Skip to main content

Part of the book series: History of Mechanism and Machine Science ((HMMS,volume 20))

Abstract

The industrial revolution began with reciprocating steam engines as devised by James Watt in 1780, and the 19th century witnessed a rapid expansion in various industrial sectors. Unfortunately, the reciprocating steam engine had several problems because of external combustion and excessive alternating load due to reciprocating masses that limited speeds and capacities. The industry was looking for non-reciprocating systems, purely rotating systems that could usher in an era of socalled “Vibration Free” engines. The dynamics of rotating structures are different from those of stationary structures. Basically, all the vibration phenomena will be valid, however, there are several differences and we have to set up new procedures for handling rotors and their vibratory phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alford, J.: Protecting Turbomachinery from Self Excited Rotor Whirl. J. Engng. Power 87(4), 333 (1965)

    Google Scholar 

  2. Archer, S.: Some Factors influencing the Life of Marine Crankshafts. Trans. Instn. Marine Engineers (1964)

    Google Scholar 

  3. Bhat, R.B., Rao, J.S., Sankar, T.S.: Optimum Journal Bearing Parameters for Minimum Unbalance Response in Synchronous Whirl. J. Mech. Des., ASME 104, 339 (1982)

    Article  Google Scholar 

  4. Black, H.F.: The Effect of Inlet Flow Swirl on the Dynamic Coefficients of High Pressure Annular Clearance Seals. Univ. of Virginia, Charlottesville (1977)

    Google Scholar 

  5. Brown, R.D.: Dynamic Characteristics of Long Annular Seals in Centrifugal Pumps. In: Proceedings 5th International I Mech E Conf. on Vibrations in Rotating Machinery, p. 467 (1992)

    Google Scholar 

  6. Carnegie, W.: Rotary Inertia and Gyroscopic Effects in Overhung Shaft Systems. Bull. Mech. Engng. Educ. 3, 191 (1964)

    Google Scholar 

  7. Carnegie, W., Rao, J.S., Pasricha, M.S.: A Theoretical Study of the Effects of Variable Inertia on the Torsional Vibrations of a Single Cylinder Engine System. In: Presented at Vibration Section of Institution of Marine Engineers, (November 17, 1971)

    Google Scholar 

  8. Childs, D.W.: Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis. Inter Science. Wiley, Chichester (1993)

    Google Scholar 

  9. Childs, D.W., Dressman, J.B.: Testing of Turbulent Seals for Rotordynamic Coefficients. NASA CP, vol. 2250, p. 157 (1982)

    Google Scholar 

  10. Childs, D.W., Wade, J.: Rotordynamic-Coefficient and Leakage Characteristics for Hole-Pattern-Stator Annular Gas Seals – Measurements Versus Predictions. Journal of Tribology, Transactions of the ASME 126, 326 (2004)

    Article  Google Scholar 

  11. Den Hartog, J.P.: Mechanical Vibration. McGraw-Hill Book Co, New York (1940/1956)

    Google Scholar 

  12. Dimarogonas, A.D., Papadopoulos, C.A.: Vibration of Cracked Shafts in Bending. Journal of Sound and Vibration 91(4), 583 (1983)

    Article  MATH  Google Scholar 

  13. Draminsky, P.: Secondary Resonance and Subharmonics in Torsional Vibration. In: Acta Polytechnica, Scandinavia, Copenhagen, vol. 10 (1961)

    Google Scholar 

  14. Dunkerley, S.: On the Whirling of Vibration of Shafts, Philos. In: Philos. Trans. Roy. Soc., Series A, vol. 185, p. 279.(1894)

    Google Scholar 

  15. Ehrich, F.F.: Shaft Whirl Induced by Rotor Internal Damping. Journal of Applied Mechanics 23(1), 109 (1964)

    Google Scholar 

  16. Ehrich, F.F.: Self Excited Vibration, Shock and Vibration Handbook. McGraw-Hill, New York (1987)

    Google Scholar 

  17. Ehrich, F.F.: Handbook of Rotor Dynamics. McGraw-Hill, New York (1992)

    Google Scholar 

  18. Ehrich, F.F.: Nonlinear Phenomena in Dynamic Response of Rotors in Anisotropic Mounting Systems. ASME Special 50th Anniversary Design Issue 117, 154 (1995)

    Google Scholar 

  19. Floquet, G.: Sur les équations différentielles linéaires à coefficients périodiques. Ann. École Norm. Sup. 12, 47 (1883)

    MathSciNet  Google Scholar 

  20. Föppl, O.: Das Problem der Lavalschen Turbinenwelle. Der Civilingenieur 4, 335 (1895)

    Google Scholar 

  21. Föppl, O.: Z. f. gesamte Turb. Wesen 19–18

    Google Scholar 

  22. Föppl, O.: Zeitschrift der VDI, p. 866 (1919)

    Google Scholar 

  23. Gasch, R.: Dynamic Behavior of a Simple Rotor with a Cross-Sectional Crack. In: Proc. I Mech. E Conf. Vibrations in Rotating Machinery, p. 123. Cambridge (1976) C178/76

    Google Scholar 

  24. Gasch, R., Pfutzner, H.: Rotordynamik, Springer Verlag (1975)

    Google Scholar 

  25. Gibbons, C.B.: Coupling Misalignment Forces. In: Proceedings Fifth Turbomachinery Symposium, pp. 111–116. Texas A&M University, Gas Turbine Laboratories (1976)

    Google Scholar 

  26. Goldsborough, G.R.: Torsional Vibration in Reciprocating Engine Shafts. Proc. Roy. Soc. 109, 99 (1925)

    Article  Google Scholar 

  27. Goldsborough, G.R.: The Properties of Torsional Vibration in Reciprocating Engine Shafts. Proc. Roy. Soc. 113, 259 (1926)

    Article  Google Scholar 

  28. Green, R.: Gyroscopic Effects of the Critical Speeds of Flexible Rotors. Journal Applied Mechanics 15, 369 (1948)

    Google Scholar 

  29. Gümbel, Dinglers Polytechnic Journal, p. 235 (1917)

    Google Scholar 

  30. Gümbel, Dinglers Polytechnic Journal, p. 71 (1918)

    Google Scholar 

  31. Gunter, E.J.: Dynamic Stability of Rotor Bearing System. NASA report SP 113 (1966)

    Google Scholar 

  32. Harris, C.M., Crede, C.E.: Shock and Vibration Handbook. McGraw-Hill, New York (1981)

    Google Scholar 

  33. Holzer, H.: Die Berechnung der Drehschwingungen. Springer, Heidelberg (1921)

    MATH  Google Scholar 

  34. Holzer, H.: Tabular Method for Torsional Vibration Analysis of Multiple-Rotor ShSft systems. Machine Design, 141 (1922)

    Google Scholar 

  35. Iwatsubo, T.: Vibration of Asymmetric Shaft. JSME 37, 1503 (1971)

    Google Scholar 

  36. Iwatsubo, T., Sheng, B.C., Matsumoto, T.: An Experimental Study on the Static and Dynamic Characteristics of Pump Annular Seals. NASA CP 3026, 229 (1988)

    Google Scholar 

  37. Jeffcott, H.H.: The Lateral Vibration of Loaded Shafts in the Neighborhood of a Whirling Speed – The Effect of Want of Balance. In: Philos. Mag.. 6, vol. 37, p. 304 (1919)

    Google Scholar 

  38. Kimball, A.L.: Internal Friction Theory of Shaft Whipping. General Electric Review 27, 244 (1924)

    Google Scholar 

  39. Klompas, N.: Nature of Vibratory Waves in Bladed Disks. 2001-GT 0291 (2001)

    Google Scholar 

  40. Krämer, E.: Dynamics of Rotors and Foundations. Springer, Berlin (1993)

    Google Scholar 

  41. Kutta, W.: Beiträge zur näherungsweisen Integration totaler Differentialgleichungen, Ph. D. Thesis, University of Munich (1900)

    Google Scholar 

  42. Lee, Y.S.: Modeling and Vibration Analysis of Misaligned Rotor-Ball Bearing Systems, Ph.D. Thesis, KAIST, Korea (1998)

    Google Scholar 

  43. Lomakin, A.A.: Feed Pumps of the SWP-220-280 Type with Ultra-High Operating Data. Energomashinotroenie 2 (1955)

    Google Scholar 

  44. Lomakin, A.A.: Calculation of Critical Speeds and Securing of the Dynamic Stability of Hydraulic High-Pressure Machines with Reference of the Forces Arising in the Gap Seals. Energomashinotroenie 4(1) (1958)

    Google Scholar 

  45. Lund, J.W.: Rotor Bearing Dynamic Design Technology, Part III: Design Handbook for Fluid Film Bearings. In: Part V: Computer Program for Unbalance Response and Stability, vol. 45, Mechanical Technology Inc (1965) AFAPL-Tr-65-45.

    Google Scholar 

  46. Lund, J.W.: Stability and Damped Critical Speeds of a Flexible Rotor in Fluid Film Bearings. Journal of Engineering for Industry, Trans. ASME 92, 509 (1974)

    Article  Google Scholar 

  47. Mathieu, E.: Mémoire sur le Mouvement Vibratoire d’une Membrane de forme Elliptique. In: Journal des Mathématique Pures et Appliquées, p. 137 (1868)

    Google Scholar 

  48. Mayes, I.W., Davies, W.G.R.: The Vibrational Behavior of A Rotating Shaft System Containing A Transverse Crack. In: Proceedings I Mech. E Conf. Vibrations in Rotating Machinery, vol. C168/76, p. 53. Cambridge (1976)

    Google Scholar 

  49. Mayes, I.W., Davies, W.G.R.: A Method of Calculating Vibrational Behavior of Coupled Rotating Shafts Containing a Transverse Crack. Proceedings I Mech. E Conf. Vibrations in Rotating Machinery C254/80, 18 (1980)

    Google Scholar 

  50. Mayes, I.W., Davies, W.G.R.: Analysis of the Response of a Multi-Rotor-Bearing System Containing a Transverse Crack in a Rotor. Journal Vib. Acoust. Stress and Rel. in Des. 106, 139 (1984)

    Google Scholar 

  51. McLachlan, N.W.: Theory and Application of Mathieu Functions, Dover (1962)

    Google Scholar 

  52. Morrison, D., Peterson, A.N.: Criteria for Unstable Oil Whirl of Flexible Rotor. In: Proc. I Mech E, vol. 179(3J), p. 45 (1964)

    Google Scholar 

  53. Morton, P.G.: Influence of Coupled Asymmetric Bearings on the Motion of a Massive Flexible Rotor. Proc. Inst. Mech. Engrs. 182(13), 255 (1967)

    Article  Google Scholar 

  54. Nataraj, C., Nelson, H.D.: The Dynamics of a Rotor System with a Cracked Shaft. Journal Vib. Acoustic. Stress and Rel. in Des. 108, 189 (1986)

    Google Scholar 

  55. Newkirk, B.L.: Shaft Whipping. General Electric Review 27, 169 (1924)

    Google Scholar 

  56. Newkirk, B.L., Taylor, H.D.: Oil Film Whirl – An Investigation of Disturbances on Oil Film in Journal Bearings. General Electric Review 28, 559 (1925)

    Google Scholar 

  57. Nordmann, R., Dietzen, F.J.: Finite-Difference Analysis of Rotor dynamic Seal Coefficients for An Eccentric Shaft Position. In: Proceedings Vibrations in Rotating Machinery Conf. I. Mech. E., p. 379 (1988)

    Google Scholar 

  58. Nordmann, R., Massman, H.: Identification of Dynamic Coefficients of Annular Turbulent Seals. NASA, 295 (1984)

    Google Scholar 

  59. Ocvirk, F.W.: Short Bearing Approximation for Full Journal Bearings. NASA TN 2808 (1952)

    Google Scholar 

  60. Oravsky, V., Rao, J.S.: Dynamic Characteristics of Two Different Systems with Variable Inertia controlled by Same Equations. In: Proceedings I Mech. E Conference Transactions, Sixth Intl. Conf. on Vibrations in Rotating Machinery, p. 609. Oxford (1996)

    Google Scholar 

  61. Petroff, N.: Reibung in Maschinen und Wirkung des Schmiermittels. Original Russisch, Neue Theorie der Reibung, Leipzig 1887 (1883)

    Google Scholar 

  62. Pinkus, O., Sternlicht, B.: Theory of Hydrodynamic Lubrication. McGraw-Hill, New York (1961)

    MATH  Google Scholar 

  63. Prandtl, L.: Beitrage zur Frage der Kritischen Drehzahlen. In: Dinglers Polytechnic Journal, p. 179 (1918)

    Google Scholar 

  64. Rankine, W.J.M.: On the Centrifugal Force of Rotating Shafts. Engineer 27, 249 (1869)

    Google Scholar 

  65. Rao, J.S.: Synchronous Whirl of a Flexible Rotor in Hydrodynamic Bearings. Mechanism and Machine Theory 17(2), 143 (1982)

    Article  Google Scholar 

  66. Rao, J.S.: Rotor Dynamics. John Wiley & Sons, New Age International, Chichester (1983)

    Google Scholar 

  67. Rao, J.S.: Instability of Rotors in Fluid Film Bearings. ASME J. Vib. Acoustic. Stress Rel. Des. 105, 274 (1983)

    Google Scholar 

  68. Rao, J.S.: Instability of Rotors Mounted on Fluid Film Bearings with a Negative Cross-Coupled Stiffness Coefficient. Mechanism and Machine Theory 20(3), 181 (1985)

    Article  Google Scholar 

  69. Rao, J.S.: Advanced Theory of Vibration. John Wiley & Sons, Chichester (1992)

    Google Scholar 

  70. Rao, J.S.: A Note on Quality Factor of Rotor with Hydrodynamic Bearings. Journal of Engineering for Gas Turbines and Power, Trans. ASME 115, 261 (1993)

    Article  Google Scholar 

  71. Rao, J.S., Raju, R.J., Reddy, K.B.V.: Experimental Investigation on Oil Whip of Flexible Rotors. Tribology, 100 (1970)

    Google Scholar 

  72. Rao, J.S., Saravana, M.: Numerical Simulation of Seal Flow and Determination of Stiffness and Damping Coefficients. In: Proceedings 7th IFToMM-Conference on Rotor Dynamics, Vienna, Austria, pp. 25–28 (2006)

    Google Scholar 

  73. Rao, J.S., Sharma, M.: Dynamic Analysis of Bowed Rotors, Advances in Vibration Engineering. Journal of Vibration Institute of India 2(2), 128 (2003)

    Google Scholar 

  74. Rao, J.S., Sreenivas, R.: Dynamic Analysis of Misaligned Rotor Systems, Advances in Vibration Engineering. Journal of Vib Institute of India 2(1), 1 (2003)

    Google Scholar 

  75. Rao, J.S., Sreenivas, R., George, P.: Dynamics of High Speed Cryo Pump Rotors. Proceedings 8th International I Mech E Conference on Vibrations in Rotating Machinery,C623/103 467 (2004)

    Google Scholar 

  76. Rayleigh, J.W.S.: Theory of Sound. Macmillan, London (1877)

    Google Scholar 

  77. Reynolds, O.: On the Theory of Lubrication and its Application to Mr. Beauchamp Tower’s Experiments. Philos. Trans. Royal Society 1, 177 (1886)

    Google Scholar 

  78. Robertson, D.: Whirling of Journal in Sleeve Bearings. Philos. Mag. 15, 113 (1933)

    Google Scholar 

  79. Scarborough, J.B.: Numerical Mathematical Analysis. Johns Hopkins Press (1950)

    Google Scholar 

  80. Schmied, J., Krämer, E.: Vibrational Behavior of a Rotor with a Cross-sectional Crack. In: Proc. I Mech. E Conf. Vibrations in Rotating Machinery, Edinburgh, vol. 84, p. 183 (1984) C279/84

    Google Scholar 

  81. Sommerfeld, O.Z.: Math. Phys., vol. 50, p. 97 (1904)

    Google Scholar 

  82. Stodola, A.: Dampf- und Gasturbinen, Springer, Berlin. Translation, Steam and Gas Turbines, McGraw-Hill (1910)

    Google Scholar 

  83. Stodola, A.: Schweiz Bauztg., 69th edn., pp. 93–229 (1917)

    Google Scholar 

  84. Stodola, A.: Dinglers Polytechnic Journal, pp. 1, 17, 117 and 135 (1918a)

    Google Scholar 

  85. Stodola, A.: Dinglers Polytechnic Journal, p. 182 (1918b)

    Google Scholar 

  86. Subbaiah, R., Bhat, R.B., Sankar, T.S., Rao, J.S.: Backward Whirl in a Simple Rotor Supported on Hydrodynamic Bearings, NASA Conf. Publication 2409, p. 145 (1985)

    Google Scholar 

  87. Taylor, H.D.: Critical Speed Behavior of Unsymmetrical Shafts. ASME Journal of Applied Mechanics 84, 77 (1945)

    Google Scholar 

  88. Thomas, H.: Instabile Eigenschwingungen von Turbinenläufern angefacht durch die Spaltströmungen Stopfbuschen und Beschauflungen. Bulletin de l’AIM 71, 1039 (1958)

    Google Scholar 

  89. Thomson, W.T.: Matrix Solution of Vibration of Non-Uniform Beams. ASME Paper 49A-11 (1949)

    Google Scholar 

  90. Timoshenko, S.P.: Vibration Problems in Engineering. D. Van Nostrand Co. Inc. D. Van Nostrand Co. Inc (1955)

    Google Scholar 

  91. Tondl, A.: Some Problems of Rotordynamics, Chapman and Hall (1965)

    Google Scholar 

  92. Tower, B.: First Report on Friction Experiments (Friction of Lubricated Bearings). In: Proc. Instn. of Mech. Engrs, p. 632 (1883)

    Google Scholar 

  93. Urlichs, K.: Leakage Flow in Thermal Turbomachines as the Origin of Vibration Exciting Lateral Forces. NASA TT F 17409 (1976)

    Google Scholar 

  94. Vanderplaats, G.N.: Structural Optimization by Methods of Feasible Directions, Computers and Structures, vol. Computers and Structures 3, 739 (1973)

    Article  Google Scholar 

  95. Whittaker, E.T.: On the General Solution of Mathieu’s Equation. Proc. Edinburgh Math. Soc. 32, 75 (1914)

    Article  Google Scholar 

  96. Wohlrab, R.: Experimentelle Ermittlung Spaltsströmungsbedingter Kräfte an Turbinenstufen und Deren Einfluss auf die Laufstabilität Einfacher Rotoren, Doctoral Thesis. In: Technical University, Munich. (1975)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Rao, J.S. (2011). Rotor Dynamics Methods. In: History of Rotating Machinery Dynamics. History of Mechanism and Machine Science, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1165-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-1165-5_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-1164-8

  • Online ISBN: 978-94-007-1165-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics