Skip to main content

General Conclusions and Research Tasks

  • Chapter
  • First Online:
  • 1820 Accesses

Part of the book series: Fish & Fisheries Series ((FIFI,volume 33))

Abstract

In this book we review and synthesize ecological aspects of Atlantic salmon and brown trout with special emphasis on their life histories in relation to their habitat uses. We draw general conclusions when possible and identify gaps in knowledge. In this final chapter, we draw some main conclusions about life history consequences of present habitat use and adaptations caused by passed habitats exploitation.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adkinson MD (1995) Population differences in Pacific salmon: local adaptation, genetic drift, or the environment? Can J Fish Aquat Sci 52:2762–2777

    Google Scholar 

  • Allendorf FW, Leary RF, Hitt NP et al (2004) Intercrosses and the US Endangered Species Act: should hybridized populations be included as Westslope cutthroat trout. Conserv Biol 18:1203–1213

    Google Scholar 

  • Alm G (1939) Investigations on growth by different forms of trout. Meddel Unders Försöksanst Sötvf 15:1–93

    Google Scholar 

  • Alm G (1959) Connection between maturity, size and age in fishes. Rep Inst Freshw Res Drottningholm 40:5–145

    Google Scholar 

  • Álvarez D, Cano JM, Nicieza AG (2003) Predator avoidance behaviour in wild and hatchery-reared brown trout: the role of experience and domestication. J Fish Biol 63:1565–1577

    Google Scholar 

  • Álvarez D, Cano JM, Nicieza AG (2006) Microgeographic variation in metabolic rate and energy storage of brown trout: countergradient selection or thermal sensitivity? Evol Ecol 20:345–363

    Google Scholar 

  • Anras MLB, Lagardere JP (2004) Domestication and behaviour in fish. Prod Anim 17:211–215

    Google Scholar 

  • Baldomenico PM, Begon M (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 25:21–27

    Google Scholar 

  • Baxter C, Fausch K, Murakami M et al (2004) Fish invasion restructures stream and forest food webs by interrupting reciprocal-prey subsidies. Ecology 85:2656–2663

    Google Scholar 

  • Beacham TD, Withler RE (1991) Genetic variation in mortality of chinook salmon, Oncorhynchus tshawytscha (Walbaum), challenged with high water temperatures. Aquacult Fish Manage 22:125–133

    Google Scholar 

  • Bentsen HB (1994) Genetic effects of selection on polygenetic traits with examples from Atlantic salmon, Salmo salar L. Aquacult Fish Manage 25:89–102

    Google Scholar 

  • Bernatchez L (2001) The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55:351–379

    PubMed  CAS  Google Scholar 

  • Berrigan D, Charnov EL (1994) Reaction norms for age and size at maturity in response to temperature: a puzzle for life historians. Oikos 70:474–478

    Google Scholar 

  • Blanc G (1997) Introduced pathogens in European aquatic ecosystems: theoretical aspects and reality. Bull Franç Pệche Piscicult 344:489–513

    Google Scholar 

  • Borgstrøm R, Heggenes J (1988) Smoltification of sea trout (Salmo trutta) at short length as an adaptation to extremely low summer stream flow. Pol Archiv Hydrobiol 35:375–384

    Google Scholar 

  • Brannon EL (1972) Mechanisms controlling the migration of sockeye salmon fry. Int Pac Sal Fish Comm Bull 21:1–86

    Google Scholar 

  • Brown JL (1987) Helping and communal breeding in birds. Princeton University Press, Princeton

    Google Scholar 

  • Carlin B (1969) Salmon tagging experiments. Swed Salmon Res Inst Rep 2(4):8–13

    Google Scholar 

  • Claireaux G, McKenzie DJ, Genge AG et al (2005) Linking swimming performance, cardiac pumping ability and cardiac anatomy in rainbow trout. J Exp Biol 208:1775–1784

    PubMed  Google Scholar 

  • Clutton-Brock TH (1988) Reproductive success. In: Clutton-Brock TH (ed) Reproductive success: studies of individual variation in contrasting breeding systems. University of Chicago Press, Chicago

    Google Scholar 

  • Crespi BJ, Fulton MJ (2004) Molecular systematics of Salmonidae: combined nuclear data yields a robust phylogeny. Mol Phylogenet Evol 31:658–679

    PubMed  CAS  Google Scholar 

  • Cutts CJ, Metcalfe NB, Taylor AC (1998) Aggression and growth depression in juvenile Atlantic salmon: the consequences of individual variation in standard metabolic rate. J Fish Biol 52:1026–1037

    Google Scholar 

  • Dannewitz J, Petersson E, Prestegaard T et al (2003) Effects of sea-ranching and family background on fitness traits in brown trout Salmo trutta reared under near-natural conditions. J Appl Ecol 40:241–250

    Google Scholar 

  • Dunmall KM, Schreer JF (2003) A comparison of the swimming and cardiac performance of fanned and wild Atlantic salmon, Salmo salar, before and after stripping. Aquaculture 220:869–882

    Google Scholar 

  • Einum S, Fleming IA (1997) Genetic divergence and interactions in the wild among native, farmed and hybrid Atlantic salmon. J Fish Biol 50:634–651

    Google Scholar 

  • Einum S, Nislow KH, Mckelvey S et al (2008) Nest distribution shaping within-stream variation in Atlantic salmon juvenile abundance and competition over small spatial scales. J Anim Ecol 77:167–172

    PubMed  Google Scholar 

  • Elliott JM (1994) Quantitative ecology and the brown trout. Oxford series in ecology and evolution. Oxford University Press, Oxford

    Google Scholar 

  • Elliott JM (2001) The relative role of density in the stock-recruitment relationship of salmonids. In: Prévost E, Chaput G (eds) Stock, recruitment and reference points: Assessment and management of Atlantic salmon (Hydrobiologie et Aquaculture). INRA Edit, Paris

    Google Scholar 

  • Elliott JM (2009) Validation and implications of a growth model for brown trout, Salmo trutta, using long-term data from a small stream in north-west England. Freshw Biol 54:2263–2275

    Google Scholar 

  • Elliott JM, Baroudy E (1995) The ecology of Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta, in Windermere (northwest England). Nord J Freshw Res 71:33–48

    Google Scholar 

  • Elliott JM, Elliott JA (2010) Temperature requirements of Atlantic salmon, brown trout and Arctic charr: predicting the impacts of climate change. J Fish Biol 77(Suppl A):1793–1817

    PubMed  CAS  Google Scholar 

  • Fahy E (1978) Variation in some biological characteristics of British sea trout, Salmo trutta. J Fish Biol 13:123–138

    Google Scholar 

  • Fenderson OC, Everhart WH, Muth KM (1968) Comparative agonistic and feeding behavior of hatchery-reared and wild salmon in aquaria. J Fish Res Board Can 25:1–14

    Google Scholar 

  • Ferguson A (2006) Genetics of sea trout, with particular reference to Britain and Ireland. In: Harris G, Milner N (eds) Sea trout: biology, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Finstad AG, Forseth T, Jonsson B et al (2011) Competitive exclusion along climate gradients: energy efficiency influences the distribution of two salmonid fishes. Glob Change Biol 17:1703–1711

    Google Scholar 

  • Fleming IA, Gross MR (1993) Breeding success and wild coho salmon (Oncorhynchus kisutch) in competition. Ecol Appl 3:230–245

    Google Scholar 

  • Fleming IA, Gross MR (1995) Breeding success of hatchery and wild coho salmon (Oncorhynchus kisutch) in competition. Ecol Appl 5:230–245

    Google Scholar 

  • Fleming IA, Jonsson B, Gross MR (1994) Phenotypic divergence of sea-ranched, farmed and wild salmon. Can J Fish Aquat Sci 51:2808–2824

    Google Scholar 

  • Fleming IA, Lamberg A, Jonsson B (1997) Effects of early experience on the reproductive performance of Atlantic salmon. Behav Ecol 8:470–480

    Google Scholar 

  • Fleming IA, Hindar K, Mjølnerød I et al (2000) Lifetime success and interactions of farmed Atlantic salmon invading a native population. Proc R Soc Lond 267:1517–1523

    CAS  Google Scholar 

  • Foldvik A, Finstad AG, Einum S (2010) Relating juvenile spatial distribution to breeding patterns in anadromous salmonid populations. J Anim Ecol 79:501–509

    PubMed  Google Scholar 

  • Forseth T, Larsson S, Jensen AJ et al (2009) Thermal performance of juvenile brown trout, Salmo trutta L.: no support for thermal adaptation hypotheses. J Fish Biol 74:133–149

    PubMed  CAS  Google Scholar 

  • Forslund P, Pärt T (1995) Age and reproduction in birds – hypotheses and tests. Trends Ecol Evol 10:374–378

    PubMed  CAS  Google Scholar 

  • Fraser DJ, Bernatchez L (2005) Adaptive migratory divergence among sympatric brook charr populations. Evolution 59:611–624

    PubMed  Google Scholar 

  • Fraser DJ, Weir K, Darwish TL et al (2007) Divergent compensatory growth responses within species: linked to contrasting migrations in salmon? Oecologia 153:543–553

    PubMed  Google Scholar 

  • Frost WE (1965) Breeding habits of Windermere charr, Salvelinus willughbii (Günther), and their bearing on speciation of these fish. Proc R Soc Lond B 163:232–284

    PubMed  CAS  Google Scholar 

  • Garcia de Leániz C, Fleming IA, Einum E et al (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211

    PubMed  Google Scholar 

  • Gjedrem T, Gjøen HM (1995) Genetic variation in susceptibility of Atlantic salmon, Salmo salar L., to furunculosis, BKD and cold water vibriosis. Aquacult Res 26:129–134

    Google Scholar 

  • Gjerde B (1984) Response to individual selection for age at sexual maturity in Atlantic salmon. Aquaculture 38:229–240

    Google Scholar 

  • Gjerde B, Simianer H, Refstie T (1994) Estimates of genetic and phenotypic parameters for body weight, growth rate and sexual maturity in Atlantic salmon. Livest Prod Sci 38:133–143

    Google Scholar 

  • Gozlan RE, Peeler EJ, Longshaw M et al (2006) Effect of microbial pathogens on the diversity of aquatic populations, notably in Europe. Microbes Infect 8:1358–1364

    PubMed  Google Scholar 

  • Gozlan RE, Britton JR, Cowx I et al (2010) Current knowledge on non-native freshwater fish introductions. J Fish Biol 76:751–786

    Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Hansen MM (2007) Investigating the genetics of populations. In: Verspoor E, Stradmeyer L, Nielsen JL (eds) The Atlantic salmon: genetics conservation and management. Blackwell, Oxford

    Google Scholar 

  • Hansen LP, Jonsson B (1991) Evidence of a genetic component in seasonal return pattern of Atlantic salmon (Salmo salar L.). J Fish Biol 38:251–258

    Google Scholar 

  • Hansen LP, Jonsson B (1994) Homing in Atlantic salmon: effects of juvenile learning on transplanted post-spawners. Anim Behav 47:220–222

    Google Scholar 

  • Hansen MM, Menberg KLD (1998) Genetic differentiation and relationship between genetic and geographical distance in Danish sea trout (Salmo trutta L.) populations. Heredity 81:493–504

    Google Scholar 

  • Hansen LP, Jonsson N, Jonsson B (1993) Oceanic migration of homing Atlantic salmon. Anim Behav 45:927–941

    Google Scholar 

  • Harden Jones FR (1968) Fish migration. Edward Arnold, London

    Google Scholar 

  • Hasler AD, Scholz AT (1983) Olfactory imprinting and homing in salmon. Springer, Berlin

    Google Scholar 

  • Heggberget TG (1988) Time of spawning of Norwegian Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 45:845–849

    Google Scholar 

  • Hilborn R, Eggers D (2000) A review of the hatchery programs for pink salmon in Prince William Sound and Kodiak Island, Alaska. Trans Am Fish Soc 129:333–350

    Google Scholar 

  • Hindar K, Jonsson B, Andrew JH et al (1988) Resource utilization of sympatric and experimentally allopatric cutthroat trout and Dolly Varden charr. Oecologia 74:481–491

    Google Scholar 

  • Hindar K, Jonsson B, Ryman N et al (1991) Genetic relationships among landlocked, resident, and anadromous brown trout, Salmo trutta L. Heredity 66:83–91

    Google Scholar 

  • Hodgson E (2004) A textbook of modern toxicology. Wiley Interscience, Hoboken

    Google Scholar 

  • Höjesjö J, Johnsson JI, Bohlin T (2004) Habitat complexity reduces the growth of aggressive and dominant brown trout ( Salmo trutta) relative to subordinates. Behav Ecol Sociobiol 56:256–259

    Google Scholar 

  • Hutchings JA, Jones MEB (1998) Life history variation in growth rate thresholds for maturity in Atlantic salmon. Can J Fish Aquat Sci 55(Suppl 1):22–47

    Google Scholar 

  • Jacobsen JA, Hansen LP (2001) Feeding habits of wild and escaped farmed Atlantic salmon, Salmo salar L., in the Northeast Atlantic. ICES J Mar Sci 58:916–933

    Google Scholar 

  • Jenkins TM, Diehl S, Kratz KW et al (1999) Effects of population density on individual growth of brown trout. Ecology 80:941–956

    Google Scholar 

  • Jensen AJ, Forseth T, Johnsen BO (2000) Latitudinal variation in growth of young brown trout Salmo trutta. J Anim Ecol 69:1010–1020

    Google Scholar 

  • Jensen LF, Hansen MM, Pertoldi C et al (2008) Local adaptation in brown trout early life-history traits: implications for climate change adaptability. Proc R Soc Lond B 275:2859–2868

    Google Scholar 

  • Jonasson PM, Jonsson B, Sandlund OT (1998) Continental rift and habitat formation: Arena for resource polymorphism in Arctic charr. Ambio 27:162–169

    Google Scholar 

  • Jonsson B (1989) Life history and habitat use of Norwegian brown trout (Salmo trutta). Freshw Biol 21:71–86

    Google Scholar 

  • Jonsson B, Jonsson N (2004) Factors affecting marine production of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 61:2369–2383

    Google Scholar 

  • Jonsson B, L’Abée-Lund JH (1993) Latitudinal clines in life history variables of anadromous brown trout in Europe. J Fish Biol 43(Suppl A):1–16

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (1990) Does juvenile experience affect migration and spawning of adult Atlantic salmon. Behav Ecol Sociobiol 26:225–230

    Google Scholar 

  • Jonsson B, L’Abée-Lund JH, Heggberget TG et al (1991a) Longevity, body size and growth in anadromous brown trout. Can J Fish Aquat Sci 48:1838–1845

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1991b) Variation in age, size and repeat spawning of adult Atlantic salmon in relation to river discharge. J Anim Ecol 60:937–947

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP et al (1993) Coastal movement and growth of domesticated rainbow trout (Oncorhynchus mykiss (Walbaum)) in Norway. Ecol Freshw Fish 2:152–159

    Google Scholar 

  • Jonsson N, Hansen LP, Jonsson B (1994a) Juvenile experience influences timing of adult river ascent in Atlantic salmon. Anim Behav 48:740–742

    Google Scholar 

  • Jonsson N, Jonsson B, Skurdal J et al (1994b) Differential response to water current in offspring of inlet and outlet spawning brown trout (Salmo trutta L.). J Fish Biol 45:356–359

    Google Scholar 

  • Jonsson N, Jonsson B, Fleming IA (1996) Does early growth rate cause a phenotypically plastic response in egg production of Atlantic salmon? Funct Ecol 10:89–96

    Google Scholar 

  • Jonsson B, Forseth T, Jensen AJ et al (2001a) Thermal performance in juvenile Atlantic salmon, Salmo salar L. Funct Ecol 15:701–711

    Google Scholar 

  • Jonsson B, Jonsson N, Brotkorb E et al (2001b) Life history traits of brown trout vary with the size of small streams. Funct Ecol 15:310–317

    Google Scholar 

  • Jonsson N, Jonsson B, Hansen LP (2005) Does climate during embryonic development influences parr growth and age of seaward migration in Atlantic salmon (Salmo salar) smolts? Can J Fish Aquat Sci 62:2502–2508

    Google Scholar 

  • Jonsson B, Jonsson N, Hansen LP (2007) Factors affecting river entry of adult Atlantic salmon in a small river. J Fish Biol 71:943–956

    Google Scholar 

  • Jonsson B, Jonsson N, Hindar K et al (2008) Asymmetric competition drives lake use of coexisting salmonids. Oecologia 157:553–560

    PubMed  CAS  Google Scholar 

  • Kalleberg H (1958) Observations in a stream tank of territoriality and competition in juvenile salmon and trout (Salmo salar L. and S. trutta L.). Rep Inst Freshw Res Drottningholm 39:55–98

    Google Scholar 

  • Kanis E, Refstie T, Gjedrem T (1976) A genetic analysis of egg, alevin and fry mortality in salmon (Salmo salar), sea trout (Salmo trutta) and rainbow trout (Salmo gairdneri). Aquaculture 8:259–268

    Google Scholar 

  • Kelley JL, Evans JP, Ramnarine IW et al (2003) Back to school: can antipredator behaviour in guppies be enhanced through social learning? Anim Behav 65:655–662

    Google Scholar 

  • Kelso WB, Northcote TG, Wehrhahn CF (1981) Genetic and environmental aspects of the response to water current of rainbow trout (Salmo gairdneri) originating from inlet and outlet streams of two lakes. Can J Zool 59:2177–2185

    Google Scholar 

  • Kieffer JD, Colgan PW (1992) The role of learning in fish behaviour. Rev Fish Biol Fish 2:125–143

    Google Scholar 

  • Kinnison M, Hendry A (2004) From macro- to microevolution: tempo and mode in salmonid evolution. In: Hendry A, Stearns S (eds) Evolution illuminated: salmon and their relatives. Oxford University Press, Oxford

    Google Scholar 

  • Knutsen H, Knutsen JA, Jorde PE (2001) Genetic evidence for mixed origin of recolonized sea trout populations. Heredity 87:207–214

    PubMed  CAS  Google Scholar 

  • Kottelat M, Freyhof J (2007) Handbook of European freshwater fishes. IUCN, Gland

    Google Scholar 

  • L’Abée-Lund JH, Jonsson B, Jensen AJ et al (1989) Latitudinal variation in life history charac­teristics of sea-run migrant brown trout Salmo trutta. J Anim Ecol 58:525–542

    Google Scholar 

  • Larsson S, Forseth T, Berglund I et al (2005) Thermal adaptation of Arctic charr: experimental studies of growth in eleven charr populations from Sweden, Norway and Britain. Freshw Biol 50:353–368

    Google Scholar 

  • Leider SA, Hulett PL, Loch JJ et al (1990) Electrophoretic comparison of the reproductive success of naturally spawning transplanted and wild steelhead trout through the returning adult stage. Aquaculture 88:239–252

    Google Scholar 

  • Lema SC, Hodges MJ, Marchetti MP et al (2005) Proliferation zones in the salmon telencephalon and evidence for environmental influence on proliferation rate. J Comp Biochem Physiol A Mol Integr Physiol 141:327–335

    Google Scholar 

  • Lobón-Cerviá J (2007) Density-dependent growth in stream-living brown trout Salmo trutta L. Funct Ecol 21:117–124

    Google Scholar 

  • Lobón-Cerviá J, Utrilla C, Rincón P et al (1997) Environmentally induced spatio-temporal variations in the fecundity of brown trout Salmo trutta L.: trade-offs between egg size and number. Freshw Biol 38:277–288

    Google Scholar 

  • Lorenzen K, Enberg K (2002) Density-dependent growth as a key mechanism in the regulation of fish populations: evidence from among-population comparisons. Proc R Soc Lond B 269:49–54

    Google Scholar 

  • Marchetti MP, Nevitt GA (2003) Effects of hatchery rearing on brain structures of rainbow trout, Oncorhynchus mykiss. Environ Biol Fish 66:9–14

    Google Scholar 

  • Matthews MA, Poole WR, Thompson CE et al (2000) Incidence of hybridization between Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., in Ireland. Fish Manage Ecol 7:337–347

    Google Scholar 

  • McDowall RM (2006) Crying wolf, crying foul, or crying shame.: alien salmonids and a bio­diversity crisis in the southern cool-tempered galaxioid fishes? Rev Fish Biol Fish 16:233–422

    Google Scholar 

  • McGinnity P, Stone C, Taggart JB et al (1997) Genetic impact of escaped farmed Atlantic salmon (Salmo salar L.) on native populations: use of DNA profiling to assess freshwater performance of wild, farmed, and hybrid progeny in a natural river environment. ICES J Mar Sci 54:998–1008

    Google Scholar 

  • McGinnity P, Prodöhl P, Ferguson A et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as result of interactions with escaped farmed salmon. Proc R Soc Lond B 270:2443–2450

    Google Scholar 

  • Mckay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Google Scholar 

  • McKeown NJ, Hynes RA, Duguid RA et al (2010) Phylogeographic structure of brown trout Salmo trutta in Britain and Ireland: glacial refugia, postglacial colonization and origins of sympatric populations. J Fish Biol 76:347–381

    Google Scholar 

  • Merilä J, Crnokrak P (2001) Comparison of genetic differentiation at marker loci and quantitative traits. J Evol Biol 14:892–903

    Google Scholar 

  • Metcalfe NB, Thorpe JE (1990) Determinants of geographical variation in the age of seaward migrating salmon, Salmo salar. J Anim Ecol 59:135–149

    Google Scholar 

  • Naish KA, Hard JJ (2008) Bridging the gap between the phenotype and the genotype: linking genetic variation, selection, and adaptation in fishes. Fish Fish 9:396–422

    Google Scholar 

  • Naylor R, Hindar K, Fleming IA et al (2005) Fugitive salmon: assessing the risk of escaped fish from net-pen aquaculture. Bioscience 55:427–437

    Google Scholar 

  • NguyenVQ SA (2008) Temperature-induced switch to the pathogenic yeast from Histoplasma capsulatum requires Ryp 1, a conserved transcriptional regulator. Proc Natl Acad Sci USA 105:4880–4885

    Google Scholar 

  • Nicieza AG, Reiriz L, Braña F (1994a) Variation in digestive performance between geographically disjunct populations of Atlantic salmon: countergradient in passage time and digestion rate. Oecologia 99:243–251

    Google Scholar 

  • Nicieza AG, Reyes-Gavián FG, Braña F (1994b) Differentiation in juvenile growth and bimodality patterns between northern and southern populations of Atlantic salmon (Salmo salar L.). Can J Zool 72:1603–1610

    Google Scholar 

  • Olla BL, Davis MW, Ryer CH (1994) Behavioural deficits in hatchery reared fish: potential effects on survival following release. Aquacult Fish Manage 25(Suppl 1):19–34

    Google Scholar 

  • Pascual M, Macchi P, Urbanski J et al (2002) Evaluating potential effects of exotic freshwater fish from incomplete species presence-absence data. Biol Invasions 4:101–113

    Google Scholar 

  • Pauly D (1980) On the relationships between natural mortality, growth parameters and mean environmental temperature in 175 fish stocks. J Cons Int l’Explor Mer 39:175–192

    Google Scholar 

  • Poppe TT, Johansen R, Gunnes G et al (2003) Heart morphology in wild and farmed Atlantic salmon Salmo salar and rainbow trout Oncorhynchus mykiss. Dis Aquat Organ 57:103–108

    PubMed  Google Scholar 

  • Primmer CR, Veselov AJ, Zubchenko A et al (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666

    PubMed  CAS  Google Scholar 

  • Quinn TP (1980) Evidence for celestial magnetic compass orientation in lake migrating sockeye salmon fry. J Comp Physiol 137:243–248

    Google Scholar 

  • Quinn TP (1982) Intra-specific differences in sockeye salmon fry compass orientation mechanisms. In: Brannon EL, Salo EO (eds) Salmon and trout migratory behavior symposium. School of Fisheries, University of Washington, Seattle

    Google Scholar 

  • Quinn TP, Kinnison MT, Unwin MJ (2001) Evolution of chinook salmon (Oncorhynchus tshawytscha) populations in New Zealand: pattern, rate, and process. Genetica 112:493–513

    PubMed  Google Scholar 

  • Refstie T, Steine TA, Gjedrem T (1977) Selection experiments with salmon. II. Proportion of Atlantic salmon smolting at 1 year of age. Aquaculture 10:231–242

    Google Scholar 

  • Ricker WE (1972) Hereditary and environmental factors affecting certain salmonid populations. In: Simon RC, Larkin PA (eds) The stock concept in Pacific salmon, H R MacMillan Lecture in Fisheries. University of British Columbia, Vancouver

    Google Scholar 

  • Riddell BE, Leggett WC (1981) Evidence of an adaptive basis for geographical variation in body morphology and time of downstream migration of juvenile Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 38:308–320

    Google Scholar 

  • Riddell BE, Leggett WC, Saunders RL (1981) Evidence of adaptive polygenic variation between two populations of Atlantic salmon (Salmo salar) native to tributaries of the S.W. Miramichi River, N.B. Can J Fish Aquat Sci 38:321–333

    Google Scholar 

  • Rungruangsak-Torrissen K, Male R (2000) Trypsin isozymes: development, digestion and structure. In: Haard NF, Simpson BK (eds) Seafood enzymes: utilization and influence on postharvest seafood quality. Marcel Dekker, New York

    Google Scholar 

  • Rungruangsak-Torrissen K, Pringle GM, Moss R et al (1998) Effects of varying rearing temperatures on expression of different trypsin isozymes, feed-conversion efficiency and growth in Atlantic salmon (Salmo salar L.). Fish Physiol Biochem 19:247–255

    CAS  Google Scholar 

  • Rungruangsak-Torrissen K, Carter CG, Sundby A et al (1999) Maintenance ration, protein-synthesis capacity, plasma insulin and growth of Atlantic salmon (Salmo salar L.) with genetically different trypsin isozymes. Fish Physiol Biochem 21:223–233

    CAS  Google Scholar 

  • Salte R, Berntsen HB, Moen T et al (2010) Prospects for a genetic management strategy to control Gyrodactylus salaris infection in wild Atlantic salmon (Salmo salar) stocks. Can J Fish Aquat Sci 67:121–129

    Google Scholar 

  • Salvanes AGV, Braithwaite VA (2006) The need to understand the behaviour of fish reared for mariculture or restocking. ICES J Mar Sci 63:346–354

    Google Scholar 

  • Sand O, Karlsen HE (2000) Detection of infrasound and linear acceleration in fishes. Philos Trans R Soc Lond B 355:295–1298

    Google Scholar 

  • Sandlund OT, Gunnarsson K, Jónasson PM et al (1992) The Arctic charr Salvelinus alpinus (L.) in Thingvallavatn. Oikos 64:305–351

    Google Scholar 

  • Saunders RL (1981) Atlantic salmon (Salmo salar) stocks and management implications in the Canadian Atlantic Provinces and New England, USA. Can J Fish Aquat Sci 38:1612–1625

    Google Scholar 

  • Scarnecchia DL (1983) Age at sexual maturity in Icelandic stocks of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 40:1456–1468

    Google Scholar 

  • Schaffer WM, Elson PE (1975) The adaptive significance of variations in life history among local populations of Atlantic salmon in North America. Ecology 56:577–590

    Google Scholar 

  • Scott RJ, Poos MS, Noakes DLG et al (2005) Effects of exotic salmonids on juvenile Atlantic salmon behaviour. Ecol Freshw Fish 14:283–288

    Google Scholar 

  • Siikavuopio SI, Baardvik BM, Jobling M (1996) Domestication effects on fin nipping, survival and growth in hatchery-reared arctic charr, Salvelinus alpinus (L.), in competition with wild conspecfics. Aquacult Res 27:205–211

    Google Scholar 

  • Simon KS, Townsend CR, Biggs BJF et al (2004) Habitat-specific nitrogen dynamics in New Zealand streams containing native or invasive fish. Ecosystems 7:777–792

    CAS  Google Scholar 

  • Snorrason SS, Skulason S, Jonsson B et al (1994) Trophic specialization in Arctic charr Salvelinus alpinus (Pisces: Salmonidae): morphological divergence and ontogenetic shifts. Biol J Linn Soc 52:1–18

    Google Scholar 

  • Southwood TRE (1977) Habitat, the template for ecological strategies. J Anim Ecol 46:337–365

    Google Scholar 

  • Stefansson SO, McGinnity P, Björnsson BT et al (2003) The importance of smolt development to salmon conservation, culture, and management: perspectives from the 6th international workshop on salmonid smoltification. Aquaculture 222:1–14

    Google Scholar 

  • Sundström LF, Petersson E, Johnsson JI et al (2005) Heart rate responses to predation risk in Salmo trutta are affected by the rearing environment. J Fish Biol 67:1280–1286

    Google Scholar 

  • Swain DP, Holtby LB (1989) Differences in morphology and behavior between juvenile coho salmon (Oncorhynchus kisutch) rearing a lake and in its tributary stream. Can J Fish Aquat Sci 46:1406–1414

    Google Scholar 

  • Tallman RF (1986) Genetic differentiation among seasonally distinct spawning populations of chum salmon, Oncorhynchus keta. Aquaculture 57:211–217

    Google Scholar 

  • Taylor EB (1990) Phenotypic correlates of life-history variation in juvenile Chinook salmon, Oncorhynchus tshawytscha. J Anim Ecol 59:455–468

    Google Scholar 

  • Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Atlantic and Pacific salmon. Aquaculture 98:185–207

    Google Scholar 

  • Thodesen J, Gjerde B, Grisdale-Helland B et al (2001) Genetic variation in feed intake, growth and feed utilization in Atlantic salmon (Salmo salar). Aquaculture 194:273–281

    Google Scholar 

  • Thorpe JE (1986) Age at first maturity in Atlantic salmon, Salmo salar: freshwater period influences and conflicts with smolting. Can Spec Publ Fish Aquat Sci 89:7–14

    Google Scholar 

  • Von Cramon-Taubadel N, Ling EN, Cotter D et al (2005) Determination of body shape variation in Irish hatchery-reared and wild Atlantic salmon. J Fish Biol 66:1471–1482

    Google Scholar 

  • Waknitz FW, Iwamoto RN, Strom MS (2003) Interactions of Atlantic salmon in the Pacific Northwest. 4. Impacts on local ecosystems. Fish Res 62:307–328

    Google Scholar 

  • Webb J, Verspoor E, Aubin-Horth N et al (2007) The Atlantic salmon. In: Verspoor E, Stradmeyer L, Nielsen JL (eds) The Atlantic salmon: genetics, conservation and management. Blackwell, Oxford

    Google Scholar 

  • Wertheimer AC, Heard WR, Maselko JM et al (2004) Relationship of size at return with environmental variation, hatchery production, and productivity of wild pink salmon in Prince William Sound, Alaska: does it matter? Rev Fish Biol Fish 14:321–334

    Google Scholar 

  • Wetten M, Aasmundstad T, Kjøglum S et al (2007) Genetic analysis of resistance to infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture 272:111–117

    CAS  Google Scholar 

  • Yang X, Lu X, Lomnès M et al (2010) The G0/G1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab 11:194–205

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bror Jonsson .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Jonsson, B., Jonsson, N. (2011). General Conclusions and Research Tasks. In: Ecology of Atlantic Salmon and Brown Trout. Fish & Fisheries Series, vol 33. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1189-1_12

Download citation

Publish with us

Policies and ethics