Skip to main content

Advanced Oxidation of Endocrine Disrupting Compounds: Review on Photo-Fenton Treatment of Alkylphenols and Bisphenol A

  • Chapter
  • First Online:
Book cover Green Technologies for Wastewater Treatment

Part of the book series: SpringerBriefs in Molecular Science ((GREENCHEMIST))

Abstract

The discharge of man-made chemicals into aquatic environment creates an ever-increasing challenge to scientists and engineers. These chemicals can harm living organisms even at below ppb levels and hence only the most effective treatment processes should be employed for their destruction and detoxification. The application of Photo-Fenton process and complimentary treatment systems (H2O2/UV-C and Fenton’s reagent) for the degradation of two industrial pollutant categories with significant endocrine disrupting properties, namely the alkyl phenols nonyl and octyl phenol as well as bisphenol A, has been discussed and reviewed in the present chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ruppert G, Bauer R, Heisler G (1993) The Photo-Fenton reaction-an effective photochemical wastewater treatment process. J Photochem Photobiol A Chem 73(1993):75–78

    Article  CAS  Google Scholar 

  2. Baxendale JH, Bridge NK (1955) The photoreduction of some ferric compounds in aqueous solution. J Phys Chem 59:783–788

    Article  CAS  Google Scholar 

  3. Faust BC, Hoigné J (1990) Photolysis of iron(III)-hydroxyl complexes as sources of OH radicals in clouds, fog and rain. Atmos Environ 24A:79–89

    CAS  Google Scholar 

  4. Sun Y, Pignatello JJ (1993) Photochemical reactions involved in the total mineralization of 2, 4-D by Fe3+/H2O2/UV. Environ Sci Technol 27:304–310

    Article  Google Scholar 

  5. Zepp RG, Faust BC, Hoigné J (1992) Hydroxyl radical formation in aqueous reactions (pH 3–8) of iron (II) with hydrogen peroxide: the Photo-Fenton reaction. Environ Sci Technol 26:313–319

    Article  CAS  Google Scholar 

  6. Sedlak DL, Andren AW (1991) Oxidation of chlorobenzene with Fenton’s reagent. Environ Sci Technol 25:777–782

    Article  CAS  Google Scholar 

  7. Kiwi J, Lopez A, Nadtochenko V (2000) Mechanism and kinetics of the OH-radical intervention during Fenton oxidation in the presence of a significant amount of radical scavenger (Cl). Environ Sci Technol 34:2162–2168

    Article  CAS  Google Scholar 

  8. BenkelbergH J, Warneck P (1995) Photodecomposition of iron(III) hydroxo and sulfato complexes in aqueous solution: wavelength dependence of OH and SO4− quantum yields. J Phys Chem 99:5214–5221

    Article  Google Scholar 

  9. Dainton FS, Sisley WD (1963) Polymerization of methacrylamide in aqueous solution. Part 2—the ferric-ion-photosensitized reaction. Trans Faraday Soc 59:1377–1384

    Google Scholar 

  10. Evans MG, Uri N (1949) Photochemical polymerization in aqueous solution. Nature 164:404–405

    Article  CAS  Google Scholar 

  11. De Laat J, Gallard H (1999) Catalytic decomposition of hydrogen peroxide by Fe(III) in homogeneous aqueous solution: mechanism and kinetic modeling. Environ Sci Technol 33:2726–2732

    Article  Google Scholar 

  12. Balzani V, Carassiti V (1970) Photochemistry of coordination compounds. Academic Press, London, Chapter 10, pp 145–192

    Google Scholar 

  13. Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photo assisted Fenton reaction. Environ Sci Technol 33:1832–1839

    Article  CAS  Google Scholar 

  14. Barbeni M, Minero C, Pelizzetti E, Borgarello E, Serpone N (1987) Chemical degradation of chlorophenols with Fenton’s reagent (Fe2+ + H2O2). Chemosphere 16:2225–2237

    Article  CAS  Google Scholar 

  15. Eisenhauer HR (1964) Oxidation of phenolic wastes. J Water Poll Control Fed 36(9):116–1128

    Google Scholar 

  16. Haag WR, Yao CCD (1992) Rate constant for reaction of hydroxyl radicals with several drinking water contaminants. Environ Sci Technol 26:1005–1013

    Article  CAS  Google Scholar 

  17. Murphy AP, Boegli WJ, Kevin Price M, Moody CD (1989) A Fenton-like reaction to neutralize formaldehyde waste solutions. Environ Sci Technol 23(2):166–169

    Article  CAS  Google Scholar 

  18. Yoon J, Lee Y, Kim S (2004) Investigation of the reaction pathway of OH radicals produced by Fenton oxidation in the conditions of wastewater treatment. Water Sci Technol 44(5):15–21

    Google Scholar 

  19. Bossmann SH, Oliveros E, Göb S, Siegwart S, Dahlen EP, Payawan Jr., L, Straub M, Wörner M, Braun A (1998) New evidence against hydroxyl radicals as reactive intermediates in the thermal and photochemicallly enhanced Fenton reactions. J Phys Chem A 102:5542–5550

    Google Scholar 

  20. Nadtochenko VA, Kiwi J (1998) Photolysis of FeOH2+ and FeCl2+ in aqueous solution. Photodissociation kinetics and quantum yields. Inorg Chem 37:5233–5238

    Article  CAS  Google Scholar 

  21. Buxton GV, Greenstock CL, Helman WP, Ross AB (1988) Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution. J Phys Chem Ref Data 17:513–886

    Article  CAS  Google Scholar 

  22. Gob S, Oliveros E, Bossmann SH, Braun AM, Nascimento CAO, Guardani R (2001) Optimal experimental design and artificial neural networks applied to the photochemically enhanced Fenton reaction. Water Sci Technol 44(5):339–345

    CAS  Google Scholar 

  23. Lee Y, Lee C, Yoon J (2003) High temperature dependence of 2, 4-dichlorophenoxyacetic acid degradation by Fe3+/H2O2 system. Chemosphere 51:963–971

    Article  CAS  Google Scholar 

  24. Lunar L, Sicilia D, Rubio S, Perez-Bendito D, Nickel U (2000) Degradation of photographic developers by Fenton’s reagent: condition optimization and kinetics for metol oxidation. Water Res 34(6):1791–1802

    Article  CAS  Google Scholar 

  25. Sagawe G, Lehnard A, Lubber M, Rochendorf G, Bahnemann D (2001) The insulated solar Fenton hybrid process: fundamental investigations. Helvet Chem Acta 84(12):3742–3759

    Article  CAS  Google Scholar 

  26. Solozhenko EG, Soboleva NM, Goncharuk VV (1995) Decolourization of azo dye solutions by Fenton’s oxidation. Water Res 29(9):2206–2210

    Article  CAS  Google Scholar 

  27. Lee C, Yoon J (2004) Temperature dependence of hydroxyl radical formation in the hf/Fe3+/H2O2 and Fe3+/H2O2 systems. Chemosphere 56:923–934

    Article  CAS  Google Scholar 

  28. Faust BC, Zepp RG (1993) Photochemistry of aqueous iron(III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface water. Environ Sci Technol 27:2517–2522

    Article  CAS  Google Scholar 

  29. Safarzadeh-Amiri A, Bolton JR, Cater SR (1997) Ferrioxalate-mediated photodegradation of organic pollutants in contaminated water. Water Res 31:787–798

    Article  CAS  Google Scholar 

  30. Balmer ME, Sulzberger B (1999) Atrazine degradation in irradiated iron/oxalate systems: effects of pH and oxalate. Environ Sci Technol 33:2418–2424

    Article  CAS  Google Scholar 

  31. Hatchard CG, Parker CA (1956) A new sensitive chemical actinometer. II. Potassium ferrioxalate actinometry as a standard chemical actinometer. Proc R Soc London A 253:518–536

    Google Scholar 

  32. Ansari A, Peral J, Domenech X, Rudeiques-Clemente R (1997) Oxidation of HSO3 in aqueous suspensions of alpha-Fe2O3, alpha-FeOOH, beta-FeOOH and gamma-FeOOH in the dark and under illumination. Environ Pollut 5(3):283–288

    Google Scholar 

  33. Leland JK, Bard AJ (1987) Photochemistry of colloidal semiconducting iron oxlde polymorphs. J Phys Chem 91:5076–5083

    Article  CAS  Google Scholar 

  34. He J, Tao X, Ma W, Zhao J (2002) Heterogenous Photo-Fenton degradation of an azo dye in aqueous H2O2/iron oxide dispersions at neutral pHs. Chemistry Letters, The Chemical Society of Japan, pp 86–87

    Google Scholar 

  35. Maletzky P, Bauer R, Lahnsteiner J, Pouresmael B (1999) Immobilization of iron ions on nafion® and it’s applicability to the photo-Fenton method. Chemosphere 38:2315–2325

    Article  CAS  Google Scholar 

  36. Sabhi S, Kiwi J (2001) Degradation of 2, 4-dichlorophenol by immobilized iron catalysts. Water Res 35:1994–2002

    Article  CAS  Google Scholar 

  37. Maletzky P, Bauer R (1999) Immobilization of iron ions on Nafion® and its applicability to the photo-Fenton method. Chemosphere 38(10):2315–2325

    Article  CAS  Google Scholar 

  38. Scott JP, Ollis DF (1995) Integration of chemical and biological oxidation processes for water treatment: review and recommendations. Environ Prog 14:88–103

    Article  CAS  Google Scholar 

  39. Ballesteros Martín MM, Sánchez Pérez JA, Acién Fernández FG, Casas López JL, García-Ripoll AM, Arques A, Oller I, Malato SR (2008) Combined photo-Fenton and biological oxidation for pesticide degradation: effect of photo-treated intermediates on biodegradation kinetics. Chemosphere 70(8):1476–1483

    Article  Google Scholar 

  40. Sarria V, Deront M, Péringer P, Pulgarin C (2003) Degradation of a biorecalcitrant dye precursor present in industrial wastewaters by a new integrated iron(III) photoassisted-biological treatment. C Appl Catal B 40:231–246

    Google Scholar 

  41. Nimrod AC, Benson WH (1996) Environmental estrogenic effects of alkylphenol ethoxylates. Crit Rev Toxicol 26(3):335–364

    Article  CAS  Google Scholar 

  42. Ning B, Graham N, Zhang Y, Nakonechny M, El-Din MG (2007) Degradation of endocrine disrupting chemicals by ozone/AOPs, ozone. Environ Sci Eng 29:153–176

    CAS  Google Scholar 

  43. Planas C, Guadayol JM, Droguet M, Escalas A, Rivera J, Caixach J (2002) Degradation of polyethoxylated nonylphenols in a sewage treatment plant. Quantitative analysis by isotopic dilution-HRGC/MS. Water Res 36(4):982–988

    Google Scholar 

  44. Ying GG, Williams B, Kookana R (2002) Environmental fate of alkylphenols and alkylphenol ethoxylates—a review. Environ Int 28(3):215–226

    Article  CAS  Google Scholar 

  45. Sharma VK, Anquandah GAK, Yngard RA, Kim H, Fekete J, Bouzek K, Ray AK, Golovko D (2009) Nonylphenol, octylphenol, and bisphenol-A in the aquatic environment: a review on occurrence, fate and treatment. J Environ Sci Health Part A44:423–442

    Article  Google Scholar 

  46. Brook D, Crookes M, Johnson I, Mitchell R, Watts C (2005) Prioritasation of alkylphenols for environmental risk assessment. National Centre for Ecotoxicology and Hazardous Substances, Environ Agency, Bristol

    Google Scholar 

  47. Ahel M, Giger W, Koch M (1994) Behavior of alkylphenol polyethoxylate surfactants in the aquatic environment 1. Occurrence and transformation in river. Water Res 28:1143–1152

    Article  CAS  Google Scholar 

  48. Neamtu M, Popa DM, Frimmel FH (2009) Simulated solar UV-irradiation of endocrine disrupting chemical octylphenol. J Hazard Mater 164:1561–1567

    Article  CAS  Google Scholar 

  49. Oehlmann J, Schulte-Oehlmann U, Tillmann M, Markert B (2000) Effects of endocrine disruptors on prosobranch snails (Mollusca Gastropoda) in the laboratory. Part I: bisphenol A and octylphenol as xeno-estrogens. Ecotoxicology 9:383–397

    Article  CAS  Google Scholar 

  50. Sores A, Guieysse B, Jefferson B, Cartmell E, Lester JN (2008) Nonylphenol in the environment: a critical review of occurrence, fate, toxicity and treatment in wastewaters. Environ Int 34:1033–1049

    Article  Google Scholar 

  51. Neamtu M, Frimmel FH (2006a) Photodegradation of endocrine disrupting chemical nonylphenol by simulated solar UV-irradiation. Sci Total Environ 369:295–306

    Article  CAS  Google Scholar 

  52. Solé M, de Alda MJL, Castillo M, Porte C, Ladegaard-Pedersen K, Barcelo D (2000) Estrogenicity determination in sewage treatment plants and surface waters from the Catalonian area (NE Spain). Environ Sci Technol 34:5076–5083

    Article  Google Scholar 

  53. Canada (2002) Canadian environmental quality guidelines for nonylphenol and its ethoxylates (water, sediment, and soil) scientific supporting document.ecosystem health: science-based solutions report no. 1–3. National Guidelines and Standards Office, Environmental Quality Branch, Environment Canada

    Google Scholar 

  54. EU (2002) European union risk assessment report. 4-Nonylphenol (Branched) and Nonylphenol. 2nd priority list 10

    Google Scholar 

  55. Maguire RJ (1999) Review of the persistence of nonylphenol and nonylphenol ethoxylates. Water Qual Res J Can 34:37–78

    CAS  Google Scholar 

  56. Sonnenschein C, Soto AMJ (1998) An updated review of environmental estrogen and androgen mimics and antagonists. Steroid Biochem Mol Biol 65:143–150

    Article  CAS  Google Scholar 

  57. http://www.environment-agency.gov.uk/business/topics/pollution/39131.aspx

  58. Brand N, Mailhot G, Bolte M (1998) Degradation photoinduced by Fe(III): method of alkylphenol ethoxylates removal in water. Environ Sci Technol 32:2715

    Article  CAS  Google Scholar 

  59. de la Fuente L, Acosta T, Babay P, Curutchet G, Candal R, Litter MI (2010) Degradation of nonylphenol ethoxylate-9 (NPE-9) by photochemical advanced oxidation technologies. Ind Eng Chem Res 49:6909–6915

    Article  Google Scholar 

  60. Destaillats H, Hung HM, Hoffmann MR (2000) Degradation of alkylphenol ethoxylate surfactants in water with ultrasonic irradiation. Environ Sci Technol 34:311

    Article  CAS  Google Scholar 

  61. BKH (2000) EUROPEAN COMMISSION DG ENV Towards the establishment of a priority list of substances for further evaluation of their role in endocrine disruption—preparation of a candidate list of substances as a basis for priority setting, Final Report, BKH consulting engineers, Delft, The Netherlands in association with TNO nutrition and food research, Zeist, The Netherlands

    Google Scholar 

  62. USEPA (2005) Ambient aquatic life water quality criteria-Nonylphenol Final. Office of Water, Office of Science and Technology, Washington, DC. EPA-822-R-05-005

    Google Scholar 

  63. OSPAR Commission (2003) Hazardous Substances Series Octylphenol

    Google Scholar 

  64. Butwell AJ, Hetheridge M, James HA, Johnson AC, Young WF (2002) Endocrine disrupting chemicals in wastewater: a review of occurrence and removal. UK Water Industry Research Limited, London

    Google Scholar 

  65. Rojas MR, Pérez F, Whitley D, Arnold RG, Sáez AE (2010) Modeling of advanced oxidation of trace organic contaminants by hydrogen peroxide photolysis and Fenton’s reaction. Ind Eng Chem Res 49:11331–11343

    Article  CAS  Google Scholar 

  66. Chen PJ, Rosenfeldt EJ, Kullman SW, Hinton DE, Linden KG (2007) Biological assessments of a mixture of endocrine disruptors at environmentally relevant concentrations in water following UV/H2O2 oxidation. Sci Total Environ 376:18–26

    Article  CAS  Google Scholar 

  67. Litter MI (2005) Introduction to photochemical advanced oxidation processes for water treatment. In: Boule P, Bahnemann DW, Robertson PKJ, (eds) The handbook of environmental chemistry, vol. 2, Part M, pp 325–366, Springer, Berlin

    Google Scholar 

  68. Oppenländer T (2003) Photochemical purification of water and air advanced oxidation processes (AOPs): principles, reaction mechanisms, reactor concepts. Wiley, New York

    Google Scholar 

  69. Pera-Titus M, García-Molina V, Baños MA, Giménez J, Espulgas S (2004) Degradation of chlorophenols by means of advanced oxidation processes: a general review. Appl Catal B Environ 47:219

    Article  CAS  Google Scholar 

  70. Arslan-Alaton I, Shayin S, Olmez-Hanci T (2011) The Hydroxyl radical scavenging effect of textile preparation auxiliaries on the photochemical treatment of nonylphenol ethoxylate. Environ Technol (in press)

    Google Scholar 

  71. Kim J, Korshin GV, Velichenko AB (2005) Comparative study of electrochemical degradation and ozonation of nonylphenol. Water Res 39:2527–2534

    Article  CAS  Google Scholar 

  72. Mizuno T, Yamada H, Tsuno H (2002) Characteristics of oxidation by-products formation during ozonation and ozone/hydrogen peroxide process in the aqueous solution of nonylhenol ethoxylates. Adv Asian Environ Eng 2(2):33–42

    Google Scholar 

  73. Sherrard KB, Marriott PJ, Amiet RG, McCormick MJ, Colton R, Millington K (1996) Spectroscopic analysis of heterogeneous photocatalysis products of nonylphenol- and primary alcohol ethoxylate nonionic surfactants. Chemosphere 33(10):1921–1940

    Article  CAS  Google Scholar 

  74. http://www.ewg.org/chemindex/chemicals/bisphenolA

  75. Fromme H, Küchler T, Otto T, Pilz K, Müller J, Wenzel A (2002) Occurrence of phthalates and bisphenol A and F in the environment. Water Res 36:1429–1438

    Article  CAS  Google Scholar 

  76. Mannsville (2008a) Chemical products synopsis: bisphenol A. Mannsville Chemical Products Corp

    Google Scholar 

  77. Staples CA, Dorn PB, Klecka GM, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  CAS  Google Scholar 

  78. Crathorne B, Palmer CP, Stanley JA (1986) High-Performance liquid-chromatographic determination of bisphenol a diglycidyl ether and bisphenol-f diglycidyl ether in water. J Chromatogr 360(1):266–270

    Article  CAS  Google Scholar 

  79. USEPA (2010) Bisphenol A action plan, (CASRN 80-05-7), [CA Index Name: Phenol, 4,4'-(1-methylethylidene)bis-]. http://www.epa.gov/oppt/existingchemicals/pubs/actionplans/bpa_action_plan.pdf

  80. Cousins IT, Staples CA, Klecka GM, Mackay D (2002) A multimedia assessment of the environmental fate of bisphenol A. HERA 8:1107–1135

    Google Scholar 

  81. Japan Environment Agency (2001) Survey of endocrine disrupting substances (environmental hormones) in the aquatic environment (FY2000), available on the Internet at http://www.nies.go.jp/edc/edcdb/HomePage_e/medb/MEDB.html

  82. Yamamoto T, Yasuhara A, Shiraishi H, Nakasugi O (2001) Bisphenol A in hazardous waste landfill leachates. Chemosphere 42(4):415–418

    Article  CAS  Google Scholar 

  83. Bisphenol A Global Industry Group (2002) Bisphenol A information sheet

    Google Scholar 

  84. West RJ, Goodwin PA, Klecka GM (2001) Assessment of the ready biodegradability of bisphenol A. Bull Environ Contam Toxicol 67:106–112

    Article  CAS  Google Scholar 

  85. Dorn PB, O’Block ST, Harris LR (1998) A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere 36:2149–2173

    Article  Google Scholar 

  86. Klecka GM, Gonsior SJ, West RJ, Goodwin PA, Markham DA (2001) Biodegradation of Bisphenol A in aquatic environments: river die-away. Environ Toxicol Chem 20:2725–2735

    CAS  Google Scholar 

  87. Gültekin I, Ince NH (2007) Synthetic endocrine disruptors in the environment and water remediation by advanced oxidation processes. J Environ Manage 85:816–832

    Article  Google Scholar 

  88. Jintelmann J, Katayama A, Kurihara N, Shore L, Wenzel A (2003) Endocrine disruptors in the environment. Pure Appl Chem 75:631–681

    Article  Google Scholar 

  89. Crain DA, Eriksen M, Iguchi T, Jobling S, Laufer H, LeBlanc GH, Guillette LJ (2007) An ecological assessment of bisphenol-A: evidence from comparative biology. Reprod Toxicol 14:225–239

    Article  Google Scholar 

  90. Canada (2008) Screening assessment for the challenge phenol, 4,4′ (1-methylethylidene)bis- (Bisphenol A) CAS 80-05-7, Environment Canada http://www.ec.gc.ca/substances/ese/eng/challenge/batch2/batch2_80-05-7_en.pdf

  91. USEPA (2009) Drinking water contaminant candidate list and regulatory determinations, contaminant candidate list 3. http://www.epa.gov/ogwdw000/ccl/ccl3.html

  92. AIST (2007) (Japan’s National Institute of Advanced Industrial Science and Technology) AIST risk assessment document series 4. Bisphenol A

    Google Scholar 

  93. EU (2008) European Union updated risk assessment report. Bisphenol A, CAS No: 80-05-7. Institute for Health and Consumer Protection, European Chemicals Bureau, European Commission Joint Research Centre, 3rd Priority List, Luxembourg

    Google Scholar 

  94. European Food and Safety Authority (EFSA) (2008) Scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food (AFC) on a request from the commission on the toxicokinetics of bisphenol A. EFSA J 759:1–10

    Google Scholar 

  95. Mohapatra DP, Brar SK, Tyagi RD, Surampalli RY (2010) Physico-chemical pre-treatment and biotransformation of wastewater and wastewater sludge-fate of bisphenol A. Chemosphere 78:923–941

    Article  CAS  Google Scholar 

  96. Chen PJ, Linden KG, Hinton DE, Kashiwada S, Rosenfeldt EJ, Kullman SW (2006) Biological assessment of bisphenol A degradation in water following direct photolysis and UV advanced oxidation. Chemosphere 65:1094–1102

    Article  CAS  Google Scholar 

  97. Peng Z, Wu F, Deng N (2006) Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions. Environ Pollut 144:840–846

    Article  CAS  Google Scholar 

  98. Ioan I, Wilson S, Lundanes E, Neculai A (2007) Comparison of Fenton and sono-Fenton bisphenol A degradation. Hazard Mater 142:559–563

    Article  CAS  Google Scholar 

  99. Katsumata H, Kawabe S, Kaneco S, Suzuki T, Ohta K (2004) Degradation of bisphenol A in water by the photo-Fenton reaction. J Photochem Photobiol A 162:297–305

    Article  CAS  Google Scholar 

  100. Rosenfeldt EJ, Linden KG (2004) Degradation of endocrine disrupting chemicals bisphenol A, ethinyl estradiol, and estradiol during UV photolysis and advanced oxidation processes. Environ Sci Technol 38:5476–5484

    Article  CAS  Google Scholar 

  101. Neamtu M, Frimmel FH (2006b) Degradation of endocrine disrupting bisphenol A by 254 nm irradiation in different water matrices and effect on yeast cells. Water Res 40(20):3745–3750

    Article  CAS  Google Scholar 

  102. Zhan M, Yang X, Xian Q, Kong L (2006) Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances. Chemosphere 63:378–386

    Article  CAS  Google Scholar 

  103. Zhou D, Wu F, Deng N, Xiang W (2004) Photooxidation of bisphenol A (BPA) in water in the presence of ferric and carboxylate salts. Water Res 38:4107–4116

    Article  CAS  Google Scholar 

  104. Li FB, Li XZ, Liu CS, Li XM, Liu TX (2007) Effect of oxalate on photodegradation of Bisphenol A at the interface of different iron oxides. Ind Eng Chem Res 46(3):781–787

    Article  CAS  Google Scholar 

  105. Liu YX, Zhang X, Guo L, Wu F, Deng NS (2008) Photodegradation of Bisphenol A in the montmorillonite KSF suspended solutions. Ind Eng Chem Res 47(19):7141–7146

    Article  CAS  Google Scholar 

  106. Rodríguez EM, Fernández G, Klamerth N, Maldonado MI, Álvarez PM, Malato S (2010) Efficiency of different solar advanced oxidation processes on the oxidation of bisphenol A in water. Appl Catal B 95:228–237

    Article  Google Scholar 

  107. Torres RA, Abdelmalek F, Combet E, Pétrier C, Pulgarin C (2007) A comparative study of ultrasonic cavitation and Fenton’s reagent for bisphenol A degradation in deionised and natural waters. J Hazard Mater 146:546–551

    Article  CAS  Google Scholar 

  108. Poerschmann J, Trommler U, Górecki T (2010) Aromatic intermediate formation during oxidative degradation of bisphenol A by homogeneous sub-stoichiometric Fenton reaction. Chemosphere 79:975–986

    Article  CAS  Google Scholar 

  109. Fukahori S, Ichiura H, Kitaoka T, Tanaka H (2003) Capturing of bisphenol A photodecomposition intermediates by composite TiO2-zeolite sheets. Appl Catal B 46:453–462

    Article  CAS  Google Scholar 

  110. Kaneco S, Rahman MA, Suzuki T, Katsumata H, Ohta K (2004) Optimization of solar photocatalytic degradation conditions of bisphenol A in water using titanium dioxide. J Photochem Photobiol A 163:419–424

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Idil Arslan-Alaton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Arslan-Alaton, I., Olmez-Hanci, T. (2012). Advanced Oxidation of Endocrine Disrupting Compounds: Review on Photo-Fenton Treatment of Alkylphenols and Bisphenol A. In: Lofrano, G. (eds) Green Technologies for Wastewater Treatment. SpringerBriefs in Molecular Science(). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1430-4_5

Download citation

Publish with us

Policies and ethics