Skip to main content

Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Moore

  • Conference paper
  • First Online:
Book cover VLSI 2010 Annual Symposium

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 105))

  • 670 Accesses

Abstract

Microfluidics-based biochips are revolutionizing high-throughput sequencing, parallel immunoassays‚ blood chemistry for clinical diagnostics, and drug discovery. These emerging devices enable the precise control of nanoliter volumes of biochemical samples and reagents. They combine electronics with biology, and they integrate various bioassay operations, such as sample preparation, analysis, separation, and detection. Compared to conventional laboratory procedures, which are cumbersome and expensive, miniaturized biochips offer the advantages of higher sensitivity, lower cost due to smaller sample and reagent volumes, system integration, and less likelihood of human error. This chapter provides an overview of droplet-based “digital” microfluidic biochips. It describes emerging computer-aided design (CAD) tools for the automated synthesis and optimization of biochips from bioassay protocols. Recent advances in fluidic-operation scheduling, module placement, droplet routing, pin-constrained chip design, and testing are presented. These CAD techniques allow biochip users to concentrate on the development of nanoscale bioassays, leaving chip optimization and implementation details to design-automation tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fair RB, Khlystov A, Tailor TD, Ivanov V, Evans RD, Griffin PB, Srinivasan V, Pamula VK, Pollack MG, Zhou J (2007) Chemical and biological applications of digital-microfluidic devices. IEEE Des Test Comput 24:10–24

    Article  Google Scholar 

  2. Srinvasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proceedings of MicroTAS, pp 1287–1290

    Google Scholar 

  3. Guiseppi-Elie A, Brahim S, Slaughter G, Ward KR (2005) Design of a subcutaneous implantable biochip for monitoring of glucose and lactate. IEEE Sens J 5:345–355

    Article  Google Scholar 

  4. Lin Y-Y, Evans RD, Welch E, Hsu B-N, Madison AC, Fair RB (2010) Low voltage electrowetting-on-dielectric platform using multi-layer insulators. Sens Actuators B 150:465–470

    Article  Google Scholar 

  5. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314:1464–1467

    Article  Google Scholar 

  6. Zhao Y, Cho SK (2006) Microparticle sampling by electrowetting actuated droplet sweeping. Lab Chip 6:137–144

    Article  Google Scholar 

  7. Srinivasan V, Pamula VK, Fair RB (2004) An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip 4:310–315

    Article  Google Scholar 

  8. Luan L, Evans RD, Jokerst NM, Fair RB (2008) Integrated optical sensor in a digital microfluidic platform. IEEE Sens J 8:628–635

    Article  Google Scholar 

  9. Global In Vitro Diagnosis Market Analysis, PRLog Free Press Release, http://www.prlog.org/10080477-global-in.vitro-diagnostic-market-analysis.html

  10. World Malaria Day (2009) Key Figures, http://www.rollbackmalaria.org/worldmalariaday/keyfigures

  11. Semiconductor Industry Association, International Technology Roadmap for Semiconductors (ITRS), (2007) [Online]. Available: http://www.itrs.net/Links/2007ITRS/Home2007.htm

  12. Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726

    Article  Google Scholar 

  13. Fair RB, Srinivasan V, Ren H, Paik P, Pamula VK, Pollack MG (2003) Electrowetting-based on-chip sample processing for integrated microfluidics. In: Proceedings of IEEE international electron devices meeting (IEDM), pp. 32.5.1–32.5.4

    Google Scholar 

  14. Cho SK, Moon HJ, Kim CJ (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12:70–80

    Article  Google Scholar 

  15. Wheeler AR, Moon H, Bird CA, Loo RRO, Kim C-J, Loo JA, Garrell RL (2005) Digital microfluidics with in-line sample purification for proteomics analyses with MALDI-MS. Anal Chem 77:534–540

    Article  Google Scholar 

  16. Gong J, Kim CJ (2005) Two-dimensional digital microfluidic system by multi-layer printed circuit board. In: Proceedings of IEEE MEMS, 726–729

    Google Scholar 

  17. Chatterjee D, Hetayothin B, Wheeler AR, King DJ, Garrell RL (2006) Droplet-based microfluidics with nonaqueous solvents and solutions. Lab Chip 6:199–206

    Article  Google Scholar 

  18. Berthier J, (2007) Microdrops and Digital Microfluidics: processing, development, and applications (micro & nano technologies), William Andrew Publishing

    Google Scholar 

  19. Ren H, Fair RB, Pollack MG (2004) Automated on-chip droplet dispensing with volume control by electro-wetting actuation and capacitance metering. Sens Actuators B 98:319–327

    Article  Google Scholar 

  20. Srinivasan V, Pamula VK, Fair RB (2004) Droplet-based microfluidic lab-on-a-chip for glucose detection. Anal Chim Acta 507:145–150

    Article  Google Scholar 

  21. Advanced Liquid Logic, http://www.liquid-logic.com

  22. http://www.ultimatepcb.com/index.php

  23. Xu T, Thwar P, Srinivasan V, Pamula VK, Chakrabarty K (2007) Digital microfluidic biochip for protein crystallization. In: IEEE-NIH Life science systems and applications workshop, Bethesda, MD

    Google Scholar 

  24. Xu T, Chakrabarty K, Pamula VK (2008) Design and optimization of a digital microfluidic biochip for protein crystallization. In: Proceedings of IEEE/ACM international conference on computer-aided design, pp 297–301

    Google Scholar 

  25. Zhao Y, Chakrabarty K (2009) Cross-contamination avoidance for droplet routing in digital microfluidic biochips. In: Proceedings of IEEE/ACM design, automation and test in europe conference, pp 1290–1295

    Google Scholar 

  26. Fan SK, Hashi, C, Kim CJ (2003) Manipulation of multiple droplets on N × M grid by cross-reference EWOD driving scheme and pressure-contact packaging. In: Proceedings of MEMS, pp 694–697

    Google Scholar 

  27. Cho M, Pan DZ (2008) A high-performance droplet router for digital microfluidic biochips. Proceedings of international symposium on physical design (ISPD)

    Google Scholar 

  28. Yuh PH, et al (2008) A progressive-ILP based routing algorithm for cross-referencing biochips. In: Proceedings of DAC, pp 284–289

    Google Scholar 

  29. Yuh PH, et al (2007) BioRoute: A network flow based routing algorithm for digital microfluidic biochips. In: Proceedings of ICCAD, pp 752–757

    Google Scholar 

  30. Yuh PH et al (2007) Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J Emerg Tech Comput Sys 3:13.1–13.32

    Google Scholar 

  31. Xu T, Chakrabarty K (2008) Broadcast electrode-addressing for pin-constrained multi-functional digital microfluidic biochips. In: Proceedings of IEEE/ACM design automation conference, pp 173–178

    Google Scholar 

  32. Xu T, Chakrabarty K (2007) A cross-referencing-based droplet manipulation method for high-throughput and pin-constrained digital microfluidic arrays. In: Proceedings of design, automation and test in europe (DATE) conference, pp 552–557

    Google Scholar 

  33. Xu T, Chakrabarty K (2007) Integrated droplet routing in the synthesis of microfluidic biochips. In: Proceedings of IEEE/ACM design automation conference, pp 948–953

    Google Scholar 

  34. Maftei E, Pop P, Madsen J, Stidsen T (2008) Placement-aware architectural synthesis of digital microfluidic biochips using ILP. In: Proceedings of the international conference on very large scale integration of system on chip, pp 425–430

    Google Scholar 

  35. Su F, Chakrabarty K (2004) Architectural-level synthesis of digital microfluidics-based biochips. In: Proceedings of IEEE international conference on cad, pp 223–228

    Google Scholar 

  36. Su F, Chakrabarty K (2005) Unified high-level synthesis and module placement for defect-tolerant microfluidic biochips. In: Proceedings of IEEE/ACM design automation conference, pp 825–830

    Google Scholar 

  37. Su F, Chakrabarty K (2005) Design of fault-tolerant and dynamically-reconfigurable microfluidic biochips. In: Proceedings of the date conference, pp 1202–1207

    Google Scholar 

  38. Su F, Chakrabarty K (2005) Reconfiguration techniques for digital microfluidic biochips. In: Proceedings of IEEE design, test, integration and packaging of mems/moems symposium, pp 143–148

    Google Scholar 

  39. Su F, Chakrabarty K (2005) Defect tolerance for gracefully-degradable microfluidics-based biochips. In: Proceedings of IEEE VLSI test symposium, pp 321–326

    Google Scholar 

  40. Su F, Hwang W, Chakrabarty K (2006) Droplet routing in the synthesis of digital microfluidic biochips. In: Proceedings of design, automation and test in europe (date) conference, pp 323–328

    Google Scholar 

  41. Su F, Chakrabarty K (2006) Module placement for fault-tolerant microfluidics-based biochips. ACM Trans Des Autom Electron Syst 11:682–710

    Article  Google Scholar 

  42. Su F, Chakrabarty K (2008) High-level synthesis of digital microfluidic biochips. ACM J Emerg Tech Comput Syst, 3, Article 16

    Google Scholar 

  43. Su F (2006) Synthesis, Testing, and Reconfiguration Techniques for Digital Microfluidic Biochips. Ph.D. thesis, Duke University, Durham, NC, USA

    Google Scholar 

  44. Xu T, Chakrabarty K (2006) Droplet-trace-based array partitioning and a pin assignment algorithm for the automated design of digital microfluidic biochips. In: Proceedings of IEEE/ACM international conference on hardware/software codesign and system synthesis, pp 112–117

    Google Scholar 

  45. De Micheli G (1994) Synthesis and optimization of digital circuits, McGraw-Hill, New york

    Google Scholar 

  46. Kramer ME, van Leeuwen J (1984) The complexity of wire routing and finding the minimum area layouts for arbitrary VLSI circuits. In: Advances in computing research 2: VLSI theory, JAI Press, London

    Google Scholar 

  47. Diestel R (2005) Graph Theory. Springer, Berlin

    MATH  Google Scholar 

  48. Kerkhoff HG (2007) Testing of microelectronic-biofluidic systems. IEEE Des Test Comput 24:72–82

    Article  Google Scholar 

  49. Su F, Ozev S, Chakrabarty K (2003) Testing of droplet-based microelectrofluidic systems. In: Proceedings of IEEE international test conference, pp 1192–1200

    Google Scholar 

  50. Su F, Ozev S, Chakrabarty K (2005) Ensuring the operational health of droplet-based microelectrofluidic biosensor systems. IEEE Sens 5:763–773

    Article  Google Scholar 

  51. Xu T, Chakrabarty K (2007) Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans Biomed Circuits Syst 1:148–158

    Article  Google Scholar 

  52. Su F, Ozev S, Chakrabarty K (2006) Test planning and test resource optimization for droplet-based microfluidic systems. J Electron Test: Theory Appl 22:199–210

    Article  Google Scholar 

  53. Su F, Hwang W, Mukherjee A, Chakrabarty K (2007) Testing and diagnosis of realistic defects in digital microfluidic biochips. J Electron Test: Theory Appl 23:219–233

    Article  Google Scholar 

  54. Xu T, Chakrabarty K (2007) Functional testing of digital microfluidic biochips. In: Proceedings of IEEE international test conference

    Google Scholar 

  55. Zhao Y, Xu T, Chakrabarty K (2008) Built-in self-test and fault diagnosis for lab-on-chip using digital microfluidic logic gates. In: Proceedings of IEEE international test conference

    Google Scholar 

  56. Xu T, Chakrabarty K (2009) Design-for-testability for digital microfluidic biochips. In: Proceedings of IEEE VLSI test symposium, pp 309–314

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnendu Chakrabarty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this paper

Cite this paper

Chakrabarty, K., Zhao, Y. (2011). Digital Microfluidic Biochips: A Vision for Functional Diversity and More than Moore. In: Voros, N., Mukherjee, A., Sklavos, N., Masselos, K., Huebner, M. (eds) VLSI 2010 Annual Symposium. Lecture Notes in Electrical Engineering, vol 105. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1488-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1488-5_16

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1487-8

  • Online ISBN: 978-94-007-1488-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics