Skip to main content

Recent Functional Genomics Studies in Marine Synechococcus

  • Chapter
  • First Online:

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 33))

Summary

Marine Synechoccocus are major contributors to global primary productivity. Genomics and metagenomics have revealed high levels of gene content diversity in these cyanobacteria, partly due to horizontal gene transfer. These differences would be extremely important for ecological niche adaptation. Functional genomics studies using microarrays are now revealing how gene expression in marine cyanobacteria is responding to common environmental stresses such as nutrient deprivation, metal stress, and even the presence of other microbes. Many genes highly expressed under environmental stresses seem to be clade – or even strain-specific, which may change our view of how microbes adapt to new environmental conditions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

amt1 :

ammonium transporter

apcF :

gene encoding light-harvesting phycobilisome core ­component-allophycocyanin subunit

chlB :

gene encoding light-independent protochlorophyllide reductase subunit

Fur:

Ferric uptake regulator, a transcription factor controlling iron uptake

gltS :

gene encoding monocomponent sodium-dependent glutamate permease

nirA :

gene encoding nitrite reductase

NtcA:

transcription factor that is key element for nitrogen control

petF2 :

gene encoding ferredoxin

References

  • Aiba H, Nagaya M and Mizuno T (1993) Sensor and regulator proteins from the cyanobacterium Synechococcus species PCC7942 that belong to the bacterial signal-transduction protein families: implication in the adaptive response to phosphate limitation. Mol Microbiol 8: 81–91

    Article  PubMed  CAS  Google Scholar 

  • Bagg A and Neilands JB (1987) Molecular mechanism of regulation of siderophore-mediated iron assimilation. Microbial Rev 51: 509–518

    CAS  Google Scholar 

  • Bassler BL, Greenberg EP and Stevens AM (1997) Cross species induction of luminescence in the quorum sensing bacterium Vibrio harveyi. J Bacteriol 179: 4043–4045

    PubMed  CAS  Google Scholar 

  • Brahamsha B (1996a) An abundant cell-surface polypeptide is required for swimming by the nonflagellated marine cyanobacterium Synechococcus. Proc Natl Acad Sci USA 93: 6504–6509

    Article  PubMed  CAS  Google Scholar 

  • Brahamsha B (1996b) A genetic manipulation system for oceanic cyanobacteria of the genus Synechococcus. Appl Environ Microbiol 62: 1747–1751

    PubMed  CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB and Welschmeyer NA (1988) A novel free living prochlorophyte abundant in the oceanic euphotic zone. Nature 334: 340–343

    Article  Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, de Marsac NT, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR and Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biology 9: R90

    Article  PubMed  Google Scholar 

  • Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS, Ostrowski M, Oztas S, Robert C, Rogozin IB, Scanlan DJ, de Marsac NT, Weissenbach J, Wincker P, Wolf YI and Hess WR (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci USA 100: 10020–10025

    Article  PubMed  CAS  Google Scholar 

  • Escolar L, Perez-Martin J and De Lorenzo V (1999) Opening the iron box: transcriptional metalloregulation by the fur protein. J Bacteriol 181: 6223–6229

    PubMed  CAS  Google Scholar 

  • Ferris MJ and Palenik B (1998) Niche adaptation in ocean cyanobacteria. Nature 396: 226–228

    Article  CAS  Google Scholar 

  • Flores E and Herrero A (2005) Nitrogen assimilation and nitrogen control in cyanobacteria. Biochem Soc Trans 33: 164–167

    Article  PubMed  CAS  Google Scholar 

  • Goldman JC and Dennett MR (1991) Ammonium regeneration and carbon utilization by marine bacteria grown on mixed substrates. Mar Biol 109: 369–378

    Article  CAS  Google Scholar 

  • Hansel A and Tadros MH (1998) Characterization of two pore-forming proteins isolated from the outer membrane of Synechococcus PCC 6301. Curr Microbiol 36: 321–326

    Article  PubMed  CAS  Google Scholar 

  • Hantke K (2001) Iron and metal regulation in bacteria. Curr Opin Microbiol 4: 172–177

    Article  PubMed  CAS  Google Scholar 

  • Henke JM and Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14: 648–656

    Article  PubMed  CAS  Google Scholar 

  • Hernandez JA, Lopez-Gomollon S, Bes MT, Fillat MF and Peleato ML (2004) Three fur homologues from Anabaena sp PCC7120: exploring reciprocal protein-promoter recognition. FEMS Microbiol Lett 236: 275–282

    Article  PubMed  CAS  Google Scholar 

  • Hirani TA, Suzuki I, Murata N, Hayashi H and Eaton-Rye JJ (2001) Characterization of a two-component signal transduction system involved in the induction of alkaline phosphatase under phosphate-limiting conditions in Synechocystis sp. PCC 6803. Plant Mol Biol 45: 133–144

    Article  PubMed  CAS  Google Scholar 

  • Imlay JA (2008) Cellular defenses against superoxide and hydrogen peroxide. Ann Rev Biochem 77: 755–776

    Article  PubMed  CAS  Google Scholar 

  • Ishige T, Krause M, Bott M, Wendisch VF and Sahm H (2003) The phosphate starvation stimulon of Corynebacterium glutamicum determined by DNA microarray analyses. J Bacteriol 185: 4519–4529

    Article  PubMed  CAS  Google Scholar 

  • Johnson PW and Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24: 928–935

    Article  Google Scholar 

  • Kutsuna S, Kondo T, Ikegami H, Uzumaki T, Katayama M and Ishiura M (2007) The circadian clock-related gene pex regulates a negative cis element in the kaiA promoter region. J Bacteriol 189: 769–7696

    Google Scholar 

  • Latifi A, Ruiz M and Zhang CC (2009) Oxidative stress in cyanobacteria. FEMS Microbiol Rev 33: 258–278

    Article  PubMed  CAS  Google Scholar 

  • Lindell D, Jaffe JD, Coleman ML, Futschik ME, Axmann IM, Rector T, Kettler G, Sullivan MB, Steen R, Hess WR, Church GM and Chisholm SW (2007) Genome wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Makino K, Oshima K, Kurokawa K, et al (2003) Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. cholerae. Lancet 361: 743–749

    Article  PubMed  CAS  Google Scholar 

  • Mann EL, Ahlgren N, Moffett JW and Chisholm SW (2002) Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol Oceanogr 47: 976–988

    Article  CAS  Google Scholar 

  • Martiny AC, Coleman ML and Chisholm SW (2006) Phosphate acquistion genes in Prochlorococcus ecotypes: Evidence for genome wide adaptation. Proc Natl Acad Sci USA 103: 12552–12557

    Article  PubMed  CAS  Google Scholar 

  • McCarren J and Brahamsha B (2007) SwmB, a 1.12-megadalton protein that is required for nonflagellar swimming motility in Synechococcus. J Bacteriol 189: 1158–1162

    Article  PubMed  CAS  Google Scholar 

  • McCarter LL and Silverman M (1987) Phosphate regulation of gene expression in Vibrio parahaemolyticus. J Bacteriol 169: 3441–3449

    PubMed  CAS  Google Scholar 

  • McHugh JP, Rodriguez-Quinones F, Abdul-Tehrani H, Svistunenko DA, Poole RK, Cooper CE and Andrews SC (2003) Global iron-dependent gene regulation in Escherichia coli- A new mechanism for iron homeostasis. J Biol Chem 278: 29478–29486

    Article  PubMed  CAS  Google Scholar 

  • Moffett JW, Brand LE, Croot PL and Barbeau KA (1997) Cu speciation and cyanobacterial distribution in harbors subject to anthropogenic Cu inputs. Limnol Oceanogr 42: 789–799

    Article  CAS  Google Scholar 

  • Moore LR, Ostrowski M, Scanlan DJ, Feren K and Sweetsir T (2005) Ecotypic variation in phosphorus acquisition mechanisms within marine picocyanobacteria. Aquatic Microbial Ecol 39: 257–269

    Article  Google Scholar 

  • Moore LR, Post AF, Rocap G and Chisholm SW (2002) Utilization of different nitrogen sources by the marine cyanobacteria Prochlorococcus and Synechococcus. Limnol Oceanog 47: 989–996

    Article  CAS  Google Scholar 

  • Niederhoffer EC, Naranjo CM, Bradley KL and Fee JA (1990) Control of Escherichia coli superoxide dismutase (SodA and SodB) genes by ferric uptake regulation (Fur) locus. J Bacteriol 172: 1930–1938

    PubMed  CAS  Google Scholar 

  • Olson RJ, Chisholm SW, Zettler ER and Armbrust EV (1990) Pigments, size and distribution of Synechococcus in the North Atlantic and Pacific Oceans. Limnol Oceanog 35: 45–58

    Article  CAS  Google Scholar 

  • Palenik B (1994) Cyanobacterial community structure as seen from RNA-polymerase gene sequence analysis. Appl Environ Microbiol 60: 3212–3219

    PubMed  CAS  Google Scholar 

  • Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbiol 67: 991–994

    Article  PubMed  CAS  Google Scholar 

  • Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA and Waterbury J (2003) The genome of a motile marine Synechococcus. Nature 424: 1037–1042

    Article  PubMed  CAS  Google Scholar 

  • Palenik B and Dyhrman ST (1998). Recent progress in understanding the regulation of marine primary productivity by phosphorus. In: Lynch JP and Deikman J (eds) Phosphorus in Plant Biology: Regulatory Roles in Molecular, Cellular, Organismic and Ecosystem Processes, pp 26–38. American Society of Plant Physiologists Rockville, MD

    Google Scholar 

  • Palenik B, Ren Q, Dupont CL, Myers GS, Heidelberg JF, Badger JH, Madupu R, Nelson WC, Brinkac LM, Dodson RJ, Durkin AS, Daugherty SC, Sullivan SA, Khouri H, Mohamoud Y, Halpin R and Paulsen IT (2006) The genome of Synechococcus CC9311: Insights into adaptation to a coastal environment. Proc Natl Acad Sci USA 103: 13555–13559

    Article  PubMed  CAS  Google Scholar 

  • Palenik B, Ren Q, Tai V and Paulsen IT (2009) Coastal Synechococcus metagenome reveals major roles for horizontal gene transfer and plasmids in population diversity. Environ Microbiol 11: 349–359

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Kobayashi Y and Hulett FM (1997) The pst operon of Bacillus subtilis has a phosphate--regulated promoter and is involved in phosphate transport but not in regulation of the pho regulon. J Bacteriol 179: 2534–2539

    PubMed  CAS  Google Scholar 

  • Ray JM, Bhaya D, Block MA and Grossman AR (1991) Isolation transcription and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173: 4297–4309

    PubMed  CAS  Google Scholar 

  • Ren Q and Paulsen IT (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. J Mol Microbiol Biotechnol 12: 165–179

    Article  PubMed  CAS  Google Scholar 

  • Rocap G, Larimer F, Lamerdin J, Malfatti S, Chain P, Ahlgren N, Arellano A, Coleman ML, Hauser L, Hess W, Johnson Z, Land M, Lindell D, Post A, Regala W, Shah M, Shaw S, Steglich C, Sullivan MB, Ting C, Tolonen A, Webb E, Zinser E and Chisholm SW (2003) Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation. Nature 424: 1042–1047

    Article  PubMed  CAS  Google Scholar 

  • Sauer J, Schreiber U, Schmid R, Volker U and Forchhammer K (2001) Nitrogen starvation-induced chlorosis in Synechococcus PCC 7942. Low-level photosynthesis as a mechanism of long-term survival. Plant Physiol 126: 233–243

    Article  PubMed  CAS  Google Scholar 

  • Scanlan D, Bourne J and Mann N (1996) A putative transcriptional activator of the Crp/Fnr family from the marine cyanobacterium Synechococcus sp. WH7803. J Appl Phycol 8: 565–567

    Article  CAS  Google Scholar 

  • Scanlan DJ, Mann NH and Carr NG (1993) The response of the picoplankton marine cyanobacterium Synechococcus species WH7803 to phosphate starvation involves a protein homologous to the periplasmic phosphate-binding protein of Escherichia coli. Mol Microbiol 10: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I and Partensky F (2009) Ecological genomics of marine picocyanobacteria. Microbiol Mol Biol Rev 73: 249–299

    Article  PubMed  CAS  Google Scholar 

  • Scanlan DJ, Silman NJ, Donald KM, Wilson WH, Carr NG, Joint I and Mann NH (1997) An immunological approach to detect phosphate stress in populations and single cells of photosynthetic picoplankton. Appl Environ Microbiol 63: 2411–2420

    PubMed  CAS  Google Scholar 

  • Scanlan DJ and West NJ (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Silberbach M, Huser A, Kalinowski J, Puhler A, Walter B, Kramer R et al (2005) DNA microarray analysis of the nitrogen starvation response of Corynebacterium glutamicum. J Biotechnol 119: 357–367

    Article  PubMed  CAS  Google Scholar 

  • Steglich C, Futschik M, Rector T, Steen R and Chisholm SW (2006) Genome-wide analysis of light sensing in Prochlorococcus. J Bacteriol 188: 7796–7806

    Article  PubMed  CAS  Google Scholar 

  • Stuart RK, Dupont CL, Johnson DA, Paulsen IT and Palenik B (2009) Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Appl Environ Micro 75: 5047–5057

    Article  CAS  Google Scholar 

  • Su Z, Olman V, Mao F and Xu Y (2005) Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucl Acids Res 33: 5156–5171

    Article  PubMed  CAS  Google Scholar 

  • Su Z, Olman V and Xu Y (2007) Computational prediction of Pho regulons in cyanobacteria. BMC Genomics 8: Article 156

    Google Scholar 

  • Su ZC, Mao FL, Dam P, Wu HW, Olman V, Paulsen IT, Palenik B and Xu Y (2006) Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp WH 8102. Nucl Acids Res 34: 1050–1065

    Article  PubMed  CAS  Google Scholar 

  • Suzuki S, Ferjani A, Suzuki I and Murata N (2004) The SphS-SphR two component system is the exclusive sensor for the induction of gene expression in response to phosphate limitation in Synechocystis. J Biol Chem 279: 13234–13240

    Article  PubMed  CAS  Google Scholar 

  • Tai V, Paulsen IT, Phillipy K, Johnson DA and Palenik B (2009) Whole-genome microarray analyses of Synechococcus-Vibrio interactions. Environ Microbiol 11: 2698–2709

    Article  PubMed  CAS  Google Scholar 

  • Tetu SG, Brahamsha B, Johnson DA, Tai V, Phillipy K, Palenik B and Paulsen IT (2009) Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J: 1–15

    Google Scholar 

  • Thomas EV, Phillippy KH, Brahamsha B, Haaland DM, Timlin JA, Elbourne LDH, Palenik B and Paulsen IT (2009) Statistical analysis of microarray data with replicated spots: a case study with Synechococcus WH8102. Comp Funct Genom Article 950171

    Google Scholar 

  • Toledo G and Palenik B (1997) Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl Environ Microbiol 63: 4298–4303

    PubMed  CAS  Google Scholar 

  • Tolonen AC, Aach J, Lindell D, Johnson ZI, Rector T, Steen R, Church GM and Chisholm SW (2006) Global gene expression of Prochlorococcus ecotypes in res­ponse to changes in nitrogen availability. Molec Syst Biol 2: 53

    Google Scholar 

  • Van Bogelen RA, Olson ER, Wanner BL and Neidhardt FC (1996) Global analysis of proteins synthesized during phosphorus restriction in Escherichia coli. J Bacteriol 178: 4344–4366

    Google Scholar 

  • Voß B, Georg J, Schön V, Ude S and Hess WR (2009) Biocomputational prediction of non--coding RNAs in model cyanobacteria. BMC Genomics 10: 123

    Article  PubMed  Google Scholar 

  • Wanner BL (1993) Gene regulation by phosphate in enteric bacteria. J Cell Biochem 51: 47–54

    Article  PubMed  CAS  Google Scholar 

  • Waterbury JB, Watson FW, Valois FW and Franks DG (1986) Biological and ecological characterization of the marine unicellular cyanobacterium Synechococcus. In: Platt T and Li WKW (eds) Photosynthetic Picoplankton, pp 71–120. Canadian Dept. of Fisheries and Oceans, Ottawa

    Google Scholar 

  • Waterbury JB, Watson SW, Guillard RR and Brand LE (1979) Widespread occurrence of a unicellular marine planktonic cyanobacterium. Nature 227: 293–294

    Article  Google Scholar 

  • Yamamoto H, Miyake C, Dietz K-J, Tomizawa K-I, Murata N and Yokota A (1999) Thioredoxin peroxidase in the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 447: 269–273

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka G and Glazer AN (1980) Dynamic aspects of phycobilisome structure - phycobilisome turnover during nitrogen starvation in Synechococcus sp. Archives of Microbiol 124: 39–47

    Article  CAS  Google Scholar 

  • Zhang XH and Austin B (2005) Haemolysins in Vibrio species. J Appl Microbiol 98: 1011–1019

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Much of the microarray work summarized here was a collaboration with a number of scientists including Ian Paulsen, Bianca Brahamsha, Qinhu Ren, Sasha Tetu, Kathy Phillipy, Aaron Johnson, Chris Dupont, Rhona Stuart, Vera Tai, Rob Herman, Lori Crumbliss, Ed Thomas, Zhengchang Su, and Ying Xu. This chapter borrows liberally from their work and collective insights into Synechococcus biology. In addition I would like to thank DOE and NSF for providing funding that led to the sequencing and analysis of the genomes of strains WH8102, CC9902, CC9605 (DOE-JGI) and CC9311 (JCVI) and their use in microarray studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Palenik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Palenik, B. (2012). Recent Functional Genomics Studies in Marine Synechococcus . In: Burnap, R., Vermaas, W. (eds) Functional Genomics and Evolution of Photosynthetic Systems. Advances in Photosynthesis and Respiration, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1533-2_4

Download citation

Publish with us

Policies and ethics