Skip to main content

One-Dimensional Hydrodynamic Mixing Models for Regional Flow Systems Under Areal Recharge Conditions and Their Application to the Interpretation of Isotopic Data

  • Chapter
  • First Online:
  • 1375 Accesses

Part of the book series: Theory and Applications of Transport in Porous Media ((TATP,volume 25))

Abstract

The transfer of chemical components that, when in solutions, have no effect on the physical properties of aquifer materials and groundwater, is inseparable from the groundwater flow. Their advective transport involves micro- and macrodispersion processes, which control the extent of solute dispersion in homogeneous and heterogeneous aquifers. In this chapter, we will consider the migration models that describe the motion of solutions miscible with groundwater in homogeneous aquifers. The solute migration processes in heterogeneous (stratified and fracturedporous) systems will be discussed in separate chapters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    According to some estimates, the radionuclides released from the failed block of NPP had the total activity of up to 50 Mci (3—4% of the original amount of radionuclides in the reactor).

  2. 2.

    Actually, interval sampling of groundwater can also yield higher tritium concentrations (> 20 T.U.), which are due to its vertical differentiation in the groundwater flow, which will be discussed below (see Sect. 4.2.3).

References

  • Aggarwal PK, Kroehlich K, Kulkarni KM (2004) Nuclear techniques in groundwater investigations. In: Kovalevsky VS, Kruserman GP, Rushton KR (eds) Grounwater studies. An international guide for hydrogeological investigations IHP-VI. Ser. on Ground Water N 3

    Google Scholar 

  • Akulov YuA, Mamyrin BA (2004) Atomic effects in tritium beta decay and their role in determining the ratio GA/GV and the lifetime of the free neutron. Phys At Nucl 67:464—469

    Google Scholar 

  • Andrews JN, Lee DJ (1979) Inert gases in groundwater from the Bunter Sandstone of England as indicators of age and paleoclimatic trends. J Hydrol 41:233—252

    Google Scholar 

  • Bateman H, Erdelyi A (1954) Tables of integral transforms, vol 1. McGraw-Hill, New York

    Google Scholar 

  • Bethke CM, Johnson TM (2008) Groundwater age and groundwater age dating. Annu Rev Earth Planet Sci 36:121—152

    Google Scholar 

  • Bolin B, Rohde H (1973) A note on the concepts of age distribution and transit time in natural reservoirs. Tellus 25(1):58—62

    Google Scholar 

  • Busenberg E, Plummer LN (2006) Potential use of other atmospheric gases. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 183—190

    Google Scholar 

  • Busenberg E, Plummer LN (2008) Dating groundwater with trifluoromethyl sulfurpentafluoride (SF5CF3), sulfur hexafluoride (SF6), CF3Cl (CFC-13), and CF2Cl2 (CFC-12). Water Resour Res. doi:10.1029/2007WR006150, W02431

    Google Scholar 

  • Castro MC, Stute M, Schlosser P (2000) Comparison of 4He ages and 14 C ages in simple aquifer systems: implications for groundwater flow and chronologies. Appl Geochem 15:1137—1167

    Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrology. Lewis, Boca Raton

    Google Scholar 

  • Cook PG, Solomon DK, Plummer LN et al (1995) Chlorofluorocarbons as tracers of groundwater transport processes in a shallow, silty sand aquifer. Water Resour Res 31:425—434

    Google Scholar 

  • Cornaton F, Perrochet P (2006) Groundwater age, life expectancy and transit time distributions in advective—dispersive systems: 1 Generalized reservoir theory. Adv Water Resour 29:1267—1291

    Google Scholar 

  • Doetsch G (1967) Anleitung zum praktischen gebrauch der Laplace-transformation und der Z-transformation. R. Oldenbourg, Monchen

    Google Scholar 

  • Duffy CJ, Gelhar LW (1985) A frequency domain approach to water quality modeling in groundwater: theory. Water Resour Res 21:1175—1184

    Google Scholar 

  • Edmunds WM (2005) Contribution of isotopic and nuclear tracers to study of groundwaters. In: Aggarwal PK, Gat JR, Froehlich KFO (eds) Isotopes in the water cycle: past, present and future of a developing science. IEA, Dordrecht, pp 171—192

    Google Scholar 

  • Ekwurzel B, Schlosser P, Smetthie WM et al (1994) Dating of shallow groundwater — comparison of the transient tracers 3 H/3He, chlorofluorocarbons, and 85Kr. Water Resour Res 30:1693—1708

    Google Scholar 

  • Eriksson E (1961) Natural reservoirs and their characteristics. Geofis Int 1:27—43

    Google Scholar 

  • Eriksson E (1971) Compartment models and reservoir theory. Annu Rev Ecol Syst 2:67—84

    Google Scholar 

  • Etcheverry D, Perrochet P (2000) Direct simulation of groundwater transit-time distributions using the reservoir theory. Hydrogeol J 8:200—208

    Google Scholar 

  • Gelhar LW, Wilson JL (1974) Ground-water quality modeling. Ground Water 12:399—408

    Google Scholar 

  • Goode DJ, Busenberg E, Plummer LN et al (1999) CFC?s in the unsaturated zone and in shallow ground water at Mirror Lake, New Hampshire. In: Morganwalp DW, Buxton HT (eds) USGS toxic substances hydrology program. Proceedings of the technical meeting, Charleston, March 8—12, 1999. USGS Water-Resources Investigations Report 99-4018 C. Vol. 3 of 3, Subsurface contamination from point sources, pp 809—820

    Google Scholar 

  • Haitjema HM (1995) On the residence time distribution in idealized groundwatershed. J Hydrol 172:127—146

    Google Scholar 

  • Han LF, Gröning M, Plummer LN et al (2006) Comparison of the CFC technique with other techniques (3 H, 3 H/3He, 85Kr). In: Use of chlorofluorocarbons in hydrology: A guidebook. International Atomic Energy Agency, Vienna, pp 191—198

    Google Scholar 

  • Happell JD, Price RM, Top Z et al (2003) Evidence for the removal of CFC-11, CFC-12, and CFC-113 at the groundwater-surface water interface in the Everglades. J Hydrol 279:94—105

    Google Scholar 

  • Hinsby K (2007) Environmental tracers, groundwater age and vulnerability. Groundwater resources in buried valleys. In: Kirsch R, Rumpel H-M, Scheer W (eds) A challenge for geosciences. Leibniz Institute for Applied Geosciences (GGA-Institut), Hannover, pp 141—148

    Google Scholar 

  • Kazemi GA, Lehr JH, Perrochet P (2006) Groundwater age. Wiley, Hoboken

    Google Scholar 

  • Kirchner JW, Feng X, Neal C (2000) Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403:524—527

    Google Scholar 

  • Kresic N (2007) Hydrogeology and groundwater modeling, 2nd edn. CRC Press/Taylor & Francis, New York

    Google Scholar 

  • Kulongoski JT, Hilton DR, Izbicki JA (2005) Source and movement of helium in the eastern Morongo groundwater Basin: the influence of regional tectonics on crustal and mantle helium fluxes. Geochim Cosmochim Acta 69:3857—3872

    Google Scholar 

  • Kulongoski JT, Hilton DR, Cresswell RG et al (2008) (2008) Helium-4 characteristics of groundwaters from Central Australia: comparative chronology with chlorine-36 and carbon-14 dating techniques. J Hydrol 348:176—194

    Google Scholar 

  • Makhonko KP (2002) Behavior of products of nuclear tests in atmosphere. Hydrometeoizdat, Saint Petersburg (In Russian)

    Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers. 1. Models and their applicability. J Hydrol 57:207—231

    Google Scholar 

  • Maloszewski P, Zuber A (1993) Principles and practice of calibration and validation of mathematical models for the interpretation of environmental tracer data in aquifers. Adv Water Res 16:173—190

    Google Scholar 

  • Martel DJ, Deak J, Dovenyi P et al (1989) Leakage of helium from the Pannonian Basin. Nature 342:908—912

    Google Scholar 

  • Mattle N, Kinzelbach W, Beyerle U (2001) Exploring an aquifer system by integrating hydraulic, hydrogeologic and environmental tracer data in a three-dimensional hydrodynamic transport model. J Hydrol 242:183—196

    Google Scholar 

  • Mazor E (1972) Paleotemperatures and other hydrological parameters deduced from noble gases dissolved in groundwater, Jordan Rift Valley, Israel. Geochim Cosmochim Acta 36:1321—1336

    Google Scholar 

  • Mazor E (2004) Chemical and isotopic groundwater hydrology. 3rd edn. Marcel Dekker, New York

    Google Scholar 

  • McGuire KJ, McDonnell JJ (2006) A review and evaluation of catchment transit time modeling. J Hydrol 330(3—4):543—563

    Google Scholar 

  • Mook WG (2000) Introduction: theory, methods, review. In: Mook WG (ed) Environmental isotopes in the hydrological cycle. Principles and applications, vol I. UNESCO/IAEA, Paris

    Google Scholar 

  • Plummer LN (2005) Dating of young groundwater. In: Aggarwal PK, Gat JR, Froehlich KHO (eds) Isotopes in the water cycle: past, present and future of a developing science. IEA, Paris, pp 193—218, Printed in the Netherlands

    Google Scholar 

  • Plummer LN, Busenberg E (2006) Chlorofluorocarbons in aquatic environments. In: Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 1—29

    Google Scholar 

  • Polyanin AD, Zaitsev VF, Moussiaux A (2002) Handbook of first order partial differential equations. Taylor & Francis, London

    Google Scholar 

  • Pozdniakov SP, Bakshevskay VA, Zubkov AA (2005) Modeling of waste injection in heterogeneous sandy clay formation. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 203—219

    Google Scholar 

  • Raats PAC (1978) Convective transport of solutes by steady flows. I general theory. Agr Water Manage I:201—218

    Google Scholar 

  • Raats PAC (1984) Accumulation and transport of water and solutes in the saturated and unsaturated zones. In: Eriksson E (ed) Hydrochemical balances of freshwater systems. Proceedings of a symposium held at Uppsala, September 1984. Publ no 150, pp 343—357

    Google Scholar 

  • Reilly TE, Plummer LN, Phillips PJ, Busenberg E (1994) The use of simulation and multiple environmental tracers to quantify ground-water flow in a shallow aquifer. Water Resour Res 30:421—433

    Google Scholar 

  • Rumynin VG, Konosavsky PK, Hoehn E (2005a) Experimental and modeling study of adsorption-desorption processes with application to a deep-well injection radioactive waste disposal site. J Contam Hydrol 76:19—46

    Google Scholar 

  • Rumynin VG, Sindalovskiy LN, Konosavsky PK et al (2005b) A review of the studies of radionuclide adsorption/desorption with application to radioactive waste disposal sites in the Russian Federation. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 273—315

    Google Scholar 

  • Rybalchenko AI, Pimenov MK, Kostin PP et al (1998) Deep injection disposal of liquid radioactive waste in Russia. Foley MG and Ballou LMG (eds). Battelle Press, Columbus

    Google Scholar 

  • Sato S, Otsuka T, Kuroda Y et al (2001) Diffusion of helium in water-saturated, compacted sodium montmorillonite. J Nucl Sci Technol 38:577—580

    Google Scholar 

  • Shestakov VM, Kuvaev AA, Lekhov AV (2002) Flow and transport modeling of liquid radioactive waste injection using data from the Siberian Chemical Plant injection site. Environ Geol 42:214—221

    Google Scholar 

  • Singh VP (2002) Is hydrology kinematics? Hydrol Process 16:667—716, John Wiley

    Google Scholar 

  • Smethie WM Jr, Solomon DK, Schiff SL et al (1992) Tracing groundwater flow in the borden aquifer using krypton-85. J Hydrol 130:279—297

    Google Scholar 

  • Solomon DK, Sudicky EA (1991) Tritium and helium-3 isotope ratios for direct estimation of spatial variations in groundwater recharge. Water Resour Res 27:2309—2319

    Google Scholar 

  • Solomon DK, Schiff SL, Poreda RJ, Clarke WB (1993) A validation of the 3 H/3He method for determining groundwater recharge. Water Resour Res 29:2951—2962

    Google Scholar 

  • Solomon DK, Cook PG, Plummer LN (2006) Models of groundwater ages and residence times. Use of chlorofluorocarbons in hydrology: a guidebook. International Atomic Energy Agency, Vienna, pp 73—88

    Google Scholar 

  • Stute M, Sonntage C, Schlosser P et al (1992) Helium in deep circulating groundwater in the Great Hungarian Plain: flow dynamics and crustal and mantle helium fluxes. Geochim Cosmochim Acta 55:2051—2067

    Google Scholar 

  • Tokarev IV, Zubkov AA, Rumynin VG et al (2005) Origin of high 234U/238U ratio in post-permafrost aquifers. In: Merkel BJ, Hasche-Berger A (eds) Uranium in the environment. Mining impact and consequences. Springer, Freiberg, pp 847—856

    Google Scholar 

  • Tokarev IV, Zubkov AA, Rumynin VG et al (2009a) Assessment of the long-term safety of radioactive waste disposal: 1 Paleoreconstruction of groundwater formation conditions. Water Resour RAS 36(2):206—213

    Google Scholar 

  • Tokarev IV, Zubkov AA, Rumynin VG et al (2009b) Assessment of the long-term safety of radioactive waste disposal: 2 Isotopic study of water exchange in a multilayer system. Water Resour RAS 36(3):339—350

    Google Scholar 

  • Tolstikhin IN, Kamensky IL (1969) Determination of groundwater age by the T—3He method. Geochem Int 6:810—811

    Google Scholar 

  • Torgersen T, Clarke WB (1985) Helium accumulation in groundwater, I: An evaluation of sources and the continental flux of crustal 4He in the Great Artesian Basin, Australia. Geochim Cosmochim Acta 49:1211—1218

    Google Scholar 

  • Tosaki Y, Tase N, Massmann G et al (2007) Application of 36Cl as a dating tool for modern groundwater. Nucl Instr Meth Phys Res B 259:479—485

    Google Scholar 

  • Weiss RF (1971) The solubility of helium and neon argon in water and seawater. J Chem Eng Data 16:235—241

    Google Scholar 

  • Zoellmann K, Kinzelbach W, Fulda C (2001) Environmental tracer transport (3 H and SF6) in the saturated and unsaturated zones and its use in nitrate pollution management. J Hydrol 240:187—205

    Google Scholar 

  • Zuber A (1986) Mathematical models for the interpretation of environmental radioisotopes in groundwater systems. Handbook of environmental isotope geochemistry. In: Fritz P, Fontes JC (eds) The terrestrial environment, vol 2. Elsevier, Amsterdam, pp 1—59

    Google Scholar 

  • Zuber A, Maloszewski P, Campana ME et al (2000) Modelling. In: Mook WG (ed) Environmental isotopes in the hydrological cycle. Principles and applications, vol VI. UNESCO/IAEA, Paris

    Google Scholar 

  • Zubkov AA, Ryabov AS, Sukhorukov VA et al (2005) Results of long-term deet liquid radioactive waste injection site operation at the Siberian Chemical Combine. In: Tsang C-F, Apps JA (eds) Underground injection science and technology. Elsevier, Amsterdam, pp 487—500

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vyacheslav G. Rumynin .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rumynin, V.G. (2011). One-Dimensional Hydrodynamic Mixing Models for Regional Flow Systems Under Areal Recharge Conditions and Their Application to the Interpretation of Isotopic Data. In: Subsurface Solute Transport Models and Case Histories. Theory and Applications of Transport in Porous Media, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1306-2_3

Download citation

Publish with us

Policies and ethics