Skip to main content

Smolts and Smolting

  • Chapter
  • First Online:
Ecology of Atlantic Salmon and Brown Trout

Part of the book series: Fish & Fisheries Series ((FIFI,volume 33))

  • 2008 Accesses

Abstract

This chapter describes important elements of the parr-smolt transformation (smolting) in Atlantic salmon and brown trout. Smolting is a preparatory physiolo­gical adaptation, which occurs in spring prior to the seaward migration. It includes morphological transformation, and changes in salinity tolerance, visual pigments, buoyancy, metabolism and behaviour. The changes precede the downstream migration, and prepare the fish for marine life in pelagic waters. Smolting occurs coincident with environmental changes such as increasing day length and temperature in spring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarestrup K, Jepsen N, Rasmussen G et al (1999) Movements of two strains of radiotagged Atlantic salmon (Salmo salar L.) smolts through a reservoir. Fish Manage Ecol 6:97–107

    Article  Google Scholar 

  • Aarestrup K, Nielsen C, Madsen SS (2000) Relationship between gill NA+, K  +  -ATPase activity and downstream movement in domesticated and first generation offspring of wild anadromous brown trout (Salmo trutta). Can J Fish Aquat Sci 57:2086–2095

    Article  CAS  Google Scholar 

  • Adams BL, Zaugg WS, McLain LR (1973) Temperature effect on parr-smolt transformation in steelhead trout (Salmo gairdneri) as measured by gill sodium-potassium stimulated ATPase. Comp Biochem Physiol 44A:1333–1339

    Article  Google Scholar 

  • Ágústsson T, Sundell K, Sakamoto T et al (2001) Growth hormone endocrinology of Atlantic salmon (Salmo salar): pituitary gene expression, hormone storage, secretion and plasma levels during parr-smolt transformation. J Endocrinol 170:167–234

    Article  Google Scholar 

  • Allen KR (1941) Studies on the biology of the early stages of the salmon (Salmo salar). III. Growth in the Thurso River System, Caithness. J Anim Ecol 10:273–295

    Article  Google Scholar 

  • Allison WT, Haimberger TJ, Hawryshyn CW et al (2004) Visual pigment composition in zebrafish: evidence for a rhodopsin-porphyropsin interchange system. Vis Neurosci 21:945–952

    Article  PubMed  Google Scholar 

  • Allison WT, Dann SG, Veldhoen KM et al (2006) Degeneration and regeneration of ultraviolet cone photoreceptors during development in rainbow trout. J Comp Neurol 499:702–715

    Article  PubMed  CAS  Google Scholar 

  • Beeman JW, Rondorf DW, Tilson ME et al (1995) A nonlethal measure of smolt status of juvenile steelhead based on body morphology. Trans Am Fish Soc 124:764–769

    Article  Google Scholar 

  • Berglund I, Hansen LP, Lundqvist H et al (1991) Effects of elevated winter temperature on seawater adaptability, sexual rematuration and downstream migratory behaviour in mature male Atlantic salmon parr (Salmo salar). Can J Fish Aquat Sci 48:1041–1047

    Article  Google Scholar 

  • Bisbal GA, Specker JL (1991) Cortisol stimulates hypoosmoregulatory ability in Atlantic salmon Salmo salar L. J Fish Biol 39:421–432

    Article  CAS  Google Scholar 

  • Björnsson BT (1997) The biology of salmon growth hormone: from daylight to dominance. Fish Physiol Biochem 17:9–24

    Article  Google Scholar 

  • Boeuf G (1993) Salmon smolting: a pre-adaptation to the oceanic environment. In: Rankin JC, Jensen FB (eds) Fish ecophysiology. Chapman & Hall, London

    Google Scholar 

  • Bohlin T, Dellefors C, Faremo U (1986) Early sexual maturation of male sea trout and salmon – an evolutionary model and some practical implications. Rep Inst Freshw Res Drottningholm 66:17–25

    Google Scholar 

  • Bohlin T, Dellefors C, Faremo U (1993) Date of smolt migration depends on body-size but not age in wild sea-run brown trout. J Fish Biol 49:157–164

    Article  Google Scholar 

  • Burton MP, Idler DR (1984) Can Newfoundland landlocked salmon, Salmo salar L. adapt to sea water? J Fish Biol 24:59–64

    Article  Google Scholar 

  • Claireaux G, Lefrançois C (2007) Linking environmental variability and fish performance: integration through the concept of scope for activity. Philos Trans R Soc Lond B 362:2031–2041

    Article  Google Scholar 

  • Clarke WC, Withler RE, Shelbourn JE (1992) Genetic control of juvenile life history pattern in Chinook salmon (Oncorhynchus tshawytscha). Can J Fish Aquat Sci 49:2300–2306

    Article  Google Scholar 

  • Clarke WC, Withler RE, Shelbourn JE (1994) Inheritance of smolting phenotypes in backcrosses of hybrid stream-type X ocean-type chinook salmon (Oncorhynchus tshawytscha). Estuaries 1A:13–25

    Article  Google Scholar 

  • Conte FP, Wagner HH (1965) The development of osmotic and ionic regulation in juvenile steelhead trout Salmo gairdneri. Comp Biochem Physiol 14:603–620

    Article  PubMed  CAS  Google Scholar 

  • Dahl K (1910) The age and growth of salmon and trout in Norway as shown by their scales. Salmon and Trout Association, London

    Google Scholar 

  • Dann SG, Allison WT, Levin DB et al (2003) Identification of a unique transcript down-regulated in the retina of rainbow trout (Oncorhynchus mykiss) at smoltification. Comp Biochem Physiol 136B:849–860

    CAS  Google Scholar 

  • Davidsen JG, Plantalech Manella N, Thorstad EB et al (2009) Vertical movements of Atlantic salmon postsmolts relative to measures of salinity and water temperature during the first phase of the marine migration. Fish Manage Ecol 16:147–154

    Article  Google Scholar 

  • Dellefors C, Faremo U (1988) Early sexual maturation in males of wild sea trout, Salmo trutta L., inhibits smoltification. J Fish Biol 33:741–749

    Article  Google Scholar 

  • Dempson JB, Braithwaite VA, Doherty D et al (2010) Stable isotope analysis of marine feeding signatures of Atlantic salmon in the North Atlantic. ICES J Mar Sci 67:52–61

    Article  Google Scholar 

  • Dickhoff WW, Beckman BR, Larsen DA et al (1997) The role of growth in endocrine regulation of salmon smoltification. Fish Physiol Biochem 17:231–236

    Article  CAS  Google Scholar 

  • Duston J, Saunders RL (1990) The entrainment role of photoperiod on hypo-osmoregulatory and growth-related aspects of smolting in Atlantic salmon (Salmo salar). Can J Zool 68:707–715

    Article  Google Scholar 

  • Ebbesson LOE, Ekström P, Ebberson SOE et al (2002) Neural circuits and their structural and chemical reorganization in the light-brain-pituitary axis during parr-smolt transformation in salmon. Aquaculture 222:59–70

    Article  CAS  Google Scholar 

  • Ebbesson LOE, Björnsson BT, Ekström P et al (2008) Daily endocrine profiles in parr and smolt Atlantic salmon. Comp Biochem Physiol A 151:698–704

    Article  CAS  Google Scholar 

  • Elliott JM, Hurley MA (1997) A functional model for maximum growth of Atlantic salmon parr, Salmo salar, from two populations in Northwest England. Funct Ecol 11:592–603

    Article  Google Scholar 

  • Elliott JM, Hurley MA, Maberley SC (2000) The emergence period of sea trout fry in a Lake District stream correlates with the North Atlantic Oscillation. J Fish Biol 56:208–210

    Article  Google Scholar 

  • Elson PF (1957) The importance of size in the change from parr to smolt in Atlantic salmon. Can Fish Culturist 21:1–6

    Google Scholar 

  • Englund V, Niemelä E, Länsman M et al (1999) Variations in Atlantic salmon, Salmo salar L., smolt age in tributaries of the River Teno, Finland. Fish Manage Ecol 6:83–86

    Article  Google Scholar 

  • Eriksson T (1984) Adjustments in annual cycles of swimming behaviour in juvenile Baltic salmon in fresh and brackish water. Trans Am Fish Soc 113:467–471

    Article  Google Scholar 

  • Eriksson LO, Lundqvist H (1982) Circannual rhythms and photoperiod regulation of growth and smolting in Baltic salmon (Salmo salar L.). Aquaculture 28:113–121

    Article  Google Scholar 

  • Fahy E (1985) Cyclic fluctuations in the abundance of trout (Salmo trutta L.). Arch Hydrobiol Suppl 3:404–428

    Google Scholar 

  • Fängstam H, Berglund I, Sjöberg M et al (1993) Effects of size and early sexual maturity on downstream migration during smolting in Baltic salmon (Salmo salar). J Fish Biol 43:517–529

    Google Scholar 

  • Ferguson A (2006) Genetics of sea trout, with particular reference to Britain and Ireland. In: Harris G, Milner N (eds) Sea trout: biology, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Finstad B, Ugedal O (1998) Smolting of sea trout (Salmo trutta L.) in northern Norway. Aquaculture 168:341–349

    Article  CAS  Google Scholar 

  • Finstad B, Staurnes M, Reite OB (1988) Effect of low temperature on sea water tolerance in rainbow trout, Salmo gairdneri. Aquaculture 72:319–328

    Article  Google Scholar 

  • Fleming IA, Jonsson B, Gross MR et al (1996) Experimental tests of the reproductive impact of farmed on wild Atlantic salmon (Salmo salar). J Appl Ecol 33:893–905

    Article  Google Scholar 

  • Folmar LC, Dickhoff WW (1980) The parr-smolt transformation (smoltification) and seawater adaptations in salmonids. Aquaculture 21:1–37

    Article  CAS  Google Scholar 

  • Foote CJ, Wood CC, Clarke WC et al (1992) Circannual cycle of seawater adaptability in Oncorhynchus nerka: genetic differences in smoltification of sympatric sockeye salmon and kokanee. Can J Fish Aquat Sci 49:99–109

    Article  Google Scholar 

  • Forseth T, Næsje TF, Jonsson B et al (1999) Juvenile migration in brown trout: a consequence of energetic state. J Anim Ecol 68:783–793

    Article  Google Scholar 

  • Franklin CE, Davison W, Forster ME (1992a) Seawater adaptability of New Zealand’s sockeye (Oncorhynchus nerka) and chinook salmon (O. tshawytscha): physiological correlates of smoltification and seawater survival. Aquaculture 102:127–142

    Article  Google Scholar 

  • Franklin CE, Forster ME, Davison W (1992b) Plasma cortisol and osmoregulatory changes in sockeye salmon transferred to sea water: comparison between successful and unsuccessful adaptation. J Fish Biol 41:113–122

    Article  CAS  Google Scholar 

  • Gorbman A, Dickhoff WW, Mighell JL et al (1982) Morphological indices of developmental progress in parr-smolt coho salmon, Oncorhynchus kisutch. Aquaculture 28:1–19

    Article  Google Scholar 

  • Handeland SO, Wilkinson E, Sveinsbø B et al (2004) Temperature influence on the development and loss of seawater tolerance in two fast-growing strains of Atlantic salmon. Aquaculture 233:513–529

    Article  Google Scholar 

  • Hansen LP, Jonsson B (1985) Downstream migration of reared smolts of Atlantic salmon (Salmo salar L.) in the River Imsa. Aquaculture 45:237–248

    Article  Google Scholar 

  • Hansen LP, Jonsson B, Morgan RIG et al (1989) Influence of parr maturity on emigration of smolts of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 46:410–415

    Article  Google Scholar 

  • Hasler AD, Scholz AT (1983) Olfactory imprinting and homing in salmon. Springer, Berlin

    Google Scholar 

  • Higgins PJ, Talbot C (1985) Growth and feeding in juvenile Atlantic salmon (Salmo salar L.). In: Cowey CB, Mackie AM, Bell JG (eds) Nutrition and feeding in fish. Academic, London

    Google Scholar 

  • Hoar WS (1988) The physiology of smolting salmonids. In: Hoar WS, Randall D (eds) Fish physio­logy, vol XIB. Academic, New York

    Google Scholar 

  • Høgåsen HR (1998) Physiological changes associated with the diadromous migration of salmonids, Canadian Special Publication of Fisheries and Aquatic Sciences 127. National Research Council, Ottawa

    Google Scholar 

  • Huntsman AG, Hoar WS (1939) Resistance of Atlantic salmon to sea water. J Fish Res Board Can 4:409–411

    Article  Google Scholar 

  • Hutchison MJ, Iwata M (1998) Effect of thyroxine on the decrease of aggressive behaviour of four salmonids during the parr-smolt transformation. Aquaculture 168:169–175

    Article  CAS  Google Scholar 

  • Ibbotson AT, Beaumont WRC, Pinder A et al (2006) Diel migration patterns of Atlantic salmon smolts with particular reference to the absence of crepuscular migration. Ecol Freshw Fish 15:544–551

    Google Scholar 

  • Iigo M, Ikuta K, Kitamura S et al (2005) Effects of melatonin feeding on smoltification in masu salmon (Oncorhynchus masou). Zool Sci 22:1191–1196

    Article  PubMed  CAS  Google Scholar 

  • Iwata M (1995) Downstream migratory behavior of salmonids and its relationship with cortisol and thyroid hormones: a review. Aquaculture 135:131–139

    Article  CAS  Google Scholar 

  • Järvi T, Holmgren K, Rubin RF et al (1996) Newly-emerged Salmo trutta fry that migrate to the sea – an alternative choice of feeding habitat? Nord J Freshw Res 72:52–62

    Google Scholar 

  • Jensen AJ, Johnsen BO (1985) Growth and smolt age of Atlantic salmon (Salmo salar L.) in the glacier river Beiarelva, Northern Norway. Rep Inst Freshw Res Drottningholm 62:86–90

    Google Scholar 

  • Jensen AJ, Johnsen BO (1986) Different adaptation strategies of Atlantic salmon (Salmo salar L.) populations to extreme climates with special reference to some cold Norwegian rivers. Can J Fish Aquat Sci 43:980–984

    Article  Google Scholar 

  • Johnston CE, Saunders RL (1981) Parr-smolt transformation of yearling Atlantic salmon (Salmo salar) at several rearing temperatures. Can J Fish Aquat Sci 38:1189–1198

    Article  Google Scholar 

  • Jones JW (1959) The salmon. Collins, London

    Google Scholar 

  • Jonsson B (1981) Life history strategies of brown trout. Dr philos thesis, Univ Oslo

    Google Scholar 

  • Jonsson B (1982) Diadromous and resident trout Salmo trutta: is their difference due to genetics? Oikos 38:297–300

    Article  Google Scholar 

  • Jonsson B (1985) Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Trans Am Fish Soc 114:182–194

    Article  Google Scholar 

  • Jonsson B (1989) Life history and habitat use of Norwegian brown trout (Salmo trutta). Freshw Biol 21:71–86

    Article  Google Scholar 

  • Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Article  Google Scholar 

  • Jonsson N, Jonsson B (1998) Body composition and energy allocation in life history stages of brown trout. J Fish Biol 53:1306–1316

    Article  Google Scholar 

  • Jonsson N, Jonsson B (2003) Energy density and content of Atlantic salmon: variation among developmental stages and types of spawners. Can J Fish Aquat Sci 60:506–516

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2005) Lipid energy reserves influence life history decision of salmonid parr. Ecol Freshw Fish 14:296–301

    Article  Google Scholar 

  • Jonsson B, Jonsson N (2009) Migratory timing, marine survival and growth of anadromous brown trout Salmo trutta in the River Imsa, Norway. J Fish Biol 74:621–638

    Article  PubMed  CAS  Google Scholar 

  • Jonsson B, L’Abée-Lund JH (1993) Latitudinal clines in life history variables of anadromous brown trout in Europe. J Fish Biol 43(Suppl A):1–16

    Article  Google Scholar 

  • Jonsson B, Jonsson N, Ruud-Hansen J (1989) Downstream displacement and life history variables of Arctic charr (Salvelinus alpinus) in a Norwegian river. Physiol Ecol Jpn Spec 1:93–105

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1990) Partial segregation in the timing of migration of Atlantic salmon of different ages. Anim Behav 40:313–321

    Article  Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1991) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol 60:937–947

    Article  Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1993) Migratory behaviour and growth of hatchery-reared post-smolt Atlantic salmon Salmo salar L. J Fish Biol 42:435–443

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1994a) Sea ranching of brown trout (Salmo trutta). Fish Manage Ecol 1:67–76

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP et al (1994b) Effects of sea-water-acclimatization and release sites on survival of hatchery-reared brown trout Salmo trutta. J Fish Biol 44:973–981

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Aass P et al (1995) Brown trout Salmo trutta released to support recreational fishing in a Norwegian fjord. J Fish Biol 46:70–84

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1998a) Long-term study of the ecology of wild Atlantic salmon smolts in a small Norwegian river. J Fish Biol 52:638–650

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (1998b) Density-dependent and density-independent relationships in the life cycle of Atlantic salmon, Salmo salar. J Anim Ecol 67:751–762

    Article  Google Scholar 

  • Jonsson B, Jonsson N, Brodtkorb E et al (2001) Life history traits of brown trout vary with the size of small streams. Funct Ecol 15:310–317

    Article  Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2005) Does climate during embryonic development influences parr growth and age of seaward migration in Atlantic salmon (Salmo salar) smolts? Can J Fish Aquat Sci 62:2502–2508

    Article  Google Scholar 

  • Jørgensen EH, Arnesen AM (2002) Seasonal changes in osmotic and ionic regulation in Arctic charr, Salvelinus alpinus, from a high- and a sub-arctic anadromous population. Env Biol Fish 64:185–193

    Article  Google Scholar 

  • Juanes F, Gephard S, Beland KF (2004) Long-term changes in migration timing of adult Atlantic salmon (Salmo salar) at the southern edge of the species distribution. Can J Fish Aquat Sci 61:2392–2400

    Article  Google Scholar 

  • Karnaky KJ (1986) Structure and function of the chloride cell of Fundulus heteroclitus and other teleosts. Am Zool 26:209–224

    CAS  Google Scholar 

  • Kiiskinen P, Hyvärinen H, Pironen J (2002) Smolting and seasonal variation in the smolt characteristics of one- and two-year-old Saimaa landlocked salmon under fish farm conditions. J Fish Biol 60:1015–1030

    Article  Google Scholar 

  • Komourdjian MP, Saunders RL, Fenwick JC (1976) Evidence for the role of growth hormone as a part of a ‘light-pituitary axis’ in growth and smoltification of Atlantic salmon (Salmo salar). Can J Zool 54:544–551

    Article  PubMed  CAS  Google Scholar 

  • Kuzmin OG, Smirnov YA (1982) Environmental factors and growth of young Atlantic salmon, Salmo salar (Salmonidae), in small rivers of the Kola Peninsula. J Ichthyol 22:42–51

    Google Scholar 

  • L’Abée-Lund JH, Jonsson B, Jensen AJ et al (1989) Latitudinal variation in life history characte­ristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542

    Article  Google Scholar 

  • Landergren P (2001) Survival and growth of sea trout parr in fresh and brackish water. J Fish Biol 58:591–593

    Article  Google Scholar 

  • Landergren P, Vallin L (1998) Spawning of sea trout, Salmo trutta L., in brackish waters: lost effort or successful strategy? Fish Res 35:229–236

    Article  Google Scholar 

  • Landgrebe FW (1941) The role of the pituitary and the thyroid in the development of teleosts. J Exp Biol 18:162–169

    Google Scholar 

  • Leatherland JF (1982) Environmental physiology of the teleostean thyroid gland: a review. Environ Biol Fish 7:83–110

    Article  CAS  Google Scholar 

  • Levine JS, Lobel PS, MacNichol EF (1980) Visual communication in fishes. In: Ali MA (ed) Environmental physiology of fishes. Plenum, New York

    Google Scholar 

  • Li HO, Yamada J (1992) Changes of the fatty acid composite ion in smolts of masu salmon (Oncorhynchus masou) associated with desmoltification and sea-water transfer. Comp Biochem Physiol 103:221–226

    Article  Google Scholar 

  • Limburg KE, Landergren P, Westin L et al (2001) Flexible modes of anadromy in Baltic Sea trout: making the most of marginal spawning streams. J Fish Biol 59:682–695

    Article  Google Scholar 

  • Lundqvist H, Eriksson LO (1985) Annual rhythms of swimming behaviour and seawater adaptation in young Baltic salmon, Salmo salar, associated with smolting. Environ Biol Fish 14:259–267

    Article  Google Scholar 

  • Lythgoe JN (1979) The ecology of vision. Oxford University Press, Oxford

    Google Scholar 

  • Mackie PM, Gharbi K, Ballantyne JS et al (2007) Na+/K+/Cl(-) cotransporter and CFTR gill expression after seaward transfer in smolts (0+) of different Atlantic salmon (Salmo salar) families. Aquaculture 272:625–635

    Article  CAS  Google Scholar 

  • Madsen SS, Bern HA (1992) Antagonism of prolactin and growth hormone – impact on seawater adaptation in 2 salmonids, Salmo trutta and Oncorhynchus mykiss. Zool Sci 9:775–784

    CAS  Google Scholar 

  • Matty AJ, Lone KP (1985) The hormonal control of metabolism and feeding. In: Tytler P, Calow P (eds) Fish energetics new perspectives. Croom Helm, London

    Google Scholar 

  • Matty AJ, Sheltaway MJ (1967) Thyroxine and skin purines in trout. Gen Comp Endocrinol 9:473–482

    Google Scholar 

  • McCormick SD (2001) Endocrine control of osmoregulation in teleost fish. Am Zool 41:781–794

    Article  CAS  Google Scholar 

  • McCormick SD (2009) Evolution of the hormonal control of animal performance: insight from the seaward migration of salmon. Integrat Comp Biol 49:408–422

    Article  Google Scholar 

  • McCormick SD, Saunders RL (1987) Preparatory physiological adaptations for marine life in salmonids: osmoregulation, growth and metabolism. Am Fish Soc Symp 1:211–229

    Google Scholar 

  • McCormick SD, Saunders RL, Henderson EB (1987) Photoperiod control of parr-smolt transformation in Atlantic salmon (Salmo salar): changes in salinity tolerance, gill Na+, K+-ATPase activity, and plasma thyroid hormones. Can J Fish Aquat Sci 44:1462–1468

    Article  CAS  Google Scholar 

  • McCormick SD, Hansen LP, Quinn TP et al (1998) Movement, migration, and smolting of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 55:77–92

    Article  Google Scholar 

  • McCormick SD, Cunjak RA, Dempson B et al (1999) Temperature-related loss of smolt characteristics in Atlantic salmon (Salmo salar) in the wild. Can J Fish Aquat Sci 56:1649–1658

    Google Scholar 

  • McCormick SD, Moriyama S, Bjornsson BT (2000) Low temperature limits photoperiod control of smolting in Atlantic salmon through endocrine mechanisms. Am J Physiol Regul Integr Comp Physiol 278:1352–1361

    Google Scholar 

  • McCormick SD, Shrimpton JM, Moriyama S et al (2002) Effects of an advanced temperature cycle on smolt development and endocrinology indicate that temperature is not a zeitgeber for smolting in Atlantic salmon. J Exp Biol 205:3553–3560

    PubMed  Google Scholar 

  • McCormick SD, Shrimpton JM, Moriyama S et al (2007) Differential hormonal responses of Atlantic salmon parr and smolt to increased daylength: a possible developmental basis for smolting. Aquaculture 273:337–344

    Article  CAS  Google Scholar 

  • McCormick SD, Regish AM, Christensen AK (2009) Distinct freshwater and seawater isoforms of Na+/K+-ATPase in gill chloride cells of Atlantic salmon. J Exp Biol 212:3994–4001

    Article  PubMed  CAS  Google Scholar 

  • McDowall RM (1988) Diadromy in fishes, migrations between freshwater and marine environments. Chapman & Hall, London

    Google Scholar 

  • McInerney JE (1964) Salinity preference: an orientation mechanism in salmon migration. J Fish Res Board Can 21:995–1018

    Article  Google Scholar 

  • Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward migrating salmon, Salmo salar. J Anim Ecol 59:135–149

    Article  Google Scholar 

  • Metcalfe NB, Huntingford FA, Thorpe JE et al (1990) The effects of social status on life-history variation in juvenile salmon. Can J Zool 68:2630–2636

    Article  Google Scholar 

  • Morin PP, Andersen O, Haug E et al (1994) Melatonin rhythms in Atlantic salmon (Salmo salar) maintained under natural and out-of-phase photoperiods. Gen Comp Endocrinol 98:73–86

    Google Scholar 

  • Mortensen A, Damsgård B (1998) The effect of salinity on desmoltification in Atlantic salmon. Aquaculture 168:407–411

    Article  CAS  Google Scholar 

  • Munakata A, Amano M, Ikuta K et al (2007) Effects of growth hormone and cortisol on the downstream migratory behavior in masu salmon, Oncorhynchus masou. Gen Comp Endocrinol 150:12–17

    Article  PubMed  CAS  Google Scholar 

  • Negus MT (2003) Determination of smoltification status in juvenile migratory rainbow trout and Chinook salmon in Minnesota. N Am J Fish Manage 23:913–927

    Article  Google Scholar 

  • Nielsen C, Aarestrup K, Norum U et al (2004) Future migratory behaviour predicted from premigratory levels of gill Na+-K+ ATPase activity in individual wild brown trout (Salmo trutta). J Exp Biol 207:527–533

    Article  PubMed  CAS  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Stefansson SO (2003) Smolting in anadromous and landlocked strains of Atlantic salmon (Salmo salar). Aquaculture 222:71–82

    Article  Google Scholar 

  • Nilsen TO, Ebbesson LOE, Kiilerich P et al (2008) Endocrine systems in juvenile anadromous and landlocked Atlantic salmon (Salmo salar): seasonal development and seawater acclimation. Gen Comp Endocrinol 155:762–772

    Article  PubMed  CAS  Google Scholar 

  • Nordgarden U, Björnsson BT, Hansen T (2007) Developmental stage of Atlantic salmon parr regulates pituitary GH secretion and parr–smolt transformation. Aquaculture 264:441–448

    Article  CAS  Google Scholar 

  • O’Byrne-Ring N, Dowling K, Cotter D et al (2003) Changes in mucus cell numbers in the epidermis of the Atlantic salmon at the onset of smoltification. J Fish Biol 63:1625–1630

    Article  Google Scholar 

  • Ojima D, Iwata M (2010) Central administration of growth hormone-releasing hormone and corticotropin-releasing hormone stimulate downstream movement and thyroxine secretion in fall-smolting coho salmon (Oncorhynchus kisutch). Gen Comp Endocrinol 168:82–87

    Article  PubMed  CAS  Google Scholar 

  • Økland F, Jonsson B, Jensen AJ et al (1993) Is there a threshold size regulating smolt size in brown trout and Atlantic salmon? J Fish Biol 42:541–550

    Article  Google Scholar 

  • Olsen YA, Reitan LJ, Røed KH (1993) Gill Na+, K+ -ATPase activity, plasma cortisol level, and non-specific immune response in Atlantic salmon (Salmo salar) during parr-smolt transformation. J Fish Biol 43:559–573

    Article  CAS  Google Scholar 

  • Olsén KH, Petersson E, Ragnarsson B et al (2004) Downstream migration in Atlantic salmon (Salmo salar) smolt sibling groups. Can J Fish Aquat Sci 61:328–331

    Article  Google Scholar 

  • Österdahl L (1969) The smolt run of a small Swedish river. In: Northcote TG (ed) Salmon and trout in streams. University of British Columbia, Vancouver

    Google Scholar 

  • Otto RG (1971) Effects of salinity on the survival and growth of pre-smolt coho salmon (Oncorhynchus kisutch). J Fish Res Board Can 28:343–349

    Article  Google Scholar 

  • Otto RE, McInerney JE (1970) Development of salinity preference in pre-smolt coho salmon (Oncorhynchus kisutch). J Fish Res Board Can 27:793–800

    Article  Google Scholar 

  • Pelis RM, McCormick SD (2001) Effects of growth hormone and cortisol on Na+ K+-2Cl(-) cotransporter localization and abundance in the gills of Atlantic salmon. Gen Comp Endocrinol 124:134–143

    Article  PubMed  CAS  Google Scholar 

  • Porter MJR, Randall CF, Bromage NR et al (1998) The role of melatonin and the pineal gland on development and smoltification of Atlantic salmon (Salmo salar) parr. Aquaculture 168:139–155

    Article  CAS  Google Scholar 

  • Post JR, Parkinson EA (2001) Energy allocation strategy in young fish: allometry and survival. Ecology 82:1040–1051

    Article  Google Scholar 

  • Power G (1958) The evolution of the freshwater races of the Atlantic salmon (Salmo salar L.) in eastern, North America. Arctic 11:86–92

    Google Scholar 

  • Power G (1969) The salmon of Ungava Bay. Arctic Institute of North America, Technical paper 22, Montreal

    Google Scholar 

  • Power G (1981) Stock characteristics and catches of Atlantic salmon (Salmo salar) in Quebec, and Newfoundland and Labrador in relation to environmental variables. Can J Fish Aquat Sci 38:1601–1611

    Article  Google Scholar 

  • Prunet P, Boeuf G, Bolton JP, Young G (1989) Smoltification and seawater adaptation in Atlantic salmon (Salmo salar): plasma prolactin, growth hormone, and thyroid hormones. Gen Comp Endocrinol 74:355–364

    Article  PubMed  CAS  Google Scholar 

  • Raine JC, Hawryshyn CW (2009) Changes in thyroid hormone reception precede SWS1 opsin downregulation in trout retina. J Exp Biol 212:2781–2788

    Article  PubMed  CAS  Google Scholar 

  • Refstie T, Steine TA, Gjedrem T (1977) Selection experiments with salmon. II. Proportion of Atlantic salmon smolting at 1 year of age. Aquaculture 10:231–242

    Article  Google Scholar 

  • Richards JG, Semple JW, Bystriansky JS et al (2003) Na+/K+-ATPase α-isoforms switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer. J Exp Biol 206:4475–4486

    Article  PubMed  CAS  Google Scholar 

  • Ricker WE (1938) “Residual” and kokanee salmon in Cultus Lake. J Fish Res Board Can 4:192–218

    Article  Google Scholar 

  • Rikardsen AH, Thorpe JE, Dempson JB (2004) Modelling the life history variation of Arctic charr. Ecol Freshw Fish 13:305–311

    Article  Google Scholar 

  • Saunders RL (1965) Adjustment of buoyancy in young Atlantic salmon and brook trout by changes in swim-bladder volume. J Fish Res Board Can 22:336–352

    Google Scholar 

  • Saunders RL, Henderson EB (1969) Growth of Atlantic salmon smolts and post-smolts in relation to salinity, temperature and diet. Fish Res Board Can Techn Rep 149:1–20

    Google Scholar 

  • Saunders RL, Henderson EB (1970) Influence of photoperiod on smolt development and growth of Atlantic salmon (Salmo salar). J Fish Res Board Can 27:1295–1311

    Article  Google Scholar 

  • Saunders RL, Henderson EB (1978) Changes in gill ATPase activity and smolt status of Atlantic salmon (Salmo salar). J Fish Res Board Can 35:1542–1546

    Article  CAS  Google Scholar 

  • Schmitz M (1992) Annual variations in rheotactic behavior and seawater adaptability in landlocked Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 49:448–452

    Article  Google Scholar 

  • Seidelin M, Madsen SS, Byrialsen A et al (1999) Effects of insulin-like growth factor-I and cortisol on Na+, K+-ATPase expression in osmoregulatory tissues of brown trout (Salmo trutta). Gen Comp Endocrinol 113:331–342

    Article  PubMed  CAS  Google Scholar 

  • Shrimpton JM, Björnsson BT, McCormick SD (2000) Can Atlantic salmon smolt twice? Endocrine and biochemical changes during smolting. Can J Fish Aquat Sci 57:1969–1976

    Article  CAS  Google Scholar 

  • Sigholt T, Asgard T, Staurnes M (1998) Timing of parr-smolt transformation in Atlantic salmon (Salmo salar): effects of changes in temperature and photoperiod. Aquaculture 160:129–144

    Article  Google Scholar 

  • Soivio A, Virtanen E, Mouna M (1988) Desmoltification of heat-accelerated Baltic salmon (Salmo salar) in brackish water. Aquaculture 71:89–97

    Article  Google Scholar 

  • Solbakken VA, Hansen T, Stefansson SO (1994) Effects of photoperiod and temperature on growth and parr smolt transformation in Atlantic salmon (Salmo salar L.) and subsequent performance in seawater. Aquaculture 121:13–27

    Article  CAS  Google Scholar 

  • Spencer RC, Zydlewski J, Zydlewski G (2010) Migratory urge and gill Na+, K+-ATPase activity of hatchery-reared Atlantic salmon smolts from the Dennys and Penobscot River stocks, Maine. Trans Am Fish Soc 139:947–956

    Article  Google Scholar 

  • Staurnes M, Lysfjord G, Berg OK (1992) Parr-smolt transformation of a nonanadromous population of Atlantic salmon (Salmo salar) in Norway. Can J Zool 70:197–199

    Article  Google Scholar 

  • Stefansson SO, Berge AI, Gunnarsson GS (1998) Changes in seawater tolerance and gill Na+, K+-ATPase activity during desmoltification in Atlantic salmon kept in freshwater at different temperatures. Aquaculture 168:271–277

    Article  CAS  Google Scholar 

  • Strothotte E, Chaput GJ, Rosenthal H (2005) Seasonal growth of wild Atlantic salmon juveniles and implications on age at smoltification. J Fish Biol 67:1585–1602

    Article  Google Scholar 

  • Sundell K, Jutfelt F, Ágústsson T et al (2003) Intestinal transport mechanisms and plasma cortisol levels during normal and out-of-season parr-smolt transformation of Atlantic salmon (Salmo salar). Aquaculture 222:265–285

    Article  CAS  Google Scholar 

  • Svärdson G, Fagerström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta L.) stocks. Rep Inst Freshw Res Drottningholm 60:51–80

    Google Scholar 

  • Symons PEK (1979) Estimated escapement of Atlantic salmon (Salmo salar) for maximum smolt production in rivers of different productivity. J Fish Res Board Can 36:132–140

    Article  Google Scholar 

  • Thorpe JE (1994) An alternative view of smolting in salmonids. Aquaculture 121:105–113

    Article  Google Scholar 

  • Thorpe JE (2007) Maturation responses of salmonids to changing developmental opportunities. Mar Ecol Progr Ser 335:285–288

    Article  Google Scholar 

  • Thorpe JE, Metcalfe NB (1998) Is smolting a positive or a negative developmental decision? Aquaculture 168:95–103

    Article  Google Scholar 

  • Thorpe JE, Ross LG, Struthers G et al (1981) Tracking Atlantic salmon smolts Salmo salar L. through Loch Voil, Scotland. J Fish Biol 19:519–537

    Article  Google Scholar 

  • Thorpe JE, Metcalfe NB, Fraser NHC (1994) Temperature dependence of the switch between nocturnal and diurnal smolt migration in Atlantic salmon. In: Mackinlay DD (ed) High performance fish. Fish Physiology Association, Vancouver

    Google Scholar 

  • Thorpe JE, Mangel M, Metcalfe NB et al (1998) Modelling the proximate basis of salmonid life-history variation, with application to Atlantic salmon, Salmo salar L. Evol Ecol 12:581–599

    Article  Google Scholar 

  • Tipsmark CK, Madsen SS, Seidelin M et al (2002) Dynamics of Na+, K+, 2Cl cotransporter and Na+, K+ -ATPase expression in the branchial epithelium or brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). J Exp Zool 293:106–118

    Article  PubMed  CAS  Google Scholar 

  • Tipsmark CK, Jørgensen C, Brande-Lavridsen N et al (2009) Effects of cortisol, growth hormone and prolactin on gill claudin expression in Atlantic salmon. Gen Comp Endocrinol 163:1270–1277

    Article  CAS  Google Scholar 

  • Titus RG, Mosegaard H (1989) Fluctuating recruitment and variable life history of migratory brown trout, Salmo trutta L., in a small, Baltic coast stream. J Fish Biol 35(Suppl A):351–353

    Google Scholar 

  • Titus RG, Mosegaard H (1992) Fluctuating recruitment and variable life history of migratory brown trout, Salmo trutta L., in a small, unstable stream. J Fish Biol 41:239–255

    Article  Google Scholar 

  • Uchida K, Kaneko T, Yamauchi K et al (1996) Morphometrical analysis of chloride cell activity in the gill filaments and lamellae and changes in Na+, K+-ATPase activity during seawater adaptation in chum salmon fry. J Exp Zool 276:193–200

    Article  CAS  Google Scholar 

  • Ura K, Mizuno S, Okubo T et al (1997) Immunohistochemical study on changes in gill Na+, K+-ATPase α-subunit during smoltification in the wild masu salmon, Oncorhynchus masou. Fish Physiol Biochem 17:397–403

    Article  CAS  Google Scholar 

  • Wagner HH (1974) Photoperiod and temperature regulation of smolting in steelhead trout (Salmo gairdneri). Can J Zool 52:219–234

    Article  PubMed  CAS  Google Scholar 

  • Webb PW (1984) Form and function in fish swimming. Sci Am 251:58–68

    Article  Google Scholar 

  • Wedemeyer GA (1996) Physiology of fish in intensive culture systems. Chapman & Hall, New York

    Google Scholar 

  • Wedemeyer GA, Saunders RL, Clarke WC (1980) Environmental factors affecting smoltification and early marine survival of anadromous salmonids. Mar Fish Rev 42:1–14

    Google Scholar 

  • Woo NYS, Burns HH, Nishioka RS (1978) Changes in body composition associated with smoltification and premature transfer to seawater in coho (Oncorhynchus kisutch) and king salmon (Oncorhynchus tshawytscha). J Fish Biol 13:421–428

    Article  CAS  Google Scholar 

  • Wootton RJ (1998) Ecology of teleost fishes, 2nd edn. Kluwer, Dordrecht

    Google Scholar 

  • Young G (1988) Enhanced response of the interrenal of coho salmon (Oncorhynchus kisutch) to ACTH after growth hormone treatment in vivo and in vitro. Gen Comp Endocrinol 71:85–92

    Article  PubMed  CAS  Google Scholar 

  • Zydlewski GB, Haro A, McCormick SD (2005) Evidence for cumulative temperature as an initiating and terminating factor in downstream migratory behavior of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 62:68–78

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bror Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonsson, B., Jonsson, N. (2011). Smolts and Smolting. In: Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1189-1_5

Download citation

Publish with us

Policies and ethics