Skip to main content

Cell mechanics: The role of simulation

  • Chapter
  • First Online:
Advances on Modeling in Tissue Engineering

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 20))

Abstract

Computer simulation is one of the most powerful tools available to the applied mechanician to understand the complexities of mechanical behavior. It has revolutionized design of virtually all man-made structures from aircraft and buildings to cell phones and computers. It has also become a relatively important tool in biomechanics and simulation of tissues and implants has become routine. Indeed we appear to be on the verge of patient specific simulation becoming a critical tool in orthopaedic and cardiovascular surgery. However, its use as a tool of basic science is much less clear. In this chapter we explore the potential for mechanical simulation to contribute to improve fundamental understanding of biology. We consider the challenges of creating a model of a mechanobiological system with experimental validation. We propose that the area of cell mechanics is a particular area where simulation can make critically important contributions to understanding basic physiology and pathology and outline potential areas of future advancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1 Jacobs CR, (2007) What Can We Learn About Biology from Finite Element Analysis. European Society for Biomechanics Summer Workshop. Trinity Collage Dublin.

    Google Scholar 

  2. 2 Van der Meulen MC, Huiskes R (2002) Why mechanobiology? A survey article. J Biomech 35:401–14.

    Article  Google Scholar 

  3. 3 Huiskes R, Ruimerman R, Van Lenthe GH, Janssen JD, (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405:704–6.

    Article  Google Scholar 

  4. 4 Fernandes P, Rodrigues H, Jacobs C, (1999) A Model of Bone Adaptation Using a Global Optimisation Criterion Based on the Trajectorial Theory of Wolff. Comput Methods Biomech Biomed Engin 2:125–138.

    Article  Google Scholar 

  5. 5 Anderson AE, Ellis BJ, Weiss J A, (2007) Verification, validation and sensitivity studies in computational biomechanics. Comput Methods Biomech Biomed Engin 10:171–84.

    Google Scholar 

  6. 6 Carl P, Schillers H, (2008) Elasticity measurement of living cells with an atomic force microscope: data acquisition and processing. Pflugers Arch 457: 551–9.

    Article  Google Scholar 

  7. 7 Cegonino J, Garcia Aznar JM, Doblare M, Palanca D, Seral B, Seral F, (2004) A comparative analysis of different treatments for distal femur fractures using the finite element method. Comput Methods Biomech Biomed Engin 7:245–56.

    Article  Google Scholar 

  8. 8 Jacobs CR, (1994) Numerical simulation of bone adaptation to mechanical load. Mechanical Engineering. Stanford, Stanford.

    Google Scholar 

  9. 9 Wang Y, McNamara LM, Schaffler MB, Weinbaum S, (2008) Strain amplification and integrin based signaling in osteocytes. J Musculoskelet Neuronal Interact 8:332–4.

    Google Scholar 

  10. Lacroix D, Prendergast PJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–71.

    Article  Google Scholar 

  11. Kelly DJ, Prendergast PJ, (2005) Mechano-regulation of stem cell differentiation and tissue regeneration in osteochondral defects. J Biomech 38:1413–22.

    Article  Google Scholar 

  12. Khayyeri H, Checa S, Tagil M, Prendergast PJ (2009) Corroboration of mechanobiological simulations of tissue differentiation in an in vivo bone chamber using a lattice-modeling approach. J Orthop Res 27:1659–1666.

    Article  Google Scholar 

  13. Andreykiv A, Van Keulen F, Prendergast PJ, (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7:443–61.

    Article  Google Scholar 

  14. Boccaccio A, Prendergast PJ, Pappalettere C, Kelly DJ, (2008) Tissue differentiation and bone regeneration in an osteotomized mandible: a computational analysis of the latency period. Med Biol Eng Comput 46:283–98.

    Article  Google Scholar 

  15. Huiskes R, Van Driel WD, Prendergast PJ, Soballe K, (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med, 8:785–8.

    Article  Google Scholar 

  16. Isaksson H, Wilson W, Van Donkelaar CC, Huiskes R, Ito K, (2006) Comparison of biophysical stimuli for mechano-regulation of tissue differentiation during fracture healing. J Biomech 39:1507–16.

    Article  Google Scholar 

  17. Hayward LN, Morgan EF, (2009) Assessment of a mechano-regulation theory of skeletal tissue differentiation in an in vivo model of mechanically induced cartilage formation. Christopher R. Jacobs and Daniel J. Kelly Biomech Model Mechanobiol 8:447–455.

    Article  Google Scholar 

  18. Checa S, Prendergast PJ, (2009) A mechanobiological model for tissue differentiation that includes angiogenesis: a lattice-based modeling approach. Ann Biomed Eng 37:129–45.

    Article  Google Scholar 

  19. Nowlan NC, Murphy P, Prendergast PJ, (2007) Mechanobiology of embryonic limb development. Ann N Y Acad Sci 1101:389–411.

    Article  Google Scholar 

  20. Nagel T, Kelly DJ, (2010) Mechano-regulation of mesenchymal stem cell differentiation and collagen organisation during skeletal tissue repair. Biomech Model Mechanobiol, 9, 359–72.

    Article  Google Scholar 

  21. Khayyeri H, (2010) in Jacobs CR (Ed.). Valencia, Spain.

    Google Scholar 

  22. Vaziri A, Gopinath A, (2008) Cell and biomolecular mechanics in silico. Nat Mater 7:15–23.

    Article  Google Scholar 

  23. Skalak R, Keller SR, Secomb TW, (1981) Mechanics of blood flow. J Biomech Eng 103:102–15.

    Article  Google Scholar 

  24. Skalak R, Dong C, Zhu C, (1990) Passive deformations and active motions of leukocytes. J Biomech Eng 112:295–302.

    Article  Google Scholar 

  25. Dong C, Skalak R, (1992) Leukocyte deformability: finite element modeling of large viscoelastic deformation. J Theor Biol 158:173–93.

    Article  Google Scholar 

  26. DiMilla PA, Barbee K, Lauffenburger DA, (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60:15–37.

    Article  Google Scholar 

  27. N’Dri NA, Shyy W, Tran-Son-Tay R (2003) Computational modeling of cell adhesion and movement using a continuum-kinetics approach. Biophys J 85:2273–86.

    Article  Google Scholar 

  28. Ward MD, Dembo M, Hammer DA, (1994) Kinetics of cell detachment: peeling of discrete receptor clusters. Biophys J 67:2522–34.

    Article  Google Scholar 

  29. Dong C, Lei XX, (2000) Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. J Biomech 33:35–43.

    Article  Google Scholar 

  30. Kan HC, Udaykumar HS, Shyy W, Tran-Son-Tay R, (1999) Numerical analysis of the deformation of an adherent drop under shear flow. J Biomech Eng 121:160–9.

    Article  Google Scholar 

  31. Pozrikidis C, (2003) Numerical simulation of the flow-induced deformation of red blood cells. Ann Biomed Eng 31:1194–205.

    Article  Google Scholar 

  32. Bursa J, Lebis R, Janicek P, (2006) FE models of stress-strain states in vascular smooth muscle cell. Technol Health Care 14:311–20.

    Google Scholar 

  33. Wu JZ, Herzog W, (2000) Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests. Ann Biomed Eng 28:318–30.

    Article  Google Scholar 

  34. Ng L, Hung HH, Sprunt A, Chubinskaya S, Ortiz C, Grodzinsky A (2007) Nanomechanical properties of individual chondrocytes and their developing growth factor-stimulated pericellular matrix. J Biomech 40:1011–23.

    Article  Google Scholar 

  35. Vaziri A, Mofrad MR, (2007) Mechanics and deformation of the nucleus in micropipette aspiration experiment. J Biomech 40:2053–62.

    Article  Google Scholar 

  36. Kwon RY, Lew AJ, Jacobs CR, (2008) A microstructurally informed model for the mechanical response of three-dimensional actin networks. Comput Methods Biomech Biomed Engin 11:407–18.

    Article  Google Scholar 

  37. Unnikrishnan GU, Unnikrishnan VU, Reddy JN, (2007) Constitutive material modeling of cell: a micromechanics approach. J Biomech Eng 129:315–23.

    Article  Google Scholar 

  38. Kim T, Hwang W, Lee H, Kamm RD, (2009) Computational analysis of viscoelastic properties of crosslinked actin networks. PLoS Comput Biol 5: e1000439.

    Article  Google Scholar 

  39. Colombelli J, Besser A, Kress H, Reynaud EG, Girard P, Caussinus E, Haselmann U, Small JV, Schwarz US, Stelzer, EH, (2009) Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization. J Cell Sci 122:1665–79.

    Article  Google Scholar 

  40. Jaasma MJ, Jackson WM, Tang RY, Keaveny TM, (2007) Adaptation of cellular mechanical behavior to mechanical loading for osteoblastic cells. J Biomech 40:1938–45.

    Article  Google Scholar 

  41. You L, Temiyasathit S, Coyer SR, Garcia AJ, (2008) Bone cells grown on micropatterned surfaces are more sensitive to fluid shear stress. Cell and Molecular Bioengineering 1:182–188.

    Article  Google Scholar 

  42. Arnsdorf EJ, Tummala P, Kwon RY, Jacobs CR, (2009) Mechanically induced osteogenic differentiation–the role of RhoA, ROCKII and cytoskeletal dynamics. J Cell Sci 122:546–53.

    Article  Google Scholar 

  43. Ingber DE, (1998) The architecture of life. Sci Am, 278:48–57.

    Article  Google Scholar 

  44. Sultan C, Stamenovic D, Ingber DE, (2004) A computational tensegrity model predicts dynamic rheological behaviors in living cells. Ann Biomed Eng, 32:520–30.

    Article  Google Scholar 

  45. Volokh KY, (2003) Cytoskeletal architecture and mechanical behavior of living cells. Biorheology, 40:213–20.

    Google Scholar 

  46. Baker EL, Zaman MH, (2009) The biomechanical integrin. J Biomech 43:38–44.

    Article  Google Scholar 

  47. Brown FL, (2008) Elastic modeling of biomembranes and lipid bilayers. Annu Rev Phys Chem, 59:685–712.

    Article  Google Scholar 

  48. Allen KB, Sasoglu FM, LAYTON BE, (2009) Cytoskeleton-membrane interactions in neuronal growth cones: a finite analysis study. J Biomech Eng, 131:021006.

    Article  Google Scholar 

  49. Schumacher KR, Popel AS, Anvari B, Brownell WE, Spector AA, (2008) Modeling the mechanics of tethers pulled from the cochlear outer hair cell membrane. J Biomech Eng 130:031007.

    Article  Google Scholar 

  50. Ananthakrishnan R, Guck J, Wottawah F, Schinkinger S, Lincoln B, Romeyke M, Moon T, Kas J, (2006) Quantifying the contribution of actin networks to the elastic strength of fibroblasts. J Theor Biol 242:502–516.

    Article  MathSciNet  Google Scholar 

  51. Brodland GW, Viens D, Veldhuis JH, (2007) A new cell-based FE model for the mechanics of embryonic epithelia. Comput Methods Biomech Biomed Engin 10:121–8.

    Article  Google Scholar 

  52. Young J, Mitran S, (2010) A numerical model of cellular blebbing: A volume-conserving, fluid-structure interaction model of the entire cell. J Biomech. 42:210:20.

    Google Scholar 

  53. Duncan RK, Grant JW, (1997) A finite-element model of inner ear hair bundle micromechanics. Hear Res 104:15–26.

    Article  Google Scholar 

  54. Cotton JR, Grant JW, (2000) A finite element method for mechanical response of hair cell ciliary bundles. J Biomech Eng 122:44–50.

    Article  Google Scholar 

  55. Hartmann C, Delgado A, (2004) Numerical simulation of the mechanics of a yeast cell under high hydrostatic pressure. J Biomech 37:977–87.

    Article  Google Scholar 

  56. McGarry JG, Klein-Nulend J, Mullender MG, Prendergast PJ, (2005) A comparison of strain and fluid shear stress in stimulating bone cell responses–a computational and experimental study. FASEB J 19:482–4.

    Google Scholar 

  57. Charras GT, Horton MA, (2002) Determination of cellular strains by combined atomicforce microscopy and finite element modeling. Biophys J 83:858–79.

    Article  Google Scholar 

  58. Boey SK, Boal DH, Discher DE, (1998) Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models. Biophys J 75:1573–83.

    Google Scholar 

  59. Bevill G, Keaveny TM, (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579–84.

    Article  Google Scholar 

  60. Pahr DH, Zysset PK, (2009) A comparison of enhanced continuum FE with micro FE models of human vertebral bodies. J Biomech 42:455–62.

    Article  Google Scholar 

  61. Van Rietbergen B, Muller R, Ulrich D, Ruegsegger P, Huiskes R, (1999) Tissue stresses and strain in trabeculae of a canine proximal femur can be quantified from computer reconstructions. J Biomech 32:443–51.

    Article  Google Scholar 

  62. Hartmann D, (2010) A multiscale model for red blood cell mechanics. Biomech Model Mechanobiol 9:1–17.

    Article  Google Scholar 

  63. Dillon RH, Fauci LJ, (2000) An integrative model of internal axoneme mechanics and external fluid dynamics in ciliary beating. J Theor Biol 207:415–30.

    Article  Google Scholar 

  64. Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR, (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci U S A 104:13325–30.

    Article  Google Scholar 

  65. Anderson CT, Castillo AB, Brugmann SA, Helms JA, Jacobs CR, Stearns T, (2008) Primary cilia: cellular sensors for the skeleton. Anat Rec (Hoboken) 291:1074–8.

    Google Scholar 

  66. Schwartz EA, Leonard ML, Bizios R, Bowser SS, (1997) Analysis and modeling of the primary cilium bending response to fluid shear. Am J Physiol 272: F132-8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media

About this chapter

Cite this chapter

Jacobs, C.R., Kelly, D.J. (2011). Cell mechanics: The role of simulation. In: Fernandes, P., Bártolo, P. (eds) Advances on Modeling in Tissue Engineering. Computational Methods in Applied Sciences, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1254-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1254-6_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1253-9

  • Online ISBN: 978-94-007-1254-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics