Skip to main content

Small RNA-Mediated Defensive and Adaptive Responses in Plants

  • Chapter
  • First Online:

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 7))

Abstract

Agriculture is the backbone of economy for most countries, especially the developing countries with high population density. However, the change in climate and its influence on the environment has led to low productivity of several staple crops that can be attributable to prevailing biotic and abiotic factors. In the long run, these factors are likely to have more adverse effects on the crop yield than what is currently being encountered. Therefore, scientists across the world develop strategies to tackle future problems leading to food insecurity. Plants are exposed to a variety of stresses under natural conditions. To encounter these challenges plants have efficiently evolved with several endogenous mechanisms to defend themselves against such harmful situations.

Small ribonucleic acids (sRNA) have recently been identified as critical molecules that regulate wide variety of biological phenomenon, both in plants and animals. Several lines of evidence demonstrates that small RNAs profiles changes rapidly in response to adverse stimuli. In certain cases, specific small RNAs were found to be associated with a particular stress, thus, indicating the direct involvement of small RNA-mediated pathways in plethora of stresses. We review here the advancements of small RNA biology, including microRNA and short-interfering RNA, and aspects related to their possible role in counter defense of biotic and abiotic stress responses. The review has been broadly classified into two sections describing role of small RNAs assigned in response to various biotic and abiotic stresses. The possible evidence of cross-talk among diverse range of stresses is also discussed. Future investigations may explore putative novel pathways downstream to this small RNA misexpression and consequently open avenues to design strategies to raise transgenic crops resistant to multiple stresses.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121:207–221. doi:10.1016/j.cell.2005.04.004

    Article  PubMed  CAS  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18:1134–01151. doi:10.1105/tpc.105.040725

    Article  PubMed  CAS  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Mallory AC, Smith HT, Vane VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci USA 95:13079–13084. doi:10.1073/pnas.1733874100

    Article  PubMed  CAS  Google Scholar 

  • Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G (2005) Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 79:9556–9565. doi:10.1128/JVI.79.15.9556–9565.2005

    Article  PubMed  CAS  Google Scholar 

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741. doi:10.1105/tpc.016238

    Article  PubMed  CAS  Google Scholar 

  • Aung K, Lin S, Wu C, Huang Y, Su C, Chiou T (2006) pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol 141:1000–1011. doi:10.1104/pp. 106.078063

    Article  PubMed  CAS  Google Scholar 

  • Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662. doi:10.1016/j.devcel.2004.10.003

    Article  PubMed  CAS  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  PubMed  CAS  Google Scholar 

  • Baumberger N, Baulcombe DC (2005) Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits micro RNAs and short interfering RNAs. Proc Natl Acad Sci USA 102:11928–11933. doi:10.1073/pnas.0505461102

    Article  PubMed  CAS  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by geminivirus proteins. Virology 344:158–168. doi:10.1016/j.virol.2005.09.041

    Article  PubMed  CAS  Google Scholar 

  • Blevins T, Rajeswaran R, Shivaprasad PV, Beknazariants D, Si-Ammour A, Park HS, Vazquez F, Robertson D, Meins FJ, Hohn T, Pooggin MM (2006) Four plant Dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34:6233–6246. doi:10.1093/nar/gkl886

    Article  PubMed  CAS  Google Scholar 

  • Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130:1493–1504. doi:10.1242/10.1242/dev.00362

    Article  PubMed  CAS  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cisantisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291. doi:10.1016/j.cell.2005.11.035

    Article  PubMed  CAS  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA 166 controls root and nodule development in Medicago trancatula. Plant J 54:876–887. doi:10.1111/j.1365-313X.2008.03448.x

    Article  PubMed  CAS  Google Scholar 

  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J 17:6739–6746. doi:10.1093/emboj/17.22.6739

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190. doi:10.1126/science.1159151

    Article  PubMed  CAS  Google Scholar 

  • Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC (2004) Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 18:1179–1186. doi:10.1101/gad.1201204

    Article  PubMed  CAS  Google Scholar 

  • Chellappan P, Vanitharani R, Fauquet CM (2005) MicroRNA-binding viral protein interferes with Arabidopsis development. Proc Natl Acad Sci USA 102:10381–10386. doi:10.1073/pnas.0504439102

    Article  PubMed  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025. doi:10.1126/science.1088060

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Li WX, Xie D, Peng JR, Ding SW (2004) Viral virulence protein suppresses RNA silencing-mediated defense but upregulates the role of microRNA in host gene expression. Plant Cell 16:1302–1313. doi:10.1105/tpc.018986

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Li G, Wang D, Hu D, Zhou X (2005) A Begomovirus DNA beta-encoded protein binds DNA, functions as a suppressor of RNA silencing, and targets the cell nucleus. J Virol 79:10764–10775. doi:10.1128/JVI.79.16.10764-10775.2005

    Article  PubMed  CAS  Google Scholar 

  • Deleris A, Gallego-Bartolome J, Bao J, Kasschau KD, Carrington JC, Voinnet O (2006) Hierarchial action and inhibition of plant Dicer-like proteins in antiviral defense. Science 303:68–71. doi:10.1126/science.1128214

    Article  CAS  Google Scholar 

  • Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250. doi:10.1105/tpc.020719

    Article  PubMed  CAS  Google Scholar 

  • Elbashir SM, Lendeckel W, Tuschl T (2001) RNA interference is mediated by 21- and 22-nucleotide RNAs. EMBO J 17:6739–6746. doi:10.1093/emboj/20.23.6877

    Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774. doi:10.1016/S0960-9822(03)00718-8

    Article  PubMed  CAS  Google Scholar 

  • Fagard M, Boutet S, Morel JB, Bellini C, Vaucheret H (2000) AGO1, QDE-2, and RDE-1 are related proteins required for post-transcriptional gene silencing in plants, quelling in fungi, and RNA interference in animals. Proc Natl Acad Sci USA 97:11650–11654. doi:10.1073/pnas.200217597

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Montogomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC (2006) Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr Biol 16:939–944. doi:10.1016/j.cub.2006.03.065

    Article  PubMed  CAS  Google Scholar 

  • Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE 2:e219. doi:10.1371/journal.pone.0000219

    Article  PubMed  CAS  Google Scholar 

  • Felippes FF, Weigel D (2009) Triggering the formation of tasiRNAs in Arabidopsis thaliana: the role of microRNA miR173. EMBO Rep 10:264–270. doi:10.1038/embor.2008.247

    Article  PubMed  CAS  Google Scholar 

  • Fenner BJ, Thiagarajan R, Chua HK, Kwang J (2006) Betanodavirus b2 is an RNA interference antagonist that facilitates intracellular viral RNA accumulation. J Virol 80:85–94. doi:10.1128/JVI.80.1.85-94.2006

    Article  PubMed  CAS  Google Scholar 

  • Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate-starvation response in Arabidopsis. Curr Biol 15:2038–2043. doi:10.1016/j.cub.2005.10.016

    Article  PubMed  CAS  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP, Vaucheret H (2005) Partially redundant functions of arabidopsis DICER-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr Biol 15:1494–1500. doi:10.1016/j.cub.2005.07.024

    Article  PubMed  CAS  Google Scholar 

  • Guo HS, Xie Q, Fie JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17:1376–1386. doi:10.1105/tpc.105.030841

    Article  PubMed  CAS  Google Scholar 

  • Hamilton A, Baulcombe D (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952. doi:10.1126/science.286.5441.950

    Article  PubMed  CAS  Google Scholar 

  • Han MH, Goud S, Song L, Fedoroff N (2004) The arabidopsis double-stranded RNA-binding protein HYL1 plays a role in microRNA-mediated gene regulation. Proc Natl Acad Sci USA 101:1093–1098. doi:10.1073/pnas.0307969100

    Article  PubMed  CAS  Google Scholar 

  • Henderson IR, Zhang X, Lu C, Johnson L, Meyers BC, Green PJ, Jacobsen SE (2006) Dissecting Arabidopsis thaliana DICER function in small RNA processing, gene silencing and DNA methylation patterning. Nat Genet 38:721–725. doi:10.1038/ng1804

    Article  PubMed  CAS  Google Scholar 

  • Izquierdo J (1999) Biotechnology can help crop production to feed and increasing world population?: positive and negative aspects need to be balanced, a perspective from FAO. Presented at International Symposium on Plant Genetic Engineering, 6–10 Dec 1999, Havana (in print, Elsevier)

    Google Scholar 

  • Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799. doi:10.1016/ j.molcel.2004.05.027

    Article  PubMed  CAS  Google Scholar 

  • Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P (2005) Modulation of hepatitis C virus RNA abundance by liver-specific MicroRNA. Science 309:1577–1581. doi:10.1126/science.1113329

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217. doi:10.1016/S1534-5807(03)00025-X

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D, Borsani O, Villegas A Jr, Zhu JK, Staskawicz BJ, Jin H (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007. doi:10.1073/pnas.0608258103

    Article  PubMed  CAS  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134. doi:10.1101/gad.1595107

    Article  PubMed  CAS  Google Scholar 

  • Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115:209–216. doi:10.1016/S0092-8674(03)00801-8

    Article  PubMed  CAS  Google Scholar 

  • Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385. doi:10.1038/nrm1644

    Article  PubMed  CAS  Google Scholar 

  • Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc Natl Acad Sci USA 101:12753–12758. doi:10.1073/pnas.0403115101

    Article  PubMed  CAS  Google Scholar 

  • Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322. doi:10.1242/dev.01320

    Article  PubMed  CAS  Google Scholar 

  • Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) MicroRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417. doi:10.1073/pnas.0503927102

    Article  PubMed  CAS  Google Scholar 

  • Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saïb A, Voinnet O (2005) A cellular microRNA mediates antiviral defense in human cells. Science 308:557–560. doi:10.1126/science.1108784

    Article  PubMed  CAS  Google Scholar 

  • Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23:4051–4060. doi:10.1038/sj.emboj.7600385

    Article  PubMed  CAS  Google Scholar 

  • Li F, Ding SW (2006) Virus counterdefense: diverse strategies for evading the RNA-Silencing immunity. Annu Rev Microbiol 60:503–531. doi:10.1146/annurev.micro.60.080805.142205

    Article  PubMed  CAS  Google Scholar 

  • Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3-end uridylation activity in arabidopsis. Curr Biol 15:1501–1507. doi:10.1016/j.cub.2005.07.029

    Article  PubMed  CAS  Google Scholar 

  • Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843. doi:10.1261/rna.895308

    Article  PubMed  CAS  Google Scholar 

  • Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006) SERRATE: a new player on the plant microRNA scene. EMBO Rep 7:1052–1058. doi:10.1038/sj.embor.7400806

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Cullen BR (2004) Adenovirus VA1 noncoding RNA can inhibit small interfering RNA and microRNA biogenesis. J Virol 78:12868–12876. doi:10.1128/JVI.78.23.12868-12876.2004

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun Y-S, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stressresponsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203. doi:10.1105/tpc.105.033456

    Article  PubMed  CAS  Google Scholar 

  • Ma ZL, Yang HY, Wang R, Tian B (2004) Construct hairpin RNA to fight against rice dwarf virus. Acta Bot Sin 46:332–336

    CAS  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5 region. EMBO J 23:3356–3364. doi:10.1038/sj.emboj.7600340

    Article  PubMed  CAS  Google Scholar 

  • Mallory AC, Hinze A, Tucker MR, Bouché N, Gasciolli V, Elmayan T, Lauressergues D, Jauvion V, Vaucheret H, Laux T (2009) Redundant and specific roles of the ARGONAUTE proteins AGO1 and ZLL in development and small RNA-directed gene silencing. PLoS Genet 5:e1000646. doi:10.1038/sj.emboj.7600340

    Article  PubMed  CAS  Google Scholar 

  • Mette MF, Aufsatz W, van der Winden J, Matzke MA, Matzke AJ (2000) Transcriptional silencing and promoter methylation triggered by double stranded RNA. EMBO J 19:5194–5201. doi:10.1093/emboj/19.19.5194

    Article  PubMed  CAS  Google Scholar 

  • Mi S, Cai T, Hu Y, Chen Y, Hodges E, Ni F, Wu L, Li S, Zhou H, Long C, Chen S, Hannon GJ, Qi Y (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5 terminal nucleotide. Cell 133:116–127. doi:10.1016/j.cell.2008.02.034

    Article  PubMed  CAS  Google Scholar 

  • Mochizuki K, Gorovsky MA (2004) Conjugation-specific small RNAs in tetrahymena have predicted properties of scan (scn) RNAs involved in genome rearrangement. Genes Dev 18:2068–2073. doi:10.1101/gad.1219904

    Article  PubMed  CAS  Google Scholar 

  • Moldovan D, Spriggs A, Yang J, Pogson BJ, Dennis ES, Wilson IW (2010) Hypoxia responsive miRNAs and trans-acting small interfering RNAs in Arabidopsis. J Exp Bot 61:165–177. doi:10.1093/jxb/erp296

    Article  PubMed  CAS  Google Scholar 

  • Montgomery TA, Howell MD, Cuperus JT, Li D, Hansen JE, Alexander AL, Chapman EJ, Fahlgren N, Allen E, Carrington JC (2008) Specificity of ARGONAUTE7-miR390 interaction and dual functionality in TAS3 trans-acting siRNA formation. Cell 133:128–141. doi:10.1016/j.cell.2008.02.033

    Article  PubMed  CAS  Google Scholar 

  • Morel JB, Godon C, Mourrain P, Beclin C, Boutet S, Feuerbach F, Proux F, Vaucheret H (2002) Fertile hypomorphic ARGONAUTE (ago1) mutants impaired in posttranscriptional gene silencing and virus resistance. Plant Cell 14:629–639. doi:10.1105/tpc.010358

    Article  PubMed  CAS  Google Scholar 

  • Naqvi AR, Islam MN, Choudhury NR, Haq QM (2009) The fascinating world of RNA interference. Int J Biol Sci 5:97–117, PMCID: PMC2631224

    Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439. doi:10.1126/science.1126088

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967. doi:10.1126/science.1159505

    Article  PubMed  CAS  Google Scholar 

  • Niu QW, Lin SS, Reyes JL, Chen KC, Wu HW, Yeh SD, Chua NH (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428. doi:10.1038/nbt1255

    Article  PubMed  CAS  Google Scholar 

  • Ortiz R (1998) Critical role of plant biotechnology for the genetic improvement of food crops-perspective for the next millennium. Elec J Biotechnol 1(3). http://www.ejb.ucv.cl/content/vol1/issue3/full/7/

  • Pal-Bhadra M, Bhadra U, Birchler JA (2002) RNAi related mechanisms affect both transcriptional and post-transcriptional transgene silencing in Drosophila. Mol Cell 9:315–327. doi:10.1016/S1097-2765(02)00440-9

    Article  PubMed  CAS  Google Scholar 

  • Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in arabidopsis. Proc Natl Acad Sci USA 102:3691–3696. doi:10.1073/pnas.0405570102

    Article  PubMed  CAS  Google Scholar 

  • Pfeffer S, Zavolan M, Grässer FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304:734–736. doi:10.1126/science.1096781

    Article  PubMed  CAS  Google Scholar 

  • Pillai RS, Bhattacharyya SN, Artus CG, Zoller T, Cougot N, Basyuk E, Bertrand E, Filipowicz W (2005) Inhibition of translational initiation by Let-7 microRNA in human cells. Science 309:1573–1576. doi:10.1126/science.1115079

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, Zhong X, Itaya A, Ding B (2004) Dissecting RNA silencing in protoplasts uncovers novel effects of viral suppressors on the silencing pathway at the cellular level. Nucleic Acids Res 32:e179. doi:10.1093/nar/gnh180

    Article  PubMed  CAS  Google Scholar 

  • Qi Y, He X, Wang XJ, Kohany O, Jurka J, Hannon GJ (2006) Distinct catalytic and non-catalytic role of ARGONAUTE4 in RNA-directed DNA methylation. Nature 443:1008–1012. doi:10.1038/nature05198

    Article  PubMed  Google Scholar 

  • Qu F, Ren T, Morris TJ (2003) The coat protein of turnip crinkle virus suppresses posttranscriptional gene silencing at an early initiation step. J Virol 77:511–522. doi:10.1128/JVI.77.1.511-522.2003

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J, Bartel DP (2006) A diverse evolutionary fluid set of microRNAs in Arabidopsis thaliana. Genes Dev 20:3407–3425. doi:10.1101/gad.1476406

    Article  PubMed  CAS  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133. doi:10.1105/tpc.105.039834

    Article  PubMed  CAS  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195. doi:10.1007/s11103-008-9310-z

    Article  PubMed  CAS  Google Scholar 

  • Shibata S, Sasaki M, Miki T, Shimamoto A, Furuichi Y, Katahira J, Yoshihiro Y (2006) Exportin-5 orthologues are functionally divergent among species. Nucleic Acids Res 34:4711–4721. doi:10.1093/nar/gkl663

    Article  PubMed  CAS  Google Scholar 

  • Silhavy D, Molnar A, Lucioli A, Szittya G, Hornyik C, Tavazza M, Burgyán J (2002) A viral protein suppresses RNA silencing and binds silencing-generated, 21- to 25-nucleotide double-stranded RNAs. EMBO J 21:3070–3080. doi:10.1093/emboj/cdf312

    Article  PubMed  CAS  Google Scholar 

  • Simón-Mateo C, García JA (2006) MicroRNA-guided processing impairs Plum pox virus replication, but the virus readily evolves to escape this silencing mechanism. J Virol 80:2429–2436. doi:10.1128/JVI.80.5.2429-2436.2006

    Article  PubMed  CAS  Google Scholar 

  • Song L, Han MH, Lesicka J, Fedoroff N (2007) Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the cajal body. Proc Natl Acad Sci USA 104:5437–5442. doi:10.1073/pnas.0701061104

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019. doi:10.1105/tpc.104.022830

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065. doi:10.1105/tpc.106.041673

    Article  PubMed  CAS  Google Scholar 

  • Tagami Y, Inaba N, Kutsuna N, Kurihara Y, Watanabe Y (2007) Specific enrichment of miRNAs in Arabidopsis thaliana infected with tobacco mosaic virus. DNA Res 14:227–233. doi:10.1093/dnares/dsm022

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Iwasaki S, Watanabe T, Utsumi M, Watanabe Y (2008) The mechanism selecting the guide strand from small RNA duplexes is different among argonaute proteins. Plant Cell Physiol 49:493–500. doi:10.1093/pcp/pcn043

    Article  PubMed  CAS  Google Scholar 

  • Trinks D, Rajeswaran R, Shivaprasad PV, Akbergenov R, Oakeley EJ, Veluthambi K, Hohn T, Pooggin MM (2005) Suppression of RNA silencing by a geminivirus nuclear protein, AC2, correlates with transactivation of host genes. J Virol 79:2517–2527. doi:10.1128/JVI.79.4.2517-2527.2005

    Article  PubMed  CAS  Google Scholar 

  • van Wezel R, Dong X, Liu H, Tien P, Stanley J, Hong Y (2002) Mutation of three cysteine residues in Tomato yellow leaf curl virus-China C2 protein causes dysfunction in pathogenesis and posttranscriptional gene-silencing suppression. Mol Plant Microbe Interact 15:203–208. doi:10.1094/MPMI.2002.15.3.203

    Article  Google Scholar 

  • Vanitharani R, Chen X (2008) Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321:1490–1492. doi:10.1126/science.1163728

    Article  CAS  Google Scholar 

  • Vanitharani R, Chellappan P, Pita JS, Fauquet CM (2004) Differential roles of AC2 and AC4 of cassava geminiviruses in mediating synergism and suppression of posttranscriptional gene silencing. J Virol 78:9487–9498. doi:10.1128/JVI.78.17.9487-9498.2004

    Article  PubMed  CAS  Google Scholar 

  • Vaucheret H, Mallory AC, Bartel DP (2006) AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22:129–136. doi:10.1016/j.molcel.2006.03.011

    Article  PubMed  CAS  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, Crete P (2004) Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell 16:69–79. doi:10.1016/j.molcel.2004.09.028

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O (2005) Induction and suppression of RNA silencing: insights from viral infections. Nat Rev Genet 6:206–220. doi:10.1038/nrg1555

    Article  PubMed  CAS  Google Scholar 

  • Voinnet O, Lederer C, Baulcombe DC (2000) A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana. Cell 103:157–167. doi:10.1016/S0092-8674(00)00095-7

    Article  PubMed  CAS  Google Scholar 

  • Wang XJ, Gaasterland T, Chua NH (2005) Genome-wide prediction and identification of cis-natural antisense transcripts in Arabidopsis thaliana. Genome Biol 6:R30. doi:10.1186/gb-2005-6-4-r30

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Chua NH, Wang XJ (2006) Prediction of trans-antisense transcripts in Arabidopsis thaliana. Genome Biol 7:R92. doi:10.1186/gb-2006-7-10-r92

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Kasschau KD, Carrington JC (2003) Negative feedback regulation of Dicer-like1 (DCL1) in arabidopsis by microRNA-guided mRNA degradation. Curr Biol 13:784–789. doi:10.1016/S0960-9822(03)00281-1

    Article  PubMed  CAS  Google Scholar 

  • Xie Z, Allen E, Wilken A, Carrington JC (2005) Dicer-like 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc Natl Acad Sci USA 102:12984–12989. doi:10.1073/pnas.0506426102

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19:2164–2175. doi:10.1101/gad.1352605

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X (2005) Methylation as a crucial step in plant microRNA biogenesis. Science 307:932–935. doi:10.1126/science.1107130

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Zhu J, Kapoor A, Zhu JK (2007) Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J 26:1691–1701. doi:10.1038/sj.emboj.7601603

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Wang G, Sutoh K, Zhu JK, Zhang W (2008) Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochim Biophys Acta 1799:780–788. doi:10.1016/j.bbagrm.2008.04.005

    Google Scholar 

  • Zilberman D, Cao X, Jacobsen SE (2003) ARGONAUTE4 control of locus-specific siRNA accumulation and DNA and histone methylation. Science 299:716–719. doi:10.1126/science.1079695

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann P, Hirsch-Hoffmann M, Henning L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632. doi:10.1104/pp. 104.046367

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial assistance to ARN by CSIR, Government of India, is duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qazi Mohd. Rizwanul Haq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Naqvi, A.R., Choudhury, N.R., Haq, Q.M.R. (2011). Small RNA-Mediated Defensive and Adaptive Responses in Plants. In: Lichtfouse, E. (eds) Genetics, Biofuels and Local Farming Systems. Sustainable Agriculture Reviews, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1521-9_5

Download citation

Publish with us

Policies and ethics