosátka M (2005) Synergistic effect of Glomus intraradices and Frankia spp. on the growth and stress recovery of Alnus glutinosa in an alkaline anthropogenic sediment. Chemosphere 60:1462–1470

    Article  CAS  Google Scholar 

  • Perotto S, Bonfante P (1997) Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol 5:496–501

    Article  CAS  Google Scholar 

  • Pillman A, Jusaitis M (1997) Nutrition revegetation of waste fly ash lagoons II. Seedling transplants and plant nutrition. Waste Manag Res 15:307–321

    Google Scholar 

  • Pilon-Smits EAH (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39

    Article  CAS  Google Scholar 

  • Pinstrup-Andersen P, Pandya-Lorch R, Rosegrant MW (1999) World food propects: Critical issues for the early twenty-first century. 2020 Vision Food Policy Report, International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:741–753

    Article  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    Article  CAS  Google Scholar 

  • Quan X, Shi H, Wang J, Qian Y (2003). Biodegradation of 2,4 dichlorophenol in sequencing batch reactors augmented with immobilized mixed culture. Chemosphere 50:1069–1074

    Article  CAS  Google Scholar 

  • Rasanayagam S, Jeffries P (1992) Production of acid is responsible for antibiosis by some ectomycorrhizal fungi. Mycol Res 96:971–976

    Article  CAS  Google Scholar 

  • Read D (1993) Appendix C: Mycorrhizas. In: Anderson JM, Ingram JSI (eds) Tropical soil biology and fertility, a handbook of methods. CAB International, Wallingford, UK, pp 121–131

    Google Scholar 

  • Read DJ (2002) Towards ecological relevance—progress and pitfalls in the path towards an understanding of mycorrhizal functions in nature. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin, pp 3–29

    Google Scholar 

  • Rentz JA, Alvarez PJJ, Schnoor JL (2005) Benzo[a]pyrene cometabolism in the presence of plant root extracts and exudates. Implications for phytoremediation. Environ Pollut 136:477–484

    Article  CAS  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Robinson D, Griffiths B, Ritz K, Wheatley R (1989) Root-induced nitrogen mineralisation: a theoretical analysis. Plant Soil 117:185–193

    Article  CAS  Google Scholar 

  • Rudawska M, Kieliszewska-Rokicka B (1997) Mycorrhizal formation by Paxillus involutus strains in relation to their IAA-synthesizing activity. New Phytol 137:509–517

    Article  CAS  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  CAS  Google Scholar 

  • Saiki Y, Habe H, Yuuki T, Ikeda M, Yoshida T, Nojiri H et al (2003) Rhizoremediation of dioxine-like compounds by a recombinant Rhizobium tropici strain expressing carbazole 1,9a-dioxigenase constitutively. Biosci Biotechnol Biochem 67:1144–1148

    Article  CAS  Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant–environment interactions. Marcel Dekker, New York, USA, pp 39–81

    Google Scholar 

  • Sarand I, Timonen S, Nurmiaho-Lassila E-L, Koivila T, Haahtela K, Romantschuk M et al (1998) Microbial biofilms and catabolic plasmid harbouring degradative fluorescent pseudomonads in Scots pine ectomycorrhizospheres developed on petroleum contaminated soil. FEMS Microbiol Ecol 27:115–126

    Article  CAS  Google Scholar 

  • Sarand I, Timonen S, Koivula T, Peltola R, Haahtela K, Sen R et al (1999) Tolerance and biodegradation of m-toluate by Scots pine, a mycorrhizal fungus and fluorescent pseudomonads individually and under associative conditions. J Appl Microbiol 86:817–826

    Article  CAS  Google Scholar 

  • Schelkle M, Peterson RL (1996) Suppression of common root pathogens by helper bacteria and ectomycorrhizal fungi in vitro. Mycorrhiza 6:481–485

    Article  Google Scholar 

  • Scherr SJ (1999) Soil degradation, a threat to developing-country food security by 2020? Food, Agriculture, and the Environmental Discussion Paper 27. International Food Policy Research Institute. Washington, DC

    Google Scholar 

  • Schloter M, Dilly O, Munch JC (2003) Indicators for evaluating soil quality. Agric Ecosyst Environ 98:255–262

    Article  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    Article  Google Scholar 

  • Selvam A, Mahadevan A (2000) Reclamation of ash pond of Neyveli Lignite Corporation, Neyveli, India. Minetech 21:81–89

    Google Scholar 

  • Siciliano SD, Germida JJ (1999) Enhanced phytoremediation of chlorobenzoates in rhizosphere soil. Soil Biol Biochem 31:299–305

    Article  CAS  Google Scholar 

  • Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23:74–77

    Article  CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Pary J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts reveald. Appl Environ Microbiol 67:4742–4251

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Standing D, Baggs EM, Wattenbach M, Smith P, Killham K (2007) Meeting the challenge of scaling up processes in the plant-soil-microbe system. Biol Fert Soil 44:245–257

    Article  Google Scholar 

  • Sturz AV, Christie BR, Nowak J (2000). Bacterial endophytes: potential role in developing sustainable systems of crop production, Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Supaphol S, Panichsakpatana S, Trakulnaleamsai S, Tungkananuruk N, Roughjanajirapa P, Gerard O’Donnell A (2006) The selection of mixed microbial inocula in environmental biotechnology: example using petroleum contaminated tropical soils. J Microbiol Method 65:432–441

    Article  CAS  Google Scholar 

  • Tarkka M, Schrey S, Hampp R (2008) Plant associated micro-organisms. In: Nautiyal CS, Dion P (eds) Molecular mechanisms of plant and microbe coexistence. Springer, New York, pp 3–51

    Chapter  Google Scholar 

  • Tibbett M, Sanders FE, Cairney JWG (1998) The effect of temperature and inorganic phosphorus supply on growth and acid phosphatase production in arctic and temperate strains of ectomycorrhizal Hebeloma spp. in axenic culture. Mycol Res 102:129–135

    Article  CAS  Google Scholar 

  • Tibbett M, Sanders FE (2002) Ectomycorrhizal symbiosis can enhance plant nutrition through improved access to discrete organic nutrient patches of high resource quality. Ann Bot 89:783–789

    Article  CAS  Google Scholar 

  • Tillman D (1999) Global environmental impacts of agricultural expansion: the need for sustainable and efficient practices. Proc Natl Acad Sci USA 96:5995–6000

    Article  Google Scholar 

  • Torsvik V, ØvreÃ¥s L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245

    Article  CAS  Google Scholar 

  • Turnau K, Kottke I, Dexheimer J (1996) Toxic elements filtering in Rhizopogon roseolus—Pinus sylvestris mycorrhizas collected from calamine dumps. Mycol Res 100:16–22

    Article  CAS  Google Scholar 

  • Urum K, Pekdemir T, Copur M (2004) Surfactants treatment of crude oil contaminated soils. J Colloid Interf Sci 276:456–464

    Article  CAS  Google Scholar 

  • van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Article  Google Scholar 

  • von Uexküll HR, Mutuert W (1995) Global extent, development and economic impact of acid soils. In: Date RA, Grundon NJ, Rayment GE, Probert ME (eds) Plant–soil interactions at low pH: principles and management. Kluwer Academic Publishers, Dordrecht, pp 5–19

    Chapter  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Wang Y, Dai CC (2011) Endophytes: a potential resource for biosynthesis, biotransformation, and biodegradation. Ann Microbiol 61:207–215

    Article  CAS  Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: A role for fungal diversity? Pedobiologia 53:197–201

    Article  Google Scholar 

  • Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408

    Article  CAS  Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    Article  CAS  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Article  Google Scholar 

  • Whiting SN, de Souza MP, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150

    Article  CAS  Google Scholar 

  • Wood RKS (1960) Pectic and cellulolytic enzymes in plant disease. Ann Rev Plant Physiol 11:299–322

    Article  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action and interaction. Ann Bot 95:707–735

    Article  CAS  Google Scholar 

  • Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135

    Article  CAS  Google Scholar 

  • Xavier LJC, Germida JJ (2003) Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol Biochem 35:471–478

    Article  CAS  Google Scholar 

  • Yee DC, Maynard JA, Wood TK (1998) Rhizoremediation of trichloroethylene by e recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monooxygenese constitutively. Appl Environ Microbiol 64:112–118

    CAS  Google Scholar 

  • Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997

    Article  CAS  Google Scholar 

  • Zimmer D, Baum C, Leinweber P, Hrynkiewicz K, Meissner R (2009) Associated bacteria increase the phytoextraction of cadmium and zinc from a metal-contaminated soil by mycorrhizal willows. Int J Phytorem 11:200–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Hrynkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hrynkiewicz, K., Baum, C. (2012). The Potential of Rhizosphere Microorganisms to Promote the Plant Growth in Disturbed Soils. In: Malik, A., Grohmann, E. (eds) Environmental Protection Strategies for Sustainable Development. Strategies for Sustainability. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1591-2_2

Download citation

Publish with us

Policies and ethics