Skip to main content

The Hallmarks of Cancer Revisited Through Systems Biology and Network Modelling

  • Chapter
  • First Online:

Abstract

Since 10 years ago, when the seven hallmarks of cancer were first defined by Hanahan and Weinberg, after decades of molecular, cellular and clinical investigations, new systems-based approaches have provided a wide range of improved investigative methods. These approaches integrate various global data types into mathematical and computational models of molecular and cellular pathways and networks that become dysregulated in cancer, since the models are now able to take into account the large-scale properties of complex biological networks. Genome variation and instability have been revisited through study of genetic and genomic networks; while transcription and protein interaction networks are revealing cancer biomarkers of modular change. Growth, proliferation and apoptosis are being more fully described by signalling network modelling. Sustained angiogenesis and metastasis are being addressed via multiscale modelling. Enhanced understanding of the initial hallmarks of cancer, extended to the control of metabolism and stress, is opening novel avenues for cancer diagnosis and treatment. It is fully expected that further progress will take place through iterative cycles of experimentation and modelling, typical of systems biology. All of this will require advances in molecular data acquisition, multiscale integration of data scales and types, new approaches to data analysis and improved modelling. Success in all these endeavours cannot be achieved without better cross-disciplinary interactions among researchers and technologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aebersold R, Auffray C et al (2009) Report on EU-USA workshop: how systems biology can advance cancer research (27 October 2008). Mol Oncol 3(1):9–17

    Article  PubMed  Google Scholar 

  • Ahn AC, Tewari M et al (2006a) The clinical applications of a systems approach. PLoS Med 3(7):e209

    Article  Google Scholar 

  • Ahn AC, Tewari M et al (2006b) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6):e208

    Article  Google Scholar 

  • Aldridge BB, Burke JM et al (2006) Physicochemical modeling of cell signaling pathways. Nat Cell Biol 8(11):1195–1203

    Article  PubMed  CAS  Google Scholar 

  • Aldridge BB, Saez-Rodriguez J et al (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 5(4):e1000340

    Article  PubMed  CAS  Google Scholar 

  • Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8(6):450–461

    Article  PubMed  CAS  Google Scholar 

  • Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer 8(3):227–234

    Article  PubMed  CAS  Google Scholar 

  • Anderson AR, Weaver AM et al (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5):905–915

    Article  PubMed  CAS  Google Scholar 

  • Ao P, Galas D et al (2008) Cancer as robust intrinsic state of endogenous molecular-cellular network shaped by evolution. Med Hypotheses 70(3):678–684

    Article  PubMed  CAS  Google Scholar 

  • Auffray C (2007) Protein subnetwork markers improve prediction of cancer outcome. Mol Syst Biol 3:141

    Article  PubMed  Google Scholar 

  • Auffray C, Chen Z et al (2009) Systems medicine: the future of medical genomics and healthcare. Genome Med 1(1):2

    Article  PubMed  CAS  Google Scholar 

  • Auffray C, Imbeaud S et al (2003) From functional genomics to systems biology: concepts and practices. C R Biol 326(10–11):879–892

    Article  PubMed  CAS  Google Scholar 

  • Auffray C, Noble D (2009) Origins of systems biology in William Harvey's masterpiece on the movement of the heart and the blood in animals. Int J Mol Sci 10(4):1658–1669

    Article  PubMed  Google Scholar 

  • Auffray C, Nottale L (2008) Scale relativity theory and integrative systems biology: 1. Founding principles and scale laws. Prog Biophys Mol Biol 97(1):79–114

    Article  PubMed  Google Scholar 

  • Barabasi AL (2007) Network medicine—from obesity to the “diseasome”. N Engl J Med 357(4):404–407

    Article  PubMed  CAS  Google Scholar 

  • Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  PubMed  Google Scholar 

  • Barabasi AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5(2):101–113

    Article  PubMed  CAS  Google Scholar 

  • Barrett CL, Palsson BO (2006) Iterative reconstruction of transcriptional regulatory networks: an algorithmic approach. PLoS Comput Biol 2(5):e52

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444(7119):633–637

    Article  PubMed  CAS  Google Scholar 

  • Bassingthwaighte J, Hunter P et al (2009) The Cardiac Physiome:perspectives for the future. Exp Physiol 94(5): 597–605

    Article  PubMed  CAS  Google Scholar 

  • Beckman RA, Loeb LA (2005) Genetic instability in cancer: theory and experiment. Semin Cancer Biol 15(6):423–435

    Article  PubMed  CAS  Google Scholar 

  • Benz CC, Yau C (2008) Ageing, oxidative stress and cancer: paradigms in parallax. Nat Rev Cancer 8(11):875–879

    Article  PubMed  CAS  Google Scholar 

  • Bild AH, Potti A et al (2006a) Linking oncogenic pathways with therapeutic opportunities. Nat Rev Cancer 6(9):735–741

    Article  CAS  Google Scholar 

  • Bild AH, Yao G et al (2006b) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357

    Article  CAS  Google Scholar 

  • Billy F, Ribba B et al (2009) A pharmacologically based multiscale mathematical model of angiogenesis and its use in investigating the efficacy of a new cancer treatment strategy. J Theor Biol 260(4):545–562

    Article  PubMed  CAS  Google Scholar 

  • Bizzarri M, Cucina A et al (2008) Beyond the oncogene paradigm: understanding complexity in cancerogenesis. Acta Biotheor 56(3):173–196

    Article  PubMed  CAS  Google Scholar 

  • Bluthgen N, Legewie S et al (2009) A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. FEBS J 276(4):1024–1035

    Article  PubMed  CAS  Google Scholar 

  • Bonneau R (2008) Learning biological networks: from modules to dynamics. Nat Chem Biol 4(11):658–664

    Article  PubMed  CAS  Google Scholar 

  • Bonneau R, Reiss DJ et al (2006) The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 7(5):R36

    Article  PubMed  CAS  Google Scholar 

  • Bonneau R, Facciotti MT et al (2007) A predictive model for transcriptional control of physiology in a free living cell. Cell 131(7):1354–1365

    Article  PubMed  CAS  Google Scholar 

  • Borisov N, Aksamitiene E et al (2009) Systems-level interactions between insulin-EGF networks amplify mitogenic signaling. Mol Syst Biol 5:256

    Article  PubMed  CAS  Google Scholar 

  • Boros LG, Cascante M et al (2002) Metabolic profiling of cell growth and death in cancer: applications in drug discovery. Drug Discov Today 7(6):364–372

    Article  PubMed  CAS  Google Scholar 

  • Bosl WJ (2007) Systems biology by the rules: hybrid intelligent systems for pathway modeling and discovery. BMC Syst Biol 1:13

    Article  PubMed  CAS  Google Scholar 

  • Braun A, Samann A et al (2008) Effects of metabolic control, patient education and initiation of insulin therapy on the quality of life of patients with type 2 diabetes mellitus. Patient Educ Couns 73(1):50–59

    Article  PubMed  Google Scholar 

  • Butte AJ (2008) Medicine. The ultimate model organism. Science 320(5874):325–327

    CAS  Google Scholar 

  • Brynildsen MP, Collins JJ (2009) Systems biology makes it personal. Mol Cell 34(2):137–138

    Article  PubMed  CAS  Google Scholar 

  • Byrne HM (2010) Dissecting cancer through mathematics: from the cell to the animal model. Nat Rev Cancer 10(3):221–230

    Google Scholar 

  • Cancer Genome Atlas Research Network (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

    Article  CAS  Google Scholar 

  • Carrivick L, Rogers S et al (2006) Identification of prognostic signatures in breast cancer microarray data using Bayesian techniques. J R Soc Interface 3(8):367–381

    Article  PubMed  CAS  Google Scholar 

  • Carro MS, Lim WK et al (2010) The transcriptional network for mesenchymal transformation of brain tumours. Nature 463(7279):318–325

    Google Scholar 

  • Carter GW, Galas DJ et al (2009) Maximal extraction of biological information from genetic interaction data. PLoS Comput Biol 5(4):e1000347

    Article  PubMed  CAS  Google Scholar 

  • Cascante M, Boros LG et al (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20(3):243–249

    Article  PubMed  CAS  Google Scholar 

  • Cascante M, Marin S (2008) Metabolomics and fluxomics approaches. Essays Biochem 45:67–81

    Article  PubMed  CAS  Google Scholar 

  • Chang JT, Carvalho C et al (2009) A genomic strategy to elucidate modules of oncogenic pathway signaling networks. Mol Cell 34(1):104–114

    Article  PubMed  CAS  Google Scholar 

  • Chang LW, Payton JE et al (2008) Computational identification of the normal and perturbed genetic networks involved in myeloid differentiation and acute promyelocytic leukemia. Genome Biol 9(2):R38

    Article  PubMed  CAS  Google Scholar 

  • Chaplain MA, McDougall SR et al (2006) Mathematical modeling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8:233–257

    Article  PubMed  CAS  Google Scholar 

  • Chen LL, Blumm N et al (2009) Cancer metastasis networks and the prediction of progression patterns. Br J Cancer 101(5):749–758

    Article  PubMed  CAS  Google Scholar 

  • Cho KH, Kim JR et al (2006) Inferring biomolecular regulatory networks from phase portraits of time-series expression profiles. FEBS Lett 580(14):3511–3518

    Article  PubMed  CAS  Google Scholar 

  • Chuang HY, Lee E et al (2007) Network-based classification of breast cancer metastasis. Mol Syst Biol 3:140

    Article  PubMed  Google Scholar 

  • Citri A, Yarden Y (2006) EGF-ERBB signaling: towards the systems level. Nat Rev Mol Cell Biol 7(7):505–516

    Article  PubMed  CAS  Google Scholar 

  • Clermont G, Auffray C et al (2009) Bridging the gap between systems biology and medicine. Genome Med 1(9):88

    Article  PubMed  CAS  Google Scholar 

  • Cline MS, Smoot M et al (2007) Integration of biological networks and gene expression data using Cytoscape. Nat Protoc 2(10):2366–2382

    Article  PubMed  CAS  Google Scholar 

  • Colotta F, Allavena P et al (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30(7):1073–1081

    Article  PubMed  CAS  Google Scholar 

  • Cui Q, Ma Y et al (2007) A map of human cancer signaling. Mol Syst Biol 3:152

    Article  PubMed  CAS  Google Scholar 

  • Cusick ME, Klitgord N et al (2005) Interactome: gateway into systems biology. Hum Mol Genet 14(Spec No. 2):R171–R181

    Article  PubMed  CAS  Google Scholar 

  • Davidson EH, Rast JP et al (2002) A genomic regulatory network for development. Science 295(5560):1669–1678

    Article  PubMed  CAS  Google Scholar 

  • Deberardinis RJ, Sayed N et al (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18(1):54–61

    Article  PubMed  CAS  Google Scholar 

  • Debily MA, Marhomy SE et al (2009) A functional and regulatory network associated with PIP expression in human breast cancer. PLoS One 4(3):e4696

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Cao Y et al (2008) Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 8(6):425–437

    Article  PubMed  CAS  Google Scholar 

  • Diehn M, Cho RW et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  PubMed  CAS  Google Scholar 

  • Ding L, Ellis MJ et al (2010) Genome remodeling in a basal-like breast cancer metastasis and xenograft. Nature 464(7291):999–1005

    Google Scholar 

  • Ding L, Getz G et al (2008) Somatic mutations affect key pathways in lung adenocarcinoma. Nature 455(7216):1069–1075

    Article  PubMed  CAS  Google Scholar 

  • DiPaola RS, Dvorzhinski D et al (2008) Therapeutic starvation and autophagy in prostate cancer: a new paradigm for targeting metabolism in cancer therapy. Prostate 68(16):1743–1752

    Article  PubMed  CAS  Google Scholar 

  • Du Y, Wang K et al (2006) Coordination of intrinsic, extrinsic, and endoplasmic reticulum-mediated apoptosis by imatinib mesylate combined with arsenic trioxide in chronic myeloid leukemia. Blood 107(4):1582–1590

    Article  PubMed  CAS  Google Scholar 

  • Duarte NC, Becker SA et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci U S A 104(6):1777–1782

    Article  PubMed  CAS  Google Scholar 

  • Farmer H, McCabe N et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434(7035):917–921

    Article  PubMed  CAS  Google Scholar 

  • Fell DA (2005) Enzymes, metabolites and fluxes. J Exp Bot 56(410):267–272

    Article  PubMed  CAS  Google Scholar 

  • Ferreira SC Jr, Martins ML et al (2002) Reaction-diffusion model for the growth of avascular tumor. Phys Rev E Stat Nonlin Soft Matter Phys 65(2 Pt 1):021907

    Article  PubMed  CAS  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6(4):273–286

    Article  PubMed  CAS  Google Scholar 

  • Ganem NJ, Storchova Z et al (2007) Tetraploidy, aneuploidy and cancer.Curr Opin Genet Dev 17(2):157–162

    Article  PubMed  CAS  Google Scholar 

  • Garinis GA, van der Horst GT et al (2008) DNA damage and ageing: newage ideas for an age-old problem. Nat cell Biol 10(11):1241–1247

    Article  PubMed  CAS  Google Scholar 

  • Gianchandani EP, Brautigan DL et al (2006) Systems analyses characterize integrated functions of biochemical networks. Trends Biochem Sci 31(5):284–291

    Article  PubMed  CAS  Google Scholar 

  • Gogvadze V, Orrenius S et al (2008) Mitochondria in cancer cells: what is so special about them? Trends Cell Biol 18(4):165–173

    Article  PubMed  CAS  Google Scholar 

  • Goh KI, Cusick ME et al (2007) The human disease network. Proc Natl Acad Sci U S A 104(21):8685–8690

    Article  PubMed  CAS  Google Scholar 

  • Gorgoulis VG, Vassiliou LV et al (2005) Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434(7035):907–913

    Article  PubMed  CAS  Google Scholar 

  • Graudens E, Boulanger V et al (2006) Deciphering cellular states of innate tumor drug responses. Genome Biol 7(3):R19

    Article  PubMed  CAS  Google Scholar 

  • Greenman C, Stephens P et al (2007) Patterns of somatic mutation in human cancer genomes. Nature 446(7132):153–158

    Article  PubMed  CAS  Google Scholar 

  • Halazonetis TD, Gorgoulis VG et al (2008) An oncogene-induced DNA damage model for cancer development. Science 319(5868):1352–1355

    Article  PubMed  CAS  Google Scholar 

  • Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28(5):739–745

    Article  PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  PubMed  CAS  Google Scholar 

  • Heiser LM, Wang NJ et al (2009) Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Genome Biol 10(3):R31

    Article  PubMed  CAS  Google Scholar 

  • Holland AJ, Cleveland DW (2009) Boveri revisited: chromosomal instability, aneuploidy and tumorigenesis. Nat Rev Mol Cell Biol 10(7):478–487

    Article  PubMed  CAS  Google Scholar 

  • Hood L, Heath JR et al (2004) Systems biology and new technologies enable predictive and preventative medicine. Science 306(5696):640–643

    Article  PubMed  CAS  Google Scholar 

  • Hornberg JJ, Bruggeman FJ et al (2007) Metabolic control analysis to identify optimal drug targets. Prog Drug Res 64:171, 173–189

    Article  PubMed  CAS  Google Scholar 

  • Hu M, Polyak K (2008) Microenvironmental regulation of cancer development. Curr Opin Genet Dev 18(1):27–34

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Ernberg I et al (2009) Cancer attractors: a systems view of tumors from a gene network dynamics and developmental perspective. Semin Cell Dev Biol 20(7):869–876

    Article  PubMed  CAS  Google Scholar 

  • Huang SS, Fraenkel E (2009) Integrating proteomic, transcriptional, and interactome data reveals hidden components of signaling and regulatory networks. Sci Signal 2(81):ra40

    Article  PubMed  Google Scholar 

  • Huang YJ, Hang D et al (2008) Targeting the human cancer pathway protein interaction network by structural genomics. Mol Cell Proteomics 7(10):2048–2060

    Article  PubMed  CAS  Google Scholar 

  • Hwang D, Lee IY et al (2009) A systems approach to prion disease. Mol Syst Biol 5:252

    Article  PubMed  CAS  Google Scholar 

  • Hwang D, Rust AG et al (2005a) A data integration methodology for systems biology. Proc Natl Acad Sci U S A 102(48):17296–17301

    Article  CAS  Google Scholar 

  • Hwang D, Smith JJ et al (2005b) A data integration methodology for systems biology: experimental verification. Proc Natl Acad Sci U S A 102(48):17302–17307

    Article  CAS  Google Scholar 

  • Ideker T, Galitski T et al (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372

    Article  PubMed  CAS  Google Scholar 

  • Ideker T, Sharan R (2008) Protein networks in disease. Genome Res 18(4):644–652

    Article  PubMed  CAS  Google Scholar 

  • Itadani H, Mizuarai S et al (2008) Can systems biology understand pathway activation? Gene expression signatures as surrogate markers for understanding the complexity of pathway activation. Curr Genomics 9(5):349–360

    Article  PubMed  CAS  Google Scholar 

  • Janes KA, Yaffe MB (2006) Data-driven modeling of signal-transduction networks. Nat Rev Mol Cell Biol 7(11):820–828

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y, Pjesivac-Grbovic J et al (2005) A multiscale model for avascular tumor growth. Biophys J 89(6):3884–3894

    Article  PubMed  CAS  Google Scholar 

  • Johnston MD, Edwards CM et al (2007) Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer. Proc Natl Acad Sci U S A 104(10):4008–4013

    Article  PubMed  CAS  Google Scholar 

  • Jones S, Zhang X et al (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG, Jr. (2005) The concept of synthetic lethality in the context of anticancer therapy. Nat Rev Cancer 5(9):689–698

    Article  PubMed  CAS  Google Scholar 

  • Karnoub AE, Dash AB et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  PubMed  CAS  Google Scholar 

  • Kirschner MW (2005) The meaning of systems biology. Cell 121(4):503–504

    Article  PubMed  CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295(5560):1662–1664

    Article  PubMed  CAS  Google Scholar 

  • Klemm K, Bornholdt S (2005) Topology of biological networks and reliability of information processing. Proc Natl Acad Sci U S A 102(51):18414–18419

    Article  PubMed  CAS  Google Scholar 

  • Kohl P, Noble D (2009) Systems biology and the virtual physiological human. Mol Syst Biol 5:292

    Article  PubMed  Google Scholar 

  • Kreeger PK, Lauffenburger DA (2010) Cancer systems biology: a network modeling perspective. Carcinogenesis 31(1):2–8

    Google Scholar 

  • Kreeger PK, Mandhana R et al (2009) RAS mutations affect tumor necrosis factor-induced apoptosis in colon carcinoma cells via ERK-modulatory negative and positive feedback circuits along with non-ERK pathway effects. Cancer Res 69(20):8191–8199

    Article  PubMed  CAS  Google Scholar 

  • Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer’s Achilles’ heel. Cancer Cell 13(6):472–482

    Article  PubMed  CAS  Google Scholar 

  • Kumar N, Afeyan R et al (2008) Multipathway model enables prediction of kinase inhibitor cross-talk effects on migration of Her2-overexpressing mammary epithelial cells. Mol Pharmacol 73(6):1668–1678

    Article  PubMed  CAS  Google Scholar 

  • Lazzara MJ, Lauffenburger DA (2009) Quantitative modeling perspectives on the ErbB system of cell regulatory processes. Exp Cell Res 315(4):717–725

    Article  PubMed  CAS  Google Scholar 

  • Lee JM, Gianchandani EP et al (2006) Flux balance analysis in the era of metabolomics. Brief Bioinform 7(2):140–150

    Article  PubMed  Google Scholar 

  • Lee DS, Park J et al (2008) The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A 105(29):9880–9885

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Yang X et al (2010) Network modeling identifies molecular functions targeted by miR-204 to suppress head and neck tumor metastasis. PLoS Comput Biol 6(4):e1000730

    Google Scholar 

  • Legewie S, Herzel H et al (2008) Recurrent design patterns in the feedback regulation of the mammalian signaling network. Mol Syst Biol 4:190

    Article  PubMed  Google Scholar 

  • Ley TJ, Mardis ER et al (2008) DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456(7218):66–72

    Article  PubMed  CAS  Google Scholar 

  • Lin B, White JT et al (2005) Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res 65(8):3081–3091

    PubMed  CAS  Google Scholar 

  • Linding RL, Jensen J et al (2007) Systematic discovery of in vivo phosphorylation networks. Cell 129(7):1415–1426

    Article  PubMed  CAS  Google Scholar 

  • Lord CJ, Ashworth A (2009) Bringing DNA repair in tumors into focus. Clin Cancer Res 15(10):3241–3243

    Article  PubMed  CAS  Google Scholar 

  • Ludwig JA, Weinstein JN (2005) Biomarkers in cancer staging, prognosis and treatment selection. Nat Rev Cancer 5(11):845–856

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Solimini NL et al (2009) Principles of cancer therapy: oncogene and non-oncogene addiction. Cell 136(5):823–837

    Article  PubMed  CAS  Google Scholar 

  • Ma H, Sorokin A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135

    Article  PubMed  Google Scholar 

  • Macklin P, McDougall S et al (2009) Multiscale modeling and nonlinear simulation of vascular tumour growth. J Math Biol 58(4–5):765–798

    Article  PubMed  Google Scholar 

  • Madar A, Bonneau R (2009) Learning global models of transcriptional regulatory networks from data. Methods Mol Biol 541:181

    Article  PubMed  CAS  Google Scholar 

  • Mani KM, Lefebvre C et al (2008) A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol Syst Biol 4:169

    Article  PubMed  Google Scholar 

  • Mathew R, Karantza-Wadsworth V et al (2007) Role of autophagy in cancer. Nat Rev Cancer 7(12):961–967

    Article  PubMed  CAS  Google Scholar 

  • Mathew R, Karp CM et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137(6):1062–1075

    Article  PubMed  CAS  Google Scholar 

  • Mazzone M, Comoglio PM (2006) The Met pathway: master switch and drug target in cancer progression. FASEB J 20(10):1611–1621

    Article  PubMed  CAS  Google Scholar 

  • Mo ML, Jamshidi N et al (2007) A genome-scale, constraint-based approach to systems biology of human metabolism. Mol Biosyst 3(9):598–603

    Article  PubMed  CAS  Google Scholar 

  • Mo ML, Palsson BO (2009) Understanding human metabolic physiology: a genome-to-systems approach. Trends Biotechnol 27(1):37–44

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  • Ngo VN, Davis RE et al (2006) A loss-of-function RNA interference screen for molecular targets in cancer. Nature 441(7089):106–110

    Article  PubMed  CAS  Google Scholar 

  • Nguyen DX, Bos PD et al (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9(4):274–284

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Holmes E et al (2004) The challenges of modeling mammalian biocomplexity. Nat Biotechnol 22(10):1268–1274

    Article  PubMed  CAS  Google Scholar 

  • Noble D (2002) Modeling the heart—from genes to cells to the whole organ. Science 295(5560):1678–1682

    Article  PubMed  CAS  Google Scholar 

  • Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93(1):16–26

    Article  PubMed  Google Scholar 

  • Novak B, Tyson JJ (2008) Design principles of biochemical oscillators. Nat Rev Mol Cell Biol 9(12):981–991

    Article  PubMed  CAS  Google Scholar 

  • Nottale L, Auffray C (2008) Scale relativity theory and integrative systems biology: 2. Macroscopic quantum-type mechanics. Prog Biophys Mol Biol 97(1):115–157

    Article  PubMed  Google Scholar 

  • Oberhardt MA, Palsson BO et al (2009) Applications of genome-scale metabolic reconstructions. Mol Syst Biol 5:320

    Article  PubMed  Google Scholar 

  • Oliveri P, Tu Q et al (2008) Global regulatory logic for specification of an embryonic cell lineage. Proc Natl Acad Sci U S A 105(16):5955–5962

    Article  PubMed  CAS  Google Scholar 

  • Ornish D, Magbanua MJ et al (2008) Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A 105(24):8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Ornish D, Magbanua MJ et al (2008) Changes in prostate gene expression in men undergoing an intensive nutrition and lifestyle intervention. Proc Natl Acad Sci U S A 105(24):8369–8374

    Article  PubMed  CAS  Google Scholar 

  • Ovadi J, Saks V (2004) On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256–257(1–2):5–12

    Article  PubMed  Google Scholar 

  • Papin JA, Price ND et al (2003) Metabolic pathways in the post-genome era. Trends Biochem Sci 28(5):250–258

    Article  PubMed  CAS  Google Scholar 

  • Parsons DW, Jones S et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321(5897):1807–1812

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Warner N (2007) Oncogenic re-wiring of cellular signaling pathways. Oncogene 26(9):1268–1275

    Article  PubMed  CAS  Google Scholar 

  • Pawson T, Linding R (2008) Network medicine. FEBS Lett 582(8):1266–1270

    Article  PubMed  CAS  Google Scholar 

  • Polyak K, Haviv I et al (2009) Co-evolution of tumor cells and their microenvironment. Trends Genet 25(1):30–38

    Article  PubMed  CAS  Google Scholar 

  • Pouyssegur J, Dayan F et al (2006) Hypoxia signaling in cancer and approaches to enforce tumour regression. Nature 441(7092):437–443

    Article  PubMed  CAS  Google Scholar 

  • Pujana MA, Han JD et al (2007) Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet 39(11):1338–1349

    Article  PubMed  CAS  Google Scholar 

  • Rachlin J, Cohen DD et al (2006) Biological context networks: a mosaic view of the interactome. Mol Syst Biol 2:66

    Article  PubMed  CAS  Google Scholar 

  • Ramis-Conde I, Chaplain MA et al (2009) Multi-scale modeling of cancer cell intravasation: the role of cadherins in metastasis. Phys Biol 6(1):016008

    Article  PubMed  Google Scholar 

  • Ransohoff DF (2009) Promises and limitations of biomarkers. Recent Results Cancer Res 181:55–59

    Article  PubMed  Google Scholar 

  • Ransohoff DF, Gourlay ML (2010) Sources of bias in specimens for research about molecular markers for cancer. J Clin Oncol 28(4):698–704

    Google Scholar 

  • Rhodes DR, Chinnaiyan AM (2005) Integrative analysis of the cancer transcriptome. Nat Genet (37 Suppl):S31–S37

    Google Scholar 

  • Rhodes DR, Tomlins SA et al (2005) Probabilistic model of the human protein-protein interaction network. Nat Biotechnol 23(8):951–959

    Article  PubMed  CAS  Google Scholar 

  • Roach JC, Glusman G et al (2010) Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 328(5978):636–639

    Article  PubMed  CAS  Google Scholar 

  • Ruan K, Song G et al (2009) Role of hypoxia in the hallmarks of human cancer. J Cell Biochem 107(6):1053–1062

    Article  PubMed  CAS  Google Scholar 

  • Sakhanenko N, Galas DJ (2010) Markov logic networks in the analysis of genetic data. J Comp Biol 17(11):1491–1508

    Google Scholar 

  • Samaga R, Saez-Rodriguez J et al (2009) The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput Biol 5(8):e1000438

    Article  PubMed  CAS  Google Scholar 

  • Sawyers CL (2008) The cancer biomarker problem. Nature 452(7187):548–552

    Article  PubMed  CAS  Google Scholar 

  • Schlabach MR, Luo J et al (2008) Cancer proliferation gene discovery through functional genomics. Science 319(5863):620–624

    Article  PubMed  CAS  Google Scholar 

  • Schlitt T, Brazma A (2005) Modeling gene networks at different organisational levels. FEBS Lett 579(8):1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Schoeberl B, Pace EA et al (2009) Therapeutically targeting ErbB3: a key node in ligand-induced activation of the ErbB receptor-PI3K axis. Sci Signal 2(77):ra31

    Article  PubMed  CAS  Google Scholar 

  • Seyfried TN, Shelton LM (2010) Cancer as a metabolic disease. Nutr Metab (Lond) 7:7

    Google Scholar 

  • Sheng H, Niu B et al (2009) Metabolic targeting of cancers: from molecular mechanisms to therapeutic strategies. Curr Med Chem 16(13):1561–1587

    Article  PubMed  CAS  Google Scholar 

  • Shimoni Y, Friedlander G et al (2007) Regulation of gene expression by small non-coding RNAs: a quantitative view. Mol Syst Biol 3:138

    Article  PubMed  CAS  Google Scholar 

  • Silva JM, Marran K et al (2008) Profiling essential genes in human mammary cells by multiplex RNAi screening. Science 319(5863):617–620

    Article  PubMed  CAS  Google Scholar 

  • Sjoblom T, Jones S et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314(5797):268–274

    Article  PubMed  CAS  Google Scholar 

  • Solimini NL, Luo J et al (2007) Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130(6):986–988

    Article  PubMed  CAS  Google Scholar 

  • Spencer SL, Gaudet S et al (2009) Non-genetic origins of cell-to-cell variability in TRAIL-induced apoptosis. Nature 459(7245):428–432

    Article  PubMed  CAS  Google Scholar 

  • Stites EC, Trampont PC et al (2007) Network analysis of oncogenic Ras activation in cancer. Science 318(5849):463–467

    Article  PubMed  CAS  Google Scholar 

  • Strebhardt K, Ullrich A (2008) Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 8(6):473–480

    Article  PubMed  CAS  Google Scholar 

  • Tan CS, Bodenmiller B et al (2009) Comparative analysis reveals conserved protein phosphorylation networks implicated in multiple diseases. Sci Signal 2(81):ra39

    Article  PubMed  Google Scholar 

  • Taylor IW, Linding R et al (2009) Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27(2):199–204

    Article  PubMed  CAS  Google Scholar 

  • Tegner JN, Compte A et al (2009) Computational disease modeling—fact or fiction? BMC Syst Biol 3:56

    Article  PubMed  Google Scholar 

  • Tennant DA, Duran RV et al (2009) Metabolic transformation in cancer. Carcinogenesis 30(8):1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Thorisson GA, Muilu J et al (2009) Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nat Rev Genet 10(1):9–18

    Article  PubMed  CAS  Google Scholar 

  • Tomlins SA, Mehra R et al (2007) Integrative molecular concept modeling of prostate cancer progression. Nat Genet 39(1):41–51

    Article  PubMed  CAS  Google Scholar 

  • Tonon G (2008) From oncogene to network addiction: the new frontier of cancer genomics and therapeutics. Future Oncol 4(4):569–577

    Article  PubMed  CAS  Google Scholar 

  • Torres EM, Williams BR et al (2008) Aneuploidy: cells losing their balance. Genetics 179(2):737–746

    Article  PubMed  CAS  Google Scholar 

  • Tyson JJ, Chen K et al (2001) Network dynamics and cell physiology. NatRev Mol Cell Biol 2(12):908–916

    Article  CAS  Google Scholar 

  • Tyson JJ, Novak B (2008). Temporal organization of the cell cycle. Curr Biol 18(17):R759–R768

    Article  CAS  Google Scholar 

  • van’t Veer’ LJ, Bernards R (2008) Enabling personalized cancer medicine through analysis of gene-expression patterns. Nature 452(7187):564–570

    Article  CAS  Google Scholar 

  • Varambally S, Yu J et al (2005) Integrative genomic and proteomic analysis of prostate cancer reveals signatures of metastatic progression. Cancer Cell 8(5):393–406

    Article  PubMed  CAS  Google Scholar 

  • Velculescu VE, Kinzler KW (2007) Gene expression analysis goes digital. Nat Biotechnol 25(8):878–880

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10(8):789–799

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Zhang L et al (2007) Simulating non-small cell lung cancer with a multiscale agent-based model. Theor Biol Med Model 4:50

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Birch CM et al (2009) Cross-scale, cross-pathway evaluation using an agent-based non-small cell lung cancer model. Bioinformatics 25(18):2389–2396

    Article  PubMed  CAS  Google Scholar 

  • Weinberg RA (2006) The biology of cancer. New York, Taylor and Francis

    Google Scholar 

  • Weinstein IB (2002) Cancer. Addiction to oncogenes—the Achilles heal of cancer. Science 297(5578):63–64

    Article  PubMed  CAS  Google Scholar 

  • Weinstein IB, Joe A (2008) Oncogene addiction. Cancer Res 68(9):3077–3080; discussion 3080

    Article  PubMed  CAS  Google Scholar 

  • Wells JA, McClendon CL (2007) Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450(7172):1001–1009

    Article  PubMed  CAS  Google Scholar 

  • Westerhoff HV, Palsson BO (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22(10):1249–1252

    Article  PubMed  CAS  Google Scholar 

  • Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5(10):761–772

    Article  PubMed  CAS  Google Scholar 

  • Williams BR, Prabhu VR et al (2008) Aneuploidy affects proliferation and spontaneous immortalization in mammalian cells. Science 322(5902):703–709

    Article  PubMed  CAS  Google Scholar 

  • Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform 2(3):258–270

    Article  PubMed  CAS  Google Scholar 

  • Wolkenhauer O, Auffray C et al (2010) Systems biologists seek fuller integration of systems biology approaches in new cancer research programs. Cancer Res 70(1):12–13

    Article  PubMed  CAS  Google Scholar 

  • Wong PK, Yu F et al (2008) Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm. Proc Natl Acad Sci U S A 105(13):5105–5110

    Article  PubMed  CAS  Google Scholar 

  • Wood LD, Parsons DW et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Wu JQ, Du J et al (2008) Systematic analysis of transcribed loci in ENCODE regions using RACE sequencing reveals extensive transcription in the human genome. Genome Biol 9(1):R3

    Article  PubMed  CAS  Google Scholar 

  • Yeger-Lotem E, Sattath S et al (2004) Network motifs in integrated cellular networks of transcription-regulation and protein-protein interaction. Proc Natl Acad Sci U S A 101(16):5934–5939

    Article  PubMed  CAS  Google Scholar 

  • Yildirim MA, Goh KI et al (2007) Drug-target network. Nat Biotechnol 25(10):1119–1126

    Article  PubMed  CAS  Google Scholar 

  • Yuan JM, Hu DW (2006) Time-dependent sensitivity analysis of biological networks: coupled MAPK andPI3K signal transduction pathways. J Phys Chem A110:5361–5370

    Google Scholar 

  • Zerhouni EA (2005) Translational and clinical science – time for a new vision. N Engl J Med 353(15):1621–1623

    Article  PubMed  CAS  Google Scholar 

  • Zheng PZ, Wang KK et al (2005) Systems analysis of transcriptome and proteome in retinoic acid/arsenic trioxide-induced cell differentiation/apoptosis of promyelocytic leukemia. Proc Natl Acad Sci U S A 102(21):7653–7658

    Article  PubMed  CAS  Google Scholar 

  • Zou W (2005) Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 5(4):263–274

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Odile Brasier for secretarial assistance. Eruption of the Eyjafjöll provided the opportunity to complete this chapter on time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Auffray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Auffray, C., Ideker, T., Galas, D., Hood, L. (2011). The Hallmarks of Cancer Revisited Through Systems Biology and Network Modelling. In: Cesario, A., Marcus, F. (eds) Cancer Systems Biology, Bioinformatics and Medicine. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1567-7_9

Download citation

Publish with us

Policies and ethics