Skip to main content

Species Diversity

  • Chapter
  • First Online:
Book cover Ecology of Atlantic Salmon and Brown Trout

Part of the book series: Fish & Fisheries Series ((FIFI,volume 33))

Abstract

In this chapter, we describe systematics and geographical distribution of Atlantic salmon and brown trout and factors important for their success in natural systems. Both are cold water species from the northern hemisphere, but due to human aquaculture and stocking, they now occur in most parts of the world offering suitable habitats.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad MF, Niazi MS (1988) Important edible fishes of Pakistan. Zoological Survey Department, Government of Pakistan, Karachi

    Google Scholar 

  • Allendorf FW, Thorgaard GH (1984) Tetraploidy and the evolution of salmonid fishes. In: Turner B (ed) Evolutionary genetics of fishes. Plenum, New York

    Google Scholar 

  • Allendorf FW, Ryman N, Stennek A et al (1976) Genetic variation in Scandinavian brown trout (Salmo trutta L.): evidence of distinct sympatric populations. Hereditas 83:73–82

    PubMed  CAS  Google Scholar 

  • Alm G (1939) Undersökningar över tillväxt m.m. hos olika laxöringformer [Investigations on growth etc. by different forms of trout]. Rep Swed State Inst Freshw Fish Res 15:1–93

    Google Scholar 

  • Alm G (1949) Influence of heredity and environment on various forms of trout. Rep Inst Freshw Res Drottningholm 29:29–34

    Google Scholar 

  • Andersen R (1982) Lake spawning brown trout Salmo trutta and arctic char SaIvelinus alpinus with common spawning area in Lake Selura, southwestern Norway. Fauna 35:162–168

    Google Scholar 

  • Anonymous (2006) The status of Irish salmon stocks in 2005 and precautionary catch advice for 2006. Report of the Standing Scientific Committee of the National Salmon Commission, Ireland

    Google Scholar 

  • Anonymous (2008a) Report of the Baltic salmon and trout assessment working group. ICES CM 2008/ACOM:05

    Google Scholar 

  • Anonymous (2008b) Statistical bulletin: Scottish salmon and sea trout catches, 2007. Fisheries series, No. Fis/2008/1, Aberdeen

    Google Scholar 

  • Antunes A, Alexandrino P, Ferrand N (1999) Genetic characterization of Portuguese brown trout (Salmo trutta L.) and comparison with other European populations. Ecol Freshw Fish 8:194–200

    Google Scholar 

  • Antunes A, Faria R, Johnson WE et al (2006) Life on the edge: the long-term persistence and contrasting spatial genetic structure of distinct brown trout life histories at their ecological limits. J Hered 97:193–205

    PubMed  Google Scholar 

  • Apostolides AP, Apostolou PK, Georgiadis A et al (2007) Rapid identification of Salmo trutta lineages by multiplex PCR utilizing primers tailored to discriminate single nucleotide polymorphisms (SNPs) of the mitochondrial control region. Cons Genet 8:1025–1028

    Google Scholar 

  • Apostolidis AP, Triantaphyllidis C, Kouvatsi A et al (1997) Mitochondrial DNA sequence variation and phylogeography among Salmo trutta L. (Greek brown trout) populations. Mol Ecol 6:531–542

    PubMed  CAS  Google Scholar 

  • Ayllon F, Davaine P, Beall E (2004) Bottlenecks and genetic changes in Atlantic salmon (Salmo salar L.) stocks introduced in the Subantarctic Kerguelen Islands. Aquaculture 237:103–116

    Google Scholar 

  • Bagliniére JL, Maisse G, Jebail PY et al (1989) Population dynamics of brown trout, Salmo trutta L., in a tributary in Brittany (France): spawning and juveniles. J Fish Biol 34:97–110

    Google Scholar 

  • Barlaup BT, Kleiven E, Christensen H et al (2005) Bleka i Byglandsfjorden -bestandsstatus og tiltak for økt naturlig rekruttering [Non-anadromous Atlantic salmon in Lake Byglandsfjorden – population status and management efforts to increase natural recruitment]. DN utredning 3:1–72 (In Norwegian)

    Google Scholar 

  • Behnke RJ (1968) A new subgenus and species of trout, Salmo (Platysalmo) platycephalus, from southcentral Turkey, with comments on the classification of the subfamily Salmoninae. Mitt Hamburg Zool Mus Inst 66:1–15

    Google Scholar 

  • Behnke RJ (1972) The systematics of salmonid fishes of recently glaciated lakes. J Fish Res Board Can 29:639–671

    Google Scholar 

  • Behnke RJ (1980) A systematic review of the genus Salvelinus. In: Balon EK (ed) Charrs, salmonid fishes of the genus Salvelinus. Dr Junk Publishers, The Hague

    Google Scholar 

  • Behnke RJ (1984) Salmonidae. In: Daget J, Hureau JC, Karrer C et al (eds) Checklist of the freshwater fishes of Africa (Cloffa). Off Rech Scient Tech Outree-Mer, Paris, and Musée R l’Afrique Centr, Tervuren; Behnke RJ (1986). Brown trout. Trout 27:42–47

    Google Scholar 

  • Berg LS (1948) Ryby presnykh vod SSSR i sopredelnykh stran, I [Freshwater fishes of the USSR and adjacent countries, I]. Acad Sci USSR 1:1–466 (In Russian)

    Google Scholar 

  • Berg OK (1985) The formation of non-anadromous populations of Atlantic salmon, Salmo salar. J Fish Biol 27:805–815

    Google Scholar 

  • Berg OK, Gausen D (1988) Life history of a riverine, resident Atlantic salmon Salmo salar L. Fauna Norv Ser A 9:63–68

    Google Scholar 

  • Bernatchez L (2001) The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Osinov A (1995) Genetic diversity of trout (genus Salmo) from its most eastern native range based on mitochondrial DNA and nuclear gene variation. Mol Ecol 4:285–297

    PubMed  CAS  Google Scholar 

  • Bernatchez L, Guyomar R, Bonhomme F (1992) DNA sequence variation of the mitochondrial control region among geographically and morphologically remote European brown trout Salmo trutta populations. Mol Ecol 1:161–173

    PubMed  CAS  Google Scholar 

  • Berntssen MHG, Kroglund F, Rosseland BO et al (1997) Responses of skin mucous cells to aluminium exposure at low pH in Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 54:1039–1045

    CAS  Google Scholar 

  • Brannon EL (1972) Mechanisms controlling migrations of sockeye salmon fry. Int Pac Salm Fish Comm Bull 21:1–86

    Google Scholar 

  • Brodeur RD, Busby MS (1998) Occurrence of an Atlantic salmon Salmo salar in the Bering Sea. Alsk Fish Res Bull 5:64–66

    Google Scholar 

  • Caputo V, Giovannotti M, Nisi Cerioni P et al (2009) Chromosomal study of native and hatchery trouts from Italy (Salmo trutta complex, Salmonidae): conventional and FISH analysis. Cytogenet Genome Res 124:51–62

    PubMed  CAS  Google Scholar 

  • Carroll RL (1988) Vertebrate palaeontology and evolution. Freeman, New York

    Google Scholar 

  • Cawdrey SAH, Ferguson A (1988) Origins and differentiation of three sympatric species of trout (Salmo trutta L.) in Lough Melvin. Pol Arch Hydrobiol 35:267–277

    Google Scholar 

  • Clair TA, Dennis IF, Amiro PG (2004) Past and future chemistry changes in acidified Nova Scotian Atlantic salmon (Salmo salar) rivers: a dynamic modeling approach. Can J Fish Aquat Sci 61:1965–1975

    CAS  Google Scholar 

  • Cortey M, Vera M, Pla C et al (2009) Northern and southern expansions of Atlantic brown trout (Salmo trutta) populations during the Pleistocene. Biol J Linn Soc 97:904–917

    Google Scholar 

  • Crespi BJ, Fulton MJ (2004) Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogen Evol 31:658–679

    CAS  Google Scholar 

  • Crisp DT (1981) A desk study of the relationship between temperature and hatching time for the eggs of five species of salmonid fishes. Freshw Biol 11:361–368

    Google Scholar 

  • Crivelli AJ, Poizat G, Berrebi P et al (2000) Conservation biology applied to fish: the example of a project for rehabilitating the marble trout in Slovenia. Cybium 24:211–230

    Google Scholar 

  • Cross TF, Mills CPR, de Courcey WM (1992) An intensive study of allozyme variation in freshwater resident and anadromous trout, Salmo trutta L, in western Ireland. J Fish Biol 28:25–32

    Google Scholar 

  • Crozier WW, Ferguson A (1986) Electrophoretic examination of the population structure of brown trout, Salmo trutta L., from the Lough Neagh catchment, Northern Ireland. J Fish Biol 28:459–477

    Google Scholar 

  • Dahl K (1904) A study on trout and young salmon. Nyt Mag Naturvidenskab 42:221–338

    Google Scholar 

  • Day F (1887) British and Irish Salmonidae. Williams and Norgate, London

    Google Scholar 

  • Delling B, Doadrio I (2005) Systematics of the trouts endemic to Moroccan lakes, with description of a new species. Ichthyol Explor Freshw 16:49–64

    Google Scholar 

  • Denton GH, Hughes TJ (eds) (1981) The last great ice sheets. Wiley, New York

    Google Scholar 

  • Derome N, Bernatchez L (2006) The transcriptomics of ecological convergence between 2 limnetic coregonine fishes (Salmonidae). Mol Biol Evol 23:2370–2378

    PubMed  CAS  Google Scholar 

  • Derycke S, Remerie T, Backeljau T et al (2008) Phylogeography of the Rhabditis (Pellioditis) marina species complex: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic. Mol Ecol 17:3306–3322

    PubMed  CAS  Google Scholar 

  • DN (2009) Lakseregisteret. http://dnweb12.dirnat.no/lakseregisteret/

  • Duguid RA, Ferguson A, Prodöhl P (2006) Reproductive isolation and genetic differentiation of ferox trout from sympatric brown trout in Loch Awe and Loch Laggan, Scotland. J Fish Biol 69:89–114

    CAS  Google Scholar 

  • Dumas J, Prouzet P (2003) Variability of demographic parameters and population dynamics of Atlantic salmon Salmo salar L. in a southwest French river. ICES J Mar Sci 60:356–370

    Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    PubMed  CAS  Google Scholar 

  • Elliott JM (1981) Some aspects of thermal stress on freshwater teleosts. In: Pickering AD (ed) Stress and fish. Academic, London

    Google Scholar 

  • Elliott JM (1982) The effects of temperature and ration size on growth and energetic of salmonids in captivity. Comp Biochem Physiol 73:81–91

    Google Scholar 

  • Elliott JM (1989) Wild brown trout Salmo trutta: an important national and international resource. Freshw Biol 21:1–5

    Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout, Oxford Series in Ecology and Evolution. Oxford University Press, Oxford

    Google Scholar 

  • Elliott JM, Hurley MA (1998) An individual-based model for predicting the emergence period for sea trout fry in a Lake District stream. J Fish Biol 53:414–433

    Google Scholar 

  • Esteve M, McLennan DA (2007) The phylogeny of Oncorhynchus (Euteleostei: Salmonidae) based on behavioral and life history characters. Copeia 2007:520–533

    Google Scholar 

  • Exley C, Phillips MJ (1988) Acid rain: implications for the farming of salmonids. In: Muir JF, Roberts RJ (eds) Recent advances in aquaculture. Croom Helm, London

    Google Scholar 

  • Ferguson A (1986) Lough Melvin, a unique fish community. R Dubl Soc Occas Pap Ir Sci Technol 1:1–17

    Google Scholar 

  • Ferguson A (2006) Genetics of sea trout, with particular reference to Britain and Ireland. In: Harris G, Milner N (eds) Sea trout: biology, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Ferguson A, Mason FM (1981) Allozyme evidence for reproductive isolated sympatric populations of brown trout Salmo trutta L. in Lough Melvin, Ireland. J Fish Biol 18:629–642

    Google Scholar 

  • Ferguson A, Taggart JB (1991) Genetic differentiation among the sympatric brown trout (Salmo trutta) populations of Lough Melvin, Ireland. Biol J Linn Soc 43:221–237

    Google Scholar 

  • Fivelstad S, Leivestad H (1984) Aluminium toxicity to Atlantic salmon (Salmo salar L.) and brown trout (Salmo trutta L.): mortality and physiological response. Rep Inst Freshw Res Drottningholm 61:69–77

    Google Scholar 

  • Fleming IA, Jonsson B, Gross MR (1994) Phenotypic divergence of sea-ranched, farmed and wild salmon. Can J Fish Aquat Sci 51:2808–2824

    Google Scholar 

  • Forseth T, Ugedal O, Jonsson B et al (2003) Selection on Arctic charr generated by competition from brown trout. Oikos 101:467–478

    Google Scholar 

  • Forseth T, Larsson S, Jensen AJ et al (2009) Thermal performance of juvenile brown trout, Salmo trutta L.: no support for thermal adaptation hypotheses. J Fish Biol 74:133–149

    PubMed  CAS  Google Scholar 

  • Fraser DJ, Weir LK, Darwish TL et al (2007) Divergent compensatory growth responses within species: linked to contrasting migrations in salmon? Oecologia 153:543–553

    PubMed  Google Scholar 

  • Fricke R, Bilecenoglu M, Musa Sari H (2007) Annotated checklist of fish and lamprey species (Gnathostomata and Petromyzontomorphi) of Turkey, including a Red List of threatened and declining species. Stuttgarter Beitr Naturkunde A 706:1–174

    Google Scholar 

  • Frost WE, Brown ME (1967) The trout. Collins, London

    Google Scholar 

  • Fumagalli L, Snoj A, Jesen D et al (2002) Extreme genetic differentiation among the remnant populations of marble trout (Salmo marmoratus) in Slovenia. Mol Ecol 11:2711–2716

    PubMed  CAS  Google Scholar 

  • Futuyama DJ (1986) Evolutionary biology. Sinauer, Sunderland

    Google Scholar 

  • Fyhn HJ, Finn RN, Reith M et al (1999) Yolk protein hydrolysis and oocyte free amino acids as key features in the adaptive evolution of teleost fishes to seawater. Sarsia 84:451–456

    Google Scholar 

  • García-Marin JL, Pla C (1996) Origins and relationships of native populations of brown trout (Salmo trutta) in Spain. Heredity 76:313–323

    Google Scholar 

  • García-Marin JL, Utter FM, Pla C (1999) Postglacial colonization of brown trout in Europe based on distribution of allozyme variants. Heredity 82:46–56

    Google Scholar 

  • Giuffra E, Bernatchez L, Guyomard R (1994) Mitochondrial control region and protein coding genes sequence variation among phenotypic forms of brown trout Salmo trutta from northern Italy. Mol Ecol 3:161–171

    PubMed  CAS  Google Scholar 

  • Giuffra E, Guyomard R, Forneris G (1996) Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex). Mol Ecol 5:207–220

    Google Scholar 

  • Gjerde B, Simianer H, Refstie T (1994) Estimates of genetic and phenotypic parameters for body weight, growth rate and sexual maturity in Atlantic salmon. Livest Prod Sci 38(2):133–143

    Google Scholar 

  • Greenwood PH (1993) Review of systematics, historical ecology and North American freshwater fishes. Rev Fish Biol Fish 3:373–375

    Google Scholar 

  • Greenwood PH, Rosen DED, Weitzman SH et al (1966) Phyletic studies of teleostean fishes, with a provisional classification of living forms. Bull Am Mus Nat Hist 131:341–355

    Google Scholar 

  • Greenwood PH, Miles RS, Patterson C (1973) Interrelationships of fishes. Academic, London

    Google Scholar 

  • Guðbergsson G (2007) Icelandic salmon, trout and charr catch statistics 2006. Rep Inst Freshw Fish VMST/07024

    Google Scholar 

  • Günther A (1866) Catalogue of fishes in the British Museum, vol 6. British Museum, London

    Google Scholar 

  • Hamilton KE, Ferguson A, Taggart JB et al (1989) Post-glacial colonisation of brown trout, Salmo trutta L.: Ldh-5 as a phylogeographical marker locus. J Fish Biol 35:651–664

    Google Scholar 

  • Hansen LP, Jonsson B (1991) Evidence of a genetic component in seasonal return pattern of Atlantic salmon (Salmo salar L.). J Fish Biol 38:251–258

    Google Scholar 

  • Hartley SE (1987) The chromosomes of salmonid fishes. Biol Rev 62:197–214

    Google Scholar 

  • Harvey PH, Pagel MD (1991) The comparative method in evolutionary biology. Oxford University Press, Oxford

    Google Scholar 

  • Hasegawa K, Maekawa K (2006) Effect of habitat components on competitive interaction between native white-spotted charr and introduced brown trout. J Freshw Ecol 21:475–480

    Google Scholar 

  • Heggberget TG (1988) Time of spawning of Norwegian Atlantic salmon ( Salmo salar). Can J Fish Aquat Sci 45:845–849

    Google Scholar 

  • Herrman J, Degerman E, Gerhardt A et al (1993) Acid stress effects on stream biology. Ambio 22:298–307

    Google Scholar 

  • Hesthagen T, Hansen LP (1991) Estimates of the annual loss of Atlantic salmon, Salmo salar L., in Norway due to acidification. Aquacult Fish Manage 22:85–91

    Google Scholar 

  • Hesthagen T, Jonsson B (1998) The relative abundance of brown trout in acidic softwater lakes in relation to water quality in tributary streams. J Fish Biol 52:419–429

    Google Scholar 

  • Hindar K, Jonsson B (1982) Habitat and food segregation of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can J Fish Aquat Sci 39:1030–1045

    Google Scholar 

  • Hindar K, Jonsson B (1993) Ecological polymorphism in Arctic charr. Biol J Linn Soc 8:63–74

    Google Scholar 

  • Hindar K, Jonsson B, Ryman N et al (1991) Genetic relationships among landlocked, resident, and anadromous brown trout, Salmo trutta L. Heredity 66:83–91

    Google Scholar 

  • Hoar WS (1976) Smolt transformation: evolution, behaviour and physiology. J Fish Res Board Can 33:348–365

    Google Scholar 

  • Holz PH, Raidal SR (2005) Comparative renal anatomy of exotic species. Vet Clin N Am Exot Anim Pract 9:1–11

    Google Scholar 

  • Hynes RA, Ferguson A, McCann MA (1996) Variation in mitochondrial DNA and post-glacial colonisation of northwestern Europe by brown trout. J Fish Biol 48:54–67

    CAS  Google Scholar 

  • Ishiguro NB, Miya M, Nishida M (2003) Basal euteleostean relationships: amitogenomic perspective on the phylogenetic reality of the “Protacanthopterygii”. Mol Phylogenet Evol 27:476–488

    PubMed  CAS  Google Scholar 

  • Joint Nature Conservation Committee (2007) Second report by the UK under Article 17 on the implementation of the Habitats Directive from January 2001 to December 2006. JNCC, Peterborough.http://www.jncc.gov.uk/article17

  • Jonasson PM, Jonsson B, Sandlund OT (1998) Continental rift and habitat formation: Arena for resource polymorphism in Arctic charr. Ambio 27:162–169

    Google Scholar 

  • Jonsson B (1981) Life history strategies of brown trout. Dr philos thesis, University of Oslo, Oslo

    Google Scholar 

  • Jonsson B (1982) Diadromous and resident trout Salmo trutta: is their difference due to genetics? Oikos 38:297–300

    Google Scholar 

  • Jonsson B (1985) Life history patterns of freshwater resident and sea-run migrant brown trout in Norway. Trans Am Fish Soc 114:182–194

    Google Scholar 

  • Jonsson B (1989) Life history and habitat use of Norwegian brown trout (Salmo trutta). Freshw Biol 21:71–86

    Google Scholar 

  • Jonsson B (2006) Oncorhynchus mykiss. In: NOBANIS – invasive Alien species fact sheet. www.nobanis.org

  • Jonsson B, Hindar K (1982) Reproductive strategy of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can J Fish Aquat Sci 39:1404–1413

    Google Scholar 

  • Jonsson B, Jonsson N (1993) Partial migration: niche shift versus sexual maturation in fishes. Rev Fish Biol Fish 3:348–365

    Google Scholar 

  • Jonsson B, Jonsson N (2001) Polymorphism and speciation in Arctic charr. J Fish Biol 58:605–638

    Google Scholar 

  • Jonsson B, Jonsson N (2004) Factors affecting marine production of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 61:2369–2383

    Google Scholar 

  • Jonsson B, Jonsson N (2006) Life history effects of migratory costs in anadromous brown trout Salmo trutta. J Fish Biol 69:860–869

    Google Scholar 

  • Jonsson B, Skulason S, Snorrason SS et al (1988) Life history variation of polymorphic Arctic charr in Lake Thingvallavatn, Iceland. Can J Fish Aquat Sci 45:1537–1547

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1991) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol 60:937–947

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP et al (1993) Coastal movement and growth of domesticated rainbow trout (Oncorhynchus mykiss (Walbaum)) in Norway. Ecol Freshw Fish 2:152–159

    Google Scholar 

  • Jonsson N, Jonsson B, Skurdal J (1994) Differential response to water current in offspring of inlet and outlet spawning brown trout (Salmo trutta L.). J Fish Biol 45:356–359

    Google Scholar 

  • Jonsson B, Forseth T, Jensen AJ et al (2001) Thermal performance in juvenile Atlantic salmon, Salmo salar L. Funct Ecol 15:701–711

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (2007) Factors affecting river entry of adult Atlantic salmon in a small river. J Fish Biol 71:943–956

    Google Scholar 

  • Jorde PE, Ryman N (1996) Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies. Genetics 143:1369–1381

    PubMed  CAS  Google Scholar 

  • Jutila E, Saura A, Kallio-Nyberg E et al (2006) The status and exploitation of sea trout on Finnish coast of the Gulf of Bothnia in the Baltic Sea. In: Harris G, Milner N (eds) Sea trout: biology, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Kazakov RV (1992) Distribution of Atlantic salmon, Salmo salar L., in freshwater bodies of Europe. Aquacult Fish Manage 23:461–475

    Google Scholar 

  • Keeley ER, Parkinson EA, Taylor EB (2007) The origins of ecotypic variation of rainbow trout: a test of environmental vs. genetically based differences in morphology. J Evol Biol 20:725–736

    PubMed  CAS  Google Scholar 

  • King TL, Kalinowski ST, Schill WB (2001) Population structure of Atlantic salmon (Salmo salar L.): a range wide perspective from microstatellite DNA variation. Mol Ecol 10:807–821

    PubMed  CAS  Google Scholar 

  • King TL, Verspoor E, Spidle AP et al (2007) Biodiversity and population structure. In: Verspoor E, Stradmeyer L, Nielsen JL (eds) The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Klemetsen A, Amundsen P-A, Dempson JB et al (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.) a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Google Scholar 

  • Kottelat M (1997) European freshwater fishes. Biol Bratislava 52(suppl 5):1–271

    Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. IUCN, Gland

    Google Scholar 

  • Kristoffersen BA, Finn RN (2008) Major osmolyte changes during oocyte hydration of a clupeocephalan marine benthophil: Atlantic herring (Clupea harengus). Mar Biol 154:683–692

    CAS  Google Scholar 

  • Lake JS (1971) Freshwater fishes and rivers of Australia. Thomas Nelson, Sydney

    Google Scholar 

  • Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768

    Google Scholar 

  • Limburg KE, Elfman M (2010) Patterns and magnitude of Zn: Ca in otoliths support the recent phylogenetic typology of Salmoniformes and their sister groups. Can J Fish Aquat Sci 67:597–604

    CAS  Google Scholar 

  • Limburg KE, Waldman J, Kahnle A et al (2006) Fisheries and fisheries management of the Hudson River estuary. In: Levinton JS, Waldman JR (eds) The Hudson River estuary. Cambridge University Press, Cambridge

    Google Scholar 

  • Lindsey CC (1981) Stocks are chameleons: plasticity in gill rakers of coregonid fishes. Can J Fish Aquat Sci 38:1497–1506

    Google Scholar 

  • Lone KP (1983) Inland fisheries and aquaculture in Pakistan. Direct Sci Inf, PARC, Islamabad

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S et al (2000) 100 of the world’s worst invasive alien species. ISSG, IUCN, Gland

    Google Scholar 

  • MacCrimmon HR, Gots BL (1979) World distribution of Atlantic salmon, Salmo salar. J Fish Res Board Can 36:422–457

    Google Scholar 

  • MacCrimmon HR, Marshall TL (1968) World distribution of brown trout, Salmo trutta. J Fish Res Board Can 25:2527–2548

    Google Scholar 

  • MacCrimmon HR, Marshall TL, Gots BL (1970) World distribution of brown trout, Salmo trutta: further observations. J Fish Res Board Can 27:811–818

    Google Scholar 

  • Malmquist HJ, Snorrason SS, Skulason S et al (1992) Diet differentiation in polymorphic arctic charr, Salvelinus alpinus (L.) in Thingvallavatn, Iceland. J Anim Ecol 61:21–35

    Google Scholar 

  • Maric S, Susnic S, Simonovic P et al (2006) Phylogeographic study of brown trout from Serbia, based on mitochondrial DNA control region analysis. Genet Sel Evol 38:411–430

    PubMed  CAS  Google Scholar 

  • Mayr E (1969) Principles of systematic zoology. McGraw-Hill, New York

    Google Scholar 

  • Mayr E (1982) The growth of biological thought. Belknap, Cambridge

    Google Scholar 

  • McCormick SD, Keyes A, Nislow KH et al (2009) Impacts of episodic acidification on in-stream survival and physiological impairment of Atlantic salmon (Salmo salar) smolts. Can J Fish Aquat Sci 66:394–403

    Google Scholar 

  • McDonald DG, Walker RL, Wilkes PRH (1983) The interaction of environmental calcium and low pH on the physiology of the rainbow trout Salmo gairdneri II Branchial ionoregulatory mechanisms. J Exp Biol 102:141–155

    Google Scholar 

  • McDowall RM (1978) New Zealand freshwater fishes, a guide and natural history. Heinmann Educational Books, Auckland

    Google Scholar 

  • McDowall RM (1993) A recent marine ancestry for diadromous fishes? Sometimes yes, but mostly no. Env Biol Fish 37:329–335

    Google Scholar 

  • McDowall RM (2001) The origin of salmonid fishes: marine, freshwater or neither. Rev Fish Biol Fish 11:171–179

    Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as result of interactions with escaped farmed salmon. Proc R Soc Lond B 270:2443–2450

    Google Scholar 

  • McGinnity P, Prodöhl P, O’Maoileidigh NO et al (2004) Differential lifetime success and performance of native and non-native Atlantic salmon examined under communal natural conditions. J Fish Biol 65(Suppl A):173–187

    Google Scholar 

  • McKeown NJ, Hynes RA, Duguid RA et al (2010) Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. J Fish Biol 76:319–347

    PubMed  CAS  Google Scholar 

  • Meldgaard T, Crivelli AJ, Jesensek D et al (2007) Hybridization mechanisms between the endangered marble trout (Salmo marmoratus) and brown trout (Salmo trutta) as revealed by instream experiments. Biol Conserv 136:602–611

    Google Scholar 

  • Meraner A, Baric S, Pelster B et al (2007) Trout (Salmo trutta) mitochondrial DNA polymorphism in the centre of the marble trout distribution area. Hydrobiologia 579:337–349

    CAS  Google Scholar 

  • Miller KJ, Ayre DJ (2008) Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas. Conserv Biol 22:1245–1254

    PubMed  Google Scholar 

  • Mills DH (1971) Salmon and trout: a resource, its ecology, conservation and management. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Mrakovcic M, Misetic S, Povz M (1995) Status of freshwater fish in Croatian Adriatic river systems. Biol Conserv 72(spec issue):179–185

    Google Scholar 

  • Naveed SA (1994) Cultivation and introduction of trout in NWFP Province of Pakistan. In: Proceedings of the national seminar on fisheries policy and planning. Marine Fisheries Department, Government of Pakistan, Karachi

    Google Scholar 

  • Naylor R, Hindar K, Fleming IA et al (2005) Fugitive salmon: assessing the risk of escaped fish from net-pen aquaculture. Bioscience 55:427–437

    Google Scholar 

  • Nehring RB (1996). Whirling disease In: Bergersen EP, Knoph BA (eds) Feral trout populations in Colorado. In: Proceedings: Whirling disease workshop – where do we go from here? Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins

    Google Scholar 

  • Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York

    Google Scholar 

  • Nilsen TO, Ebbesson LOE, Stefansson SO (2003) Smolting in anadromous and landlocked strains of Atlantic salmon (Salmo salar). Aquaculture 222:71–82

    Google Scholar 

  • Norden CR (1961) Comparative osteology of representative salmonid fishes, with particular reference to the grayling (Thymallus arcticus) and its phylogeny. J Fish Res Board Can 18:679–791

    Google Scholar 

  • Norrgren L, Degerman E (1993) Effect of different water qualities on the early development of Atlantic salmon and brown trout exposed in situ. Ambio 22:213–218

    Google Scholar 

  • Northcote TG, Hartman GS (2004) Fishes and forestry: worldwide watershed interactions and management. Blackwell, Oxford

    Google Scholar 

  • Northcote TG, Kelso BW (1981) Differential response to water current by two homozygous LDH phenotypes of young rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 38:348–352

    Google Scholar 

  • Novikov GG, Semenova AV, Stroganov AN et al (2008) Allozyme variability in populations of trout (Salmo trutta) from the rivers of Iran. J Ichthyol 48:356–360

    Google Scholar 

  • Oakley TH, Phillips RB (1999) Phylogeny of Salmonine fishes based on growth hormone introns: Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa. Mol Phylogenet Evol 11:381–393

    PubMed  CAS  Google Scholar 

  • Oleinik AG (1997) Molecular phylogeny of salmonids: results of an analysis of nuclear and mitochondrial DNA. Genetika 33:173–177

    CAS  Google Scholar 

  • Olsson IC, Greenberg LA, Bergman E et al (2006) Environmentally induced migration: the impact of food. Ecol Lett 9:645–651

    PubMed  Google Scholar 

  • Osinov AG (1999) Salmonid fish of the genera Salmo, Parasalmo, and Oncorhynchus: genetic divergence, phylogeny and classification. J Ichthyol 39:571–587

    Google Scholar 

  • Osinov A, Bernatchez L (1996) Atlantic and Danubean phylogenetic groupings of brown trout (Salmo trutta L.) complex: genetic divergence, evolution, and conservation. J Ichthyol 36:762–786

    Google Scholar 

  • Østbye K, Bernatchez L, Næsje TF et al (2005a) Evolutionary history of the European whitefish Coregonus lavaretus (L.) species complex as inferred from mtDNA phylogeography and gill-raker numbers. Mol Ecol 14:4371–4387

    PubMed  Google Scholar 

  • Østbye K, Næsje TF, Bernatchez L et al (2005b) Morphological divergence and origin of sympatric populations of European whitefish (Coregonus lavaretus L.) in Lake Femund, Norway. J Evol Biol 18:683–702

    PubMed  Google Scholar 

  • Østbye K, Amundsen PA, Bernatchez L et al (2006) Parallel evolution of ecomorphological traits in the European whitefish Coregonus lavaretus (L.) species complex during postglacial times. Mol Ecol 15:3983–4001

    PubMed  Google Scholar 

  • Paez DJ, Hedger R, Bernatchez L et al (2008) The morphological plastic response to water current velocity varies with age and sexual state in juvenile Atlantic salmon, Salmo salar. Freshw Biol 53:1544–1554

    Google Scholar 

  • Pakkasmaa S, Piironen J (2000) Water velocity shapes juvenile salmonids. Evol Ecol 14:721–730

    Google Scholar 

  • Pakkasmaa S, Piironen J (2001) Morphological differentiation among local trout (Salmo trutta) populations. Biol J Linn Soc 72:231–239

    Google Scholar 

  • Pascual M, Macchi P, Urbanski J et al (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data. Biol Invasions 4:101–113

    Google Scholar 

  • Petersson JCE, Hansen MM, Bohlin T (2001) Does dispersal from landlocked trout explain the coexistence of resident and migratory trout females in a small stream? J Fish Biol 58:487–495

    Google Scholar 

  • Phillips RB, Matsouka MP, Reed KM (2000) Phylogenetic analysis of mitochondrial and nuclear sequences supports inclusion of Acantholingua ohridana in Salmo. Copeia 2000:546–550

    Google Scholar 

  • Phillips RB, Matsouka MP, Konkol N et al (2004) Molecular systematics and evolution of the growth hormone introns in the Salmoninae. Environ Biol Fish 69:433–440

    Google Scholar 

  • Pilou EC (1991) After the Ice Age: the return of life to glaciated North America. University of Chicago Press, Chicago

    Google Scholar 

  • Power G (2002) Charrs, glaciations and seasonal ice. Environ Biol Fish 64:17–35

    Google Scholar 

  • Prouzet P (1990) Stock characteristics of Atlantic salmon (Salmo salar) in France: a review. Aquat Living Resour 3:85–97

    Google Scholar 

  • Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced Chinook salmon population. Evolution 5:1372–1385

    Google Scholar 

  • Ramsden SD, Brinkmann H, Hawryshyn CW et al (2003) Mitogenomics and the sister of Salmonidae. Trends Ecol Evol 18:607–610

    Google Scholar 

  • Reddin DG, Shearer WM (1987) Sea surface temperature and distribution of Atlantic salmon in the Northwest Atlantic Ocean. Am Fish Soc Symp 1:262–275

    Google Scholar 

  • Regan CT (1911) The freshwater fishes of the British Isles. Methuen and Co, London

    Google Scholar 

  • Regan CT (1914) The systematic arrangement of the fishes of the family Salmonidae. Ann Mag Nat Hist 13:405–408

    Google Scholar 

  • Reshetnikov Yu S, Bogutskaya NG, Vasileva DE et al (1997) An annotated checklist of the freshwater fishes of Russia. J Ichthyol 37:687–736

    Google Scholar 

  • Ricker WE (1972) Hereditary and environmental factors affecting certain salmonid populations. In: Simon RC, Larkin PA (eds) The stock concept in Pacific salmon. Mitchell Press, Vancouver

    Google Scholar 

  • Riddell BE, Leggett WC (1981) Evidence for an adaptive basis for geographic variation in body morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 38:308–320

    Google Scholar 

  • Riddell BE, Leggett WC, Saunders RL (1981) Evidence for adaptive polygenic variation between two populations of Atlantic salmon (Salmo salar) native to tributaries of the S.W. Miramichi River, N.B. Can J Fish Aquat Sci 38:321–333

    Google Scholar 

  • Robinson BW, Parsons KJ (2002) Changing times, spaces, and faces: tests and implications of adaptive morphological plasticity in the fishes of northern postglacial lakes. Can J Fish Aquat Sci 59:1819–1833

    Google Scholar 

  • Ros T (1981) Salmonids in the Lake Vänern area. Ecol Bull 34:21–31

    Google Scholar 

  • Rosen DE (1974) Phylogeny and zoogeography of salmoniform fishes and relationships of Lepidogalaxias salamandroides. Bull Am Mus Nat Hist 153:265–326

    Google Scholar 

  • Rosseland BO, Skogheim OK (1984) A comparative study on salmonid fish species in acid aluminium-rich water. II. Physiological stress and mortality of one and two year old fish. Rep Inst Freshw Res Drottningholm 61:186–194

    Google Scholar 

  • Rosseland BO, Skogheim OK, Abrahamsen H et al (1986) Limestone slurry reduces physiological stress and increases survival of Atlantic salmon. Can J Fish Aquat Sci 43:1888–1893

    CAS  Google Scholar 

  • Rounsefell GA (1958) Anadromy in North American Salmonidae. US Fish Wildl Serv Fish Bull 58:171–185

    Google Scholar 

  • Rundle HD, Schluter D (2004) Natural selection and ecological speciation in sticklebacks. In: Dieckmann U, Doebeli M, Metz JAJ et al (eds) Adaptive speciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Ryman N, Allendorf FW, Ståhl G (1979) Reproductive isolation with little genetic divergence in sympatric populations of brown trout. Genetics 92:247–262

    PubMed  CAS  Google Scholar 

  • Säisä M, Koljonen ML, Gross R et al (2005) Population genetic structure and postglacial colonization of Atlantic salmon (Salmo salar) in the Baltic Sea area base don microsatellite DNA variation. Can J Fish Aquat Sci 62:1887–1904

    Google Scholar 

  • Sandlund OT, Gunnarsson K, Jónasson PM et al (1992) The Arctic charr Salvelinus alpinus (L.) in Thingvallavatn. Oikos 64:305–351

    Google Scholar 

  • Sandøy S, Langåker RM (2001) Atlantic salmon and acidification in southern Norway: a disaster in the 20th century, but a hope for the future? Water Air Soil Poll 130:1343–1348

    Google Scholar 

  • Saunders RL (1981) Atlantic salmon (Salmo salar) stocks and management implications in the Canadian Atlantic Provinces and New England, USA. Can J Fish Aquat Sci 38:1612–1625

    Google Scholar 

  • Schaffer WM, Elson PF (1975) The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology 56:577–590

    Google Scholar 

  • Schöffmann J, Sušnik S, Snoj A (2007) Phylogenetic origin of Salmo trutta L. 1758 from Sicily, based on mitochondrial and nuclear DNA analyses. Hydrobiologia 575:51–55

    Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Bull Fish Res Board Can 184:1–966

    Google Scholar 

  • Siira A, Suuronen P, Kreivi P et al (2006) Size of wild and hatchery-reared Atlantic salmon populations in the northern Baltic Sea estimated by a stratified mark-recapture method. ICES J Mar Res 63:1477–1487

    Google Scholar 

  • Simonivic P, Maric S, Nikolic V (2007) Trout Salmo spp. complex in Serbia and adjacent regions of the western Balkans: reconstruction of evolutionary history from external morphology. J Fish Biol 70:359–380

    Google Scholar 

  • Skaala Ø, Nævdal G (1989) Genetic differentiation between freshwater resident and anadromous brown trout, Salmo trutta, within watercourses. J Fish Biol 34:597–605

    Google Scholar 

  • Skaala Ø, Jørstad KE, Borgstrøm R (1991) Fine-spotted brown trout: genetic aspects and the need for conservation. J Fish Biol 39:123–130

    Google Scholar 

  • Skogheim OK, Rosseland BO (1984) A comparative study on salmonid fishes in acid aluminium-rich water. I. Mortality on eggs and alevins. Rep Inst Freshw Res Drottningholm 61:177–193

    Google Scholar 

  • Skrochowska S (1969) Migrations of the sea-trout (Salmo trutta L.), brown trout (Salmo trutta m. fario L.) and their crosses. Pol Arch Hydrobiol 16:125–192

    Google Scholar 

  • Skurdal J, Andersen R (1985) Influence of temperature on number of circuli of first year scales of brown trout, Salmo trutta L. J Fish Biol 26:363–366

    Google Scholar 

  • Snoj A, Jug T, Melkic E et al (2000) Mitochondrial and microsatellite DNA analysis of marble trout in Slovenia. J Freshw Biol 29:5–11

    Google Scholar 

  • Snoj A, Melkic E, Susnik S et al (2002) DNA phylogeny supports revised classification of Salmothymus obtusirostris. Biol J Linn Soc 77:399–411

    Google Scholar 

  • Snorrason SS, Skulason S, Jonsson B et al (1994) Trophic specialization in Arctic charr Salvelinus alpinus (Pisces: Salmonidae): morphological divergence and ontogenetic shifts. Biol J Linn Soc 52:1–18

    Google Scholar 

  • Soto D, Jara F, Moreno C (2001) Escaped salmon in the inner seas, southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762

    Google Scholar 

  • Soulsby C, Youngson AF, Moir HJ et al (2001) Fine sediment influence on salmonid spawning habitat in a lowland agricultural stream: a preliminary assessment. Sci Total Environ 265:295–307

    PubMed  CAS  Google Scholar 

  • Ståhl G (1987) Genetic population structure of Atlantic salmon. In: Ryman N, Utter F (eds) Population genetics and fishery management. Washington Sea Grant, Seattle

    Google Scholar 

  • Stearley RF (1992) Historical ecology of Salmoninae, with special reference to Oncorhynchus. In: Mayden RL (ed) Systematics, historical ecology, and North American freshwater fishes. Stanford University Press, Stanford

    Google Scholar 

  • Stearley RF, Smith GR (1993) Phylogeny of the Pacific trouts and salmons (Oncorhynchus) and genera of the family Salmonidae. Trans Am Fish Soc 122:1–33

    Google Scholar 

  • Storm G (1881) The collected writing by Peder Claussøn Friis. Brögger forlag, Christiania (In Norwegian)

    Google Scholar 

  • Stuart TA (1953) Spawning migration, reproduction and young stages of loch trout. Freshw Salm Fish Res 5:1–39

    Google Scholar 

  • Stuart TA (1957) The migration and homing of brown trout (Salmo trutta). Freshw Salm Fish Res 18:1–27

    Google Scholar 

  • Sušnik S, Knizhin I, Snoj A et al (2005) Genetic and morphological characterization of a Lake Ohrid endemic, Salmo (Acantholingua) ohridanus with comparison to sympatric Salmo trutta. J Fish Biol 68(Suppl A):2–23

    Google Scholar 

  • Svärdson G (1945) Chromosome studies on Salmonidae. Rep Swed State Inst Freshwater Fish Res 23:1–151

    Google Scholar 

  • Svärdson G, Fagerström Å (1982) Adaptive differences in the long-distance migration of some trout (Salmo trutta L.) stocks. Rep Inst Freshw Res Drottningholm 60:51–80

    Google Scholar 

  • Tanaka M (1985) Factors affecting the inshore migration of pelagic larvae and demersal juvenile red sea bream Pagrus magor to a nursery ground. Trans Am Fish Soc 114:471–477

    Google Scholar 

  • Tchernavin V (1939) The origin of salmon: is its ancestry marine of fresh water? Salm Trout Mag 95:120–140

    Google Scholar 

  • Thorpe JE (1982) Migration in salmonids with special reference to juvenile movements in fresh water. In: Brannon EL, Salo EO (eds) Proceedings of the salmon and trout migratory behaviour symposium. School of Fisheries, University of Washington, Seattle, pp 86–97

    Google Scholar 

  • Thorpe JE (1988) Salmon migration. Sci Prog Oxf 72:345–370

    Google Scholar 

  • Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Res 25:77–87

    Google Scholar 

  • Tonteri A, Veselov AJ, Totov S et al (2007) The effect of migratory behaviour on genetic diversity and population divergence: a comparison of anadromous and freshwater Atlantic salmon Salmo salar. J Fish Biol 70(Suppl C):381–398

    CAS  Google Scholar 

  • Tonteri A, Veselov AJ, Zubchenko AV et al (2009) Microsatellites reveal clear genetic boundaries among Atlantic salmon (Salmo salar) populations from the Barents and White Seas, northwest Russia. Can J Fish Aquat Sci 66:717–735

    CAS  Google Scholar 

  • Townsend CR (1996) Invasion biology and ecological impacts of brown trout Salmo trutta in New Zealand. Biol Conserv 78:13–22

    Google Scholar 

  • Townsend CR (2003) Individual, population, community, and ecosystem consequences of a fish invader in New Zealand streams. Conserv Biol 17:38–47

    Google Scholar 

  • Valiente AG, Juanes F, Nuñez P et al (2010) Brown trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biol Invasions 12:451–462

    Google Scholar 

  • Vera M, Cortey M, Sanz N et al (2010) Maintenance of an endemic lineage of brown trout (Salmo trutta) within the Duero river basin. J Zool Syst Evol Res 48(2):181–187

    Google Scholar 

  • Verspoor E (2005) Regional differentiation of North American Atlantic salmon (Salmo salar) at allozyme loci. J Fish Biol 67(Suppl A):80–103

    CAS  Google Scholar 

  • Verspoor E, Cole LJ (2005) Genetic evidence for lacustrine spawning of the non-anadromous Atlantic salmon population of Little Gull Lake, Newfoundland. J Fish Biol 67(Suppl A):200–205

    CAS  Google Scholar 

  • Verspoor E, Stradmeyer L, Nielsen JL (eds) (2007) The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Vincent ER (1996) Whirling disease: the Montana experience, Madison River. In: Bergersen EP, Knoph BA (eds) Feral trout populations in Colorado. Proceedings: Whirling disease workshop – where do we go from here? Colorado Cooperative Fish and Wildlife Research Unit, Fort Collins

    Google Scholar 

  • Von Cramon-Taubadel S, Ling EN, Cotter D et al (2005) Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. J Fish Biol 66:1471–1482

    Google Scholar 

  • Webb J, Verspoor E, Aubin-Horth N et al (2007) The Atlantic salmon. In: Verspoor E, Stradmeyer L, Nielsen JL (eds) The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Weiss S, Antunes A, Schlötterer C et al (2000) Mitochondrial haplotype diversity among Portuguese brown trout Salmo trutta L. populations: relevance to the post-Pleistocene recolonization of northern Europe. Mol Ecol 9:691–698

    PubMed  CAS  Google Scholar 

  • Wilder DG (1947) A comparative study of the Atlantic salmon, Salmo salar Linnaeus, and the lake salmon, Salmo salar sebago (Girard). Can J Res Ser D 25:175–189

    Google Scholar 

  • Wilson MVH, Li GQ (1999) Osteology and systematic position of the Eocene salmonid Eoslamo driftwoodensis Wilson from western North America. Zool J Linn Soc 125:279–311

    Google Scholar 

  • Wood J, Budy P (2009) The role of environmental factors in determining early survival and invasion success of exotic brown trout. Trans Am Fish Soc 138:756–767

    Google Scholar 

  • WWF (2001) The status of wild Atlantic salmon: a river by river assessment. http://www.panda.org/news_sacts

  • Xia YZ, Chen YY, Sheng Y (2007) Phylogeographic structure of lenok (Brachymystax lenok Pallas) (Salmoninae, Salmonidae) populations in water systems of Eastern China, inferred from mitochondrial DNA sequences. Zool Stud 45:190–200

    Google Scholar 

  • Yasuike M, Jantzen S, Cooper GA et al (2010) Grayling (Thymallinae) phylogeny within salmonids: complete mitochondrial DNA sequences of Thymallus arcticus and Thymallus thymallus. J Fish Biol 76:395–400

    PubMed  CAS  Google Scholar 

  • Zeisel W (1995) Angling on a changing estuary: the Hudson River, 1609–1995. Final Report to the Hudson River Foundation, New York

    Google Scholar 

  • Zupancic P (2008) [Rare and endangered freshwater fishes of Croatia, Slovenia and Bosnia Hercegovina – Adriatic Basin]. Dolsko. Agencija AAZV, Dolsko (In Slovenian)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bror Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonsson, B., Jonsson, N. (2011). Species Diversity. In: Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1189-1_2

Download citation

Publish with us

Policies and ethics