Skip to main content

Model Core Potentials in the First Decade of the XXI Century

  • Chapter
  • First Online:
  • 2356 Accesses

Abstract

During the past decade the method of model core potential has undergone a period of dynamic development and applications, which ranged from atomic to protein-scale studies. Incorporation of the relativistic effects became the centre of the model core potential development and the accuracy and applicability of this method were greatly increased. A breakthrough on this front of research was the development of the model core potential that can account for the spin-orbit coupling effect. In the present chapter we review the theoretical foundations of the pseudopotential approach to the molecular electronic structure. We then provide an overview of the model core potential method as well as its development and applications in the first decade of this century. A perspective on the future of this method is also given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    More generally, Γ-S, where Γ denotes the irreducible representation of the spatial wave function in the point symmetry group of the molecule; throught the chapter, we use L-S as more conventional although Γ-S is what is meant.

References

  1. Klobukowski M, Huzinaga S, Sakai Y (1999) Model core potentials: theory and applications. In: Leszczynski J (eds) Computational chemistry: reviews of current trends, vol 3. World Scientific, Singapore, p 49

    Chapter  Google Scholar 

  2. Cotton FA, Wilkinson GFRS (1972) Advanced inorganic chemistry: a comprehensive text, 3rd edn. Interscience Publishers, New York

    Google Scholar 

  3. Huzinaga S, Cantu AA (1971) J Chem Phys 55:5543

    Article  CAS  Google Scholar 

  4. Huzinaga S, McWilliams D, Cantu AA (1973) Adv Quantum Chem 7:187

    Article  CAS  Google Scholar 

  5. Hellmann H (1934) Comput Rend Acd Sci URSS 3:444

    Google Scholar 

  6. Hellmann H (1935) J Chem Phys 3:61

    Article  Google Scholar 

  7. Combas P (1935) Z Phys 94:473 8

    Google Scholar 

  8. Cao X, Dolg M (2006) Coordin Chem Rev 250:900

    Article  CAS  Google Scholar 

  9. Lee YS, Ermler WC, Pitzer KS (1977) J Chem Phys 67:5861

    Article  CAS  Google Scholar 

  10. Pitzer RM, Winter NW (1988) J Phys Chem 92:3061

    Article  CAS  Google Scholar 

  11. Frenking G, Antes I, Böhme M, Dapprich S, Ehlers AW, Jonas V, Neuhaus A, Otto M, Stegmann R, Veldkamp A, Vyboishchikov SF (1996) Pseudopotential calculations of transition metal compounds – scope and limitations. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8, VCH Publishers, New York, p 63

    Google Scholar 

  12. Cundari TR, Benson MT, Lutz ML, Sommerer SO (1996) Effective core potential approaches to the chemistry of the heavier elements. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 8. VCH Publishers, New York, p 145

    Google Scholar 

  13. Krauss M, Stevens WJ (1984) Annu Rev Phys Chem 35:357

    Article  CAS  Google Scholar 

  14. Hülsen M, Weigand A, Dolg M (2009) Theor Chem Acc 122:23

    Article  Google Scholar 

  15. Kahn LR, Hay PJ, Cowan RD (1978) J Chem Phys 68:2386

    Article  CAS  Google Scholar 

  16. Figgen D, Peterson KA, Stoll H (2008) J Chem Phys 128:034110

    Article  PubMed  Google Scholar 

  17. Dyall KG, Faegri JK (2007) Introduction to relativistic quantum chemistry. Oxford University Press, New York

    Book  Google Scholar 

  18. Stevens WJ, Krauss M, Basch H, Jasien PG (1991) Can J Chem 70:612

    Article  Google Scholar 

  19. Dolg M, Cao X (2004) The relativistic energy-consistent ab initio pseudopotential approach and its application to lanthanide and actinide compounds. In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory. World Scientific, Singapore, p 1

    Google Scholar 

  20. Phillips JC, Kleinman L (1959) Phys Rev 116:287

    Article  CAS  Google Scholar 

  21. Weeks JD, Rice SA (1968) J Chem Phys 49:2741

    Article  CAS  Google Scholar 

  22. Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260

    Article  CAS  Google Scholar 

  23. Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227

    Article  CAS  Google Scholar 

  24. Zeng T, Klobukowski M (2009) J Chem Phys 130:204107

    Article  PubMed  Google Scholar 

  25. Teichteil C, Malrieux JP, Barthelat JC (1977) Mol Phys 33:181

    Article  CAS  Google Scholar 

  26. Pittel B, Schwarz WHE (1977) Chem Phys Lett 46:121

    Article  CAS  Google Scholar 

  27. Klobukowski M (1990) Chem Phys Lett 172:361

    Article  CAS  Google Scholar 

  28. Seijo L, Barandiarán Z, Huzinaga S (1992) Chem Phys Lett 192:217

    Article  CAS  Google Scholar 

  29. Dolg M (1996) Chem Phys Lett 250:75

    Article  CAS  Google Scholar 

  30. Dolg M (1996) J Chem Phys 104:4061

    Article  CAS  Google Scholar 

  31. Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover Publications, Mineola

    Google Scholar 

  32. Hafner P, Schwarz WHE (1978) J Phys B 11:217

    Article  CAS  Google Scholar 

  33. Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123

    Article  CAS  Google Scholar 

  34. Schwerdtfeger P, Dolg M, Schwarz W, Bowmaker G, Boyd P (1989) J Chem Phys 91:1762

    Article  CAS  Google Scholar 

  35. Fuentealba P, Stoll H, Szentpaly LV, Schwerdtfeger P, Preuss H (1983) J Phys B 16:L323

    Article  CAS  Google Scholar 

  36. Stoll H, Metz B, Dolg M (2002) J Comput Chem 23:767

    Article  CAS  PubMed  Google Scholar 

  37. Ermler WC, Lee YS, Christiansen PA, Pitzer KS (1981) Chem Phys Lett 81:70

    Article  CAS  Google Scholar 

  38. Yabushita S, Zhang Z, Pitzer RM (1999) J Phys Chem A 103:5791

    Article  CAS  Google Scholar 

  39. Grundström B, Valberg P (1938) Z Phys 108:326

    Article  Google Scholar 

  40. Urban R-D, Bahnmaier AH, Magg U, Jones H (1989) Chem Phys Lett 158:443

    Article  CAS  Google Scholar 

  41. Petrov AN, Mosyagin NS, Titov AV, Tupitsyn II (2004) J Phys B 37:4621

    Article  CAS  Google Scholar 

  42. Isaev TA, Mosyagin NS, Titov AV, Alekseyev AB, Buenker RJ (2002) Int J Quantum Chem 88:687

    Article  CAS  Google Scholar 

  43. Titov AV, Mosyagin NS (2000) Russ J Phys Chem 74:S376

    Google Scholar 

  44. Titov AV, Mosyagin NS (1999) Int J Quantum Chem 71:359

    Article  Google Scholar 

  45. Titov AV, Mosyagin NS, Alekseyev AB, Buenker RJ (2001) Int J Quantum Chem 81:409

    Article  CAS  Google Scholar 

  46. Mosyagin NS, Titov AV, Latajka Z (1997) Int J Quantum Chem 63:1107

    Article  CAS  Google Scholar 

  47. Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563

    Article  CAS  Google Scholar 

  48. Han Y-K, Bae C, Lee YS (1999) J Chem Phys 110:9353

    Article  CAS  Google Scholar 

  49. Lim IS, Stoll H, Schwerdtfeger P (2006) J Chem Phys 124:034107

    Article  PubMed  Google Scholar 

  50. Figgen D, Wedig A, Stoll H, Dolg M, Eliav E, Kaldor U (2008) J Chem Phys 128:024106

    Article  PubMed  Google Scholar 

  51. Peterson KA, Figgen D, Dolg M, Stoll H (2007) J Chem Phys 126:124101

    Article  PubMed  Google Scholar 

  52. Metz B, Schweizer M, Stoll H, Dolg M, Liu W (2000) Theor Chem Acc 104:22

    Article  CAS  Google Scholar 

  53. Huzinaga S (1994) Can J Chem 73:619

    Article  Google Scholar 

  54. Bonifacic V, Huzinaga S (1974) J Chem Phys 60:2779

    Article  CAS  Google Scholar 

  55. Bonifacic V, Huzinaga S (1975) J Chem Phys 62:1507

    Article  CAS  Google Scholar 

  56. Bonifacic V, Huzinaga S (1975) J Chem Phys 62:1509

    Article  CAS  Google Scholar 

  57. Bonifacic V, Huzinaga S (1976) J Chem Phys 64:956

    Article  CAS  Google Scholar 

  58. Bonifacic V, Huzinaga S (1976) J Chem Phys 65:2322

    Article  CAS  Google Scholar 

  59. Höjer G, Chung J (1978) Int J Quantum Chem 14:1978

    Google Scholar 

  60. Zeng T (2010) Development and applications of model core potentials for the studies of spin-orbit effects in chemistry. Ph.D thesis, University of Alberta

    Google Scholar 

  61. Krause D, Klobukowski M (1996) Can J Chem 74:1248

    Article  CAS  Google Scholar 

  62. Lovallo CC, Klobukowski M (2003) J Comput Chem 24:1009

    Article  CAS  PubMed  Google Scholar 

  63. Parr RG, Yang W (1994) Density-functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  64. Kohn W, Sham LJ (1965) Phys Rev 140:A1133

    Article  Google Scholar 

  65. Bachelet GB, Hamann DR, Schlüter M (1982) Phys Rev B 26:4199

    Article  CAS  Google Scholar 

  66. Kleinman L, Bylander DM (1982) Phys Rev Lett 48:1425

    Article  CAS  Google Scholar 

  67. Hamann DR (1989) Phys Rev B 40:2980

    Article  CAS  Google Scholar 

  68. Troullier N, Martins JL (1991) Phys Rev B 43:1993

    Article  CAS  Google Scholar 

  69. Slater JC (1951) Phys Rev 81:385

    Article  CAS  Google Scholar 

  70. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:226

    Article  CAS  Google Scholar 

  71. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1987) J Comput Chem 8:256

    Article  CAS  Google Scholar 

  72. Sakai Y, Miyoshi E, Klobukowski M, Huzinaga S (1997) J Chem Phys 106:8084

    Article  CAS  Google Scholar 

  73. Miyoshi E, Sakai Y, Tanaka K, Masamura M (1998) J Mol Struct (Theochem) 451:73

    Article  CAS  Google Scholar 

  74. Ordejón B, Seijo L, Barandiarán Z (2007) J Chem Phys 126:194712

    Article  PubMed  Google Scholar 

  75. Diaz-Megias S, Seijo L (1999) Chem Phys Lett 299:613

    Article  CAS  Google Scholar 

  76. Gracia J, Seijo L, Barandiarán Z, Curulla D, Niemansverdriet H, van Gennip W (2007) J Lumin 128:1248

    Article  Google Scholar 

  77. Seijo L, Barandiarán Z, Harguindey E (2001) J Chem Phys 114:118

    Article  CAS  Google Scholar 

  78. Huzinaga S, Seijo L, Barandiarán Z, Klobukowski M (1987) J Chem Phys 86:2132

    Article  CAS  Google Scholar 

  79. Seijo L, Barandiarán Z (1999) The ab initio model potential method: a common strategy for effective core potential and embedded cluster calculations. In: Leszczynski J (ed) Computational chemistry: reviews of current trends, vol 4. World Scientific, Singapore, p 55

    Chapter  Google Scholar 

  80. Seijo L (1995) J Chem Phys 102:8078

    Article  CAS  Google Scholar 

  81. Tanner PA, Mak CSK, Edelstein NM, Murdoch KM, Liu G, Huang J, Seijo L, Barandiarán Z (2003) J Am Chem Soc 125:13225

    Article  CAS  PubMed  Google Scholar 

  82. Casarrubios M, Seijo L (1998) J Mol Struct (Theochem) 426:59

    Article  CAS  Google Scholar 

  83. Ruipérez F, Roos BO, Barandiarán Z, Seijo L (2007) Chem Phys Lett 434:1

    Article  Google Scholar 

  84. Ordejón B, Karbowiak M, Seijo L, Barandiarán Z (2006) J Chem Phys 125:074511

    Article  PubMed  Google Scholar 

  85. Katsuki S, Huzinaga S (1988) Chem Phys Lett 152:203

    Article  CAS  Google Scholar 

  86. Brent P (1973) Algorithms for minimization without derivatives. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  87. Huzinaga S, Klobukowski M (1988) J Mol Struct (Theochem) 44:1

    Article  CAS  Google Scholar 

  88. Mane JY, Klobukowski M (2001) J Mol Struct (Theochem) 547:163

    Article  CAS  Google Scholar 

  89. Mane JY, Klobukowski M (2004) Theor Chem Acc 112:33

    Article  CAS  Google Scholar 

  90. Lovallo CC, Klobukowski M (2003) Chem Phys Lett 373:439

    Article  CAS  Google Scholar 

  91. Lovallo CC, Klobukowski M (2004) J Chem Phys 120:246

    Article  CAS  PubMed  Google Scholar 

  92. Lovallo CC, Klobukowski M (2003) Chem Phys Lett 368:589

    Article  CAS  Google Scholar 

  93. Lovallo CC, Klobukowski M (2004) J Comput Chem 25:1206

    Article  CAS  PubMed  Google Scholar 

  94. Jayatilaka D, Amos RD, Koga N (1989) Chem Phys Lett 163:151

    Article  CAS  Google Scholar 

  95. CADPAC: The Cambridge Analytic Derivatives Package Issue 6, Cambridge, 1995. A suite of quantum chemistry programs developed by Amos RD with contributions from Alberts IL, Andrews JS, Colwell SM, Handy NC, Jayatilaka D, Knowles PJ, Kobayashi R, Laidig KE, Laming G, Lee AM, Maslen PE, Murray CW, Rice JE, Simandiras ED, Jones AJ, Su M-D, Tozer DJ.

    Google Scholar 

  96. Miyoshi E, Sakai Y, Osanai Y, Noro T (2004) Recent developments and relativistic model core potential method. In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory. World Scientific, Singapore, p 37

    Chapter  Google Scholar 

  97. Miyoshi E, Hori H, Hirayama R, Osanai Y, Noro T, Honda H, Klobukowski M (2005) J Chem Phys 122:074104

    Article  PubMed  Google Scholar 

  98. Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142

    Article  CAS  Google Scholar 

  99. Noro T, Sekiya M, Koga T (1997) Theor Chem Acc 98:25

    Article  CAS  Google Scholar 

  100. Noro T, Sekiya M, Koga T, Matsuyama H (2000) Theor Chem Acc 104:146

    Article  CAS  Google Scholar 

  101. Sekiya M, Noro T, Osanai Y, Koga T (2001) Theor Chim Acta 106:297

    Article  CAS  Google Scholar 

  102. Osanai Y, Sekiya M, Noro T, Koga T (2003) Mol Phys 101:65

    Article  CAS  Google Scholar 

  103. Noro T, Sekiya M, Koga T (2003) Theor Chim Acta 109:85

    Article  CAS  Google Scholar 

  104. Osanai Y, Noro T, Miyoshi E, Sekiya M, Koga T (2004) J Chem Phys 120:6408

    Article  CAS  PubMed  Google Scholar 

  105. Osanai Y, Noro T, Miyoshi E (2002) J Chem Phys 117:9623

    Article  CAS  Google Scholar 

  106. Anjima H, Tsukamoto S, Mori H, Mine M, Klobukowski M, Miyoshi E (2007) J Comput Chem 28:2424

    Article  CAS  PubMed  Google Scholar 

  107. Osanai Y, Mon MS, Noro T, Mori H, Nakashima H, Klobukowski M, Miyoshi E (2008) Chem Phys Lett 452:210

    Article  CAS  Google Scholar 

  108. Osanai Y, Seijima E, Noro T, Mori H, Ma San M, Klobukowski M, Miyoshi E (2008) Chem Phys Lett 463:230

    Google Scholar 

  109. Mori H, Ueno-Noto K, Osanai Y, Noro T, Fujiwara T, Klobukowski M, Miyoshi E (2009) Chem Phys Lett 476:317

    Article  CAS  Google Scholar 

  110. Sakai Y, Miyoshi E, Tatewaki H (1998) J Mol Struct (Theochem) 451:143

    Article  CAS  Google Scholar 

  111. Dunning TH (1989) J Chem Phys 90:1007

    Article  CAS  Google Scholar 

  112. Woon DE, Dunning TH (1993) J Chem Phys 98:1358

    Article  CAS  Google Scholar 

  113. Woon DE, Dunning TH (1994) J Chem Phys 100:2975

    Article  CAS  Google Scholar 

  114. Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110:7667

    Article  CAS  Google Scholar 

  115. Ishikawa T, Mochizuki Y, Nakano T, Amari S, Mori H, Honda H, Fujita T, Tokiwa H, Tanaka S, Komeiji Y, Fukuzawa K, Tanaka K, Miyoshi E (2006) Chem Phys Lett 427:159

    Article  CAS  Google Scholar 

  116. Desclaux JP, Pyykkö P (1980) Recherche 11:592

    CAS  Google Scholar 

  117. Pyykkö P (1988) Chem Rev 88:563

    Article  Google Scholar 

  118. Pyykkö P, Desclaux JP (1979) Acc Chem Res 12:276

    Article  Google Scholar 

  119. Pyykkö P, Desclaux JP (1981) Comput Rend Acd Sci 292:1513

    Google Scholar 

  120. Darwin CG (1928) Proc R Soc A 118:654

    CAS  Google Scholar 

  121. Norrby L (1991) J Chem Educ 68:110

    Article  CAS  Google Scholar 

  122. Pyykkö P (2004) Angew Chem Int Ed 43:4412

    Article  Google Scholar 

  123. Pyykkö P (2005) Inorg Chim Acta 358:4113

    Article  Google Scholar 

  124. Pyykkö P (2008) Chem Soc Rev 37:1967

    Article  PubMed  Google Scholar 

  125. Schwerdtfeger P, Heath GA, Dolg M, Bennet MA (1992) J Am Chem Soc 114:7518

    Article  CAS  Google Scholar 

  126. Visscher L (1996) Chem Phys Lett 253:20

    Article  CAS  Google Scholar 

  127. Fedorov DG, Gordon MS (2002) Symmetry in spin-orbit coupling. In: Hoffmann MR, Dyall KG (eds) Low-lying potential energy surfaces. ACS symposium series, vol 828. American Chemical Society, Washington, pp 276–297

    Google Scholar 

  128. Blume M, Watson RE (1962) Proc R Soc A 270:127

    CAS  Google Scholar 

  129. Blume M, Watson RE (1963) Proc R Soc A 271:565

    CAS  Google Scholar 

  130. Blume M, Freeman AJ, Watson RE (1964) Phys Rev 134:A320

    Article  Google Scholar 

  131. Richards WG, Trivedi HP, Cooper DL (1981) Spin-orbit coupling in molecules. Clarendon, Oxford

    Google Scholar 

  132. Hess BA, Marian CM, Peyerimhoff SD (1995) Ab initio calculation of spin-orbit effects in molecules including electron correlation. In: Yarkony DR (ed) Modern electronic structure theory, vol I. World Scientific, Singapore, p 152

    Chapter  Google Scholar 

  133. Marian CM (2001) Spin-orbit coupling in molecules. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 17. WILEY-VCH, New York, p 99

    Chapter  Google Scholar 

  134. Fedorov DG, Koseki S, Schmidt MW, Gordon MS (2003) Int Rev Phys Chem 22:551

    Article  CAS  Google Scholar 

  135. Marian CM (1997) Fine and hyperfine structure: spin properties of molecules. In: Wilson S, Diercksen GHF (eds) Problem solving in computational molecular science. Kluwer Academic Publishers, Dordrecht/Boston, p 291

    Chapter  Google Scholar 

  136. Juncar P, Pinard J, Hamon J, Chartier A (1981) Metrolagia 17:77

    Article  CAS  Google Scholar 

  137. Kutateladze AG (2001) J Am Chem Soc 123:9279

    Article  CAS  PubMed  Google Scholar 

  138. Bernath PF (1995) Spectra of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  139. Dirac PAM (1928) Proc R Soc A 117:610

    Google Scholar 

  140. Dirac PAM (1928) Proc R Soc A 118:351

    CAS  Google Scholar 

  141. Breit G (1929) Phys Rev 34:553

    Article  CAS  Google Scholar 

  142. Douglas M, Kroll NM (1974) Ann Phys 82:89

    Article  CAS  Google Scholar 

  143. Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010

    Article  CAS  Google Scholar 

  144. Wood JH, Boring AM (1978) Phys Rev B 18:2701

    Article  CAS  Google Scholar 

  145. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99:4597

    Article  Google Scholar 

  146. van Lenthe E, Baerends EJ, Snijders JG (1994) J Chem Phys 101:9783

    Article  Google Scholar 

  147. van Lenthe E, Ehlers AE, Baerends EJ (1999) J Chem Phys 110:8943

    Article  Google Scholar 

  148. Dyall KG, van Lenthe E (1999) J Chem Phys 111:1366

    Article  CAS  Google Scholar 

  149. Sadlej AJ (2005) Collect Czech Chem Commun 70:677

    Article  CAS  Google Scholar 

  150. Nakajima T, Hirao K (1999) Chem Phys Lett 302:383

    Article  CAS  Google Scholar 

  151. Dyall KG (2002) J Comput Chem 23:786

    Article  CAS  PubMed  Google Scholar 

  152. Barysz M, Sadlej AJ (2001) J Mol Struct (Theochem) 573:181

    Article  CAS  Google Scholar 

  153. Barysz M, Sadlej AJ (2002) J Chem Phys 116:2696

    Article  CAS  Google Scholar 

  154. Moss RE (1973) Advanced molecular quantum mechanics. Chapman and Hall, London

    Book  Google Scholar 

  155. Balasubramanian K (1997) Relativistic effects in chemistry part A. Wiley, New York

    Google Scholar 

  156. Reiher M, Wolf A (2009) Relativistic quantum chemistry, the fundamental theory of molecular science. Wiley-VCH, Weinheim

    Book  Google Scholar 

  157. Klobukowski M (1983) J Comput Chem 4:350

    Article  CAS  Google Scholar 

  158. Sakai Y, Huzinaga S (1982) J Chem Phys 76:2537

    Article  CAS  Google Scholar 

  159. Froese-Fischer C (1977) The Hartree-Fock method for atoms: a numerical approach. Wiley-VCH, New York

    Google Scholar 

  160. Huzinaga S, Klobukowski M, Sakai Y (1984) J Phys Chem 88:4880

    Article  CAS  Google Scholar 

  161. Miyoshi E, Sakai Y, Mori S (1985) Chem Phys Lett 113:457

    Article  CAS  Google Scholar 

  162. Miyoshi E, Sakai Y, Mori S (1985) Surf Sci 158:667

    Article  CAS  Google Scholar 

  163. Andzelm J, Radzio E, Salahub DR (1985) J Chem Phys 83:4573

    Article  CAS  Google Scholar 

  164. Andzelm J, Huzinaga S, Klobukowski M, Radzio E (1985) Chem Phys 100:1

    Article  CAS  Google Scholar 

  165. Sakai Y, Miyoshi E (1987) J Chem Phys 87:2885

    Article  CAS  Google Scholar 

  166. Miyoshi E, Sakai Y (1988) J Comput Chem 9:719

    Article  CAS  Google Scholar 

  167. Musolino V, Toscano M, Russo N (1990) J Comput Chem 11:924

    Article  CAS  Google Scholar 

  168. Seijo L, Barandiarán Z, Huzinaga S (1989) J Chem Phys 91:7011

    Article  CAS  Google Scholar 

  169. Barandiarán Z, Seijo L, Huzinaga S (1990) J Chem Phys 93:5843

    Article  Google Scholar 

  170. Barysz M (2000) J Chem Phys 113:4003

    Article  CAS  Google Scholar 

  171. Wolf A, Reiher M, Hess BA (2002) J Chem Phys 117:9215

    Article  CAS  Google Scholar 

  172. Brummelhuis R, Siedentop H, Stockmeyer E (2002) Doc Math 7:167

    Article  Google Scholar 

  173. Autschbach J, Siekierski S, Seth M, Schwerdtfeger P, Schwarz WHE (2002) J Comput Chem 23:804

    Article  CAS  PubMed  Google Scholar 

  174. Schwerdtfeger P, Brown JR, Laerdahl JK (2000) J Chem Phys 113:7110

    Article  CAS  Google Scholar 

  175. Zeng T, Fedorov DG, Klobukowski M (2009) J Chem Phys 131:124109

    Article  PubMed  Google Scholar 

  176. Ermler WC, Ross RB, Christiansen PA (1988) Adv Quantum Chem 19:139

    Article  CAS  Google Scholar 

  177. Fedorov DG, Klobukowski M (2002) Chem Phys Lett 360:223

    Article  CAS  Google Scholar 

  178. Zhang Y, Gao T, Zhang C (2007) Mol Phys 105:405

    Article  CAS  Google Scholar 

  179. Song C, Gao T, Han H, Wan M, Yu Y (2008) J Mol Struct (Theochem) 870:65

    Article  CAS  Google Scholar 

  180. Zeng T, Fedorov DG, Klobukowski M (2010) J Chem Phys 132:074102

    Article  PubMed  Google Scholar 

  181. Nakano H (1993) J Chem Phys 99:7983

    Article  CAS  Google Scholar 

  182. Nakano H (1993) Chem Phys Lett 207:372

    Article  CAS  Google Scholar 

  183. Zeng T, Fedorov DG, Klobukowski M (2010) J Chem Phys 133:114107

    Article  PubMed  Google Scholar 

  184. Shavitt I, Bartlett RJ (2009) Many-body methods in chemistry and physics: MBPT and coupled-cluster theory. Cambridge University Press, Cambridge, MA/New York

    Book  Google Scholar 

  185. Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113

    Article  CAS  Google Scholar 

  186. Peterson KA (2003) J Chem Phys 119:11099

    Article  CAS  Google Scholar 

  187. Fedorov DG, Schmidt MW, Koseki S, Gordon MS (2004) Spin-orbit coupling methods and applications to chemistry. In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory. World Scientific, Singapore

    Google Scholar 

  188. Alekseyev AB, Liebermann H-P, Buenker RJ (2004) Spin-orbit multireference configuration interaction method and applications to systems containing heavy atoms. In: Hirao K, Ishikawa Y (eds) Recent advances in relativistic molecular theory. World Scientific, Singapore

    Google Scholar 

  189. Koseki S, Shimakura N, Fujimura Y, Asada T, Kono H (2009) J Chem Phys 131:044122

    Article  PubMed  Google Scholar 

  190. Deskevich MP, Nesbitt DJ, Werner H-J (2004) J Chem Phys 120:7281

    Article  CAS  PubMed  Google Scholar 

  191. Zeng T, Fedorov DG, Klobukowski M (2011) J Chem Phys 134:024108

    Article  PubMed  Google Scholar 

  192. Lee H-S, Han YK, Kim MC, Bae C, Lee YS (1998) Chem Phys Lett 293:97

    Article  CAS  Google Scholar 

  193. Kim MC, Lee SY, Lee YS (1996) Chem Phys Lett 253:216

    Article  CAS  Google Scholar 

  194. Rösch N, Krüger S, Mayer M, Nasluzov VA (1996) The Douglas-Kroll-Hess approach to relativistic density functional theory: methodological aspects and applications to metal complexes and clusters. In: Seminario JM (ed) Recent developments and applications of modern density functional theory. Elservier, Amsterdam

    Google Scholar 

  195. Nakajima T, Suzumura T, Hirao K (1999) Chem Phys Lett 304:271

    Article  CAS  Google Scholar 

  196. Armbruster MK, Weigend F, van Wüllen C, Klopper W (2008) Phys Chem Chem Phys 10:1748

    Article  CAS  PubMed  Google Scholar 

  197. Zeng T, Fedorov DG, Schmidt MW, Klobukowski M (2011) J Chem Phys 134:214107

    Article  PubMed  Google Scholar 

  198. Bersuker IB (2006) The Jahn-Teller effect. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  199. Bersuker IB (2008) The Jahn-Teller effect and beyond. The Academy of Sciences of Moldova, Moldova; The University of Texas at Austin, Austin, TX

    Google Scholar 

  200. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  201. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first forty years. Elservier, Amsterdam/Boston

    Google Scholar 

  202. Karlström G, Lindh R, Malmqvist PA, Roos BO, Ryde U, Veryazov V, Widmark PO, Cossi M, Schmmelpfennig B, Neogrady P, Seijo L (2003) Comput Mat Sci 28:222

    Article  Google Scholar 

  203. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Chem Phys Lett 351:475

    Article  CAS  Google Scholar 

  204. Koster AM, Calaminici P, Casida ME, Dominguez VD, Flores-Moreno R, Guedtner G, Goursort A, Heine T, Ipatov A, Janetzko F, del Campo JM, Reveles JU, Vela A, Zuniga B, Salahub DR (2006) deMon2k, Version 2, The deMon developers, Cinvestav, Mexico City

    Google Scholar 

  205. Pereiro M, Baldomir D, Iglesias M, Rosales C, Castro M (2001) Int J Quantum Chem 81:422

    Article  CAS  Google Scholar 

  206. Lacaze-Dufour C, Mineva R, Russo N (2001) Int J Quantum Chem 85:162

    Article  CAS  Google Scholar 

  207. Lacaze-Dufour C, Mineva R, Russo N (2001) J Comput Chem 22:1557

    Article  Google Scholar 

  208. Decker SA, Klobukowski M (2001) J Chem Inf Comput Sci 41:1

    Article  CAS  PubMed  Google Scholar 

  209. Sakai Y, Mogi K, Miyoshi E (1999) J Chem Phys 111:3989

    Article  CAS  Google Scholar 

  210. Zeng T, Mori H, Miyoshi E, Klobukowski M (2009) Int J Quantum Chem 109:3235

    Article  CAS  Google Scholar 

  211. Møller C, Plesset MS (1934) Phys Rev A 46:618

    Article  Google Scholar 

  212. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  213. Frisch MJ, Head-Gordon M, Pople JA (1990) Chem Phys Lett 166:275

    Article  CAS  Google Scholar 

  214. Lee TJ, Jayatilaka D (1993) Chem Phys Lett 201:1

    Article  CAS  Google Scholar 

  215. Head-Gordon M, Head-Gordon T (1994) Chem Phys Lett 220:122

    Article  CAS  Google Scholar 

  216. Sæbø S, Almlöf J (1989) Chem Phys Lett 154:83

    Article  Google Scholar 

  217. Piecuch P, Kucharski SA, Kowalski K, Musial M (2002) Comp Phys Commun 149:71

    Article  CAS  Google Scholar 

  218. Becke AD (1988) Phys Rev A 38:3098

    Article  CAS  Google Scholar 

  219. Perdew JP (1986) Phys Rev B 33:8822

    Article  CAS  Google Scholar 

  220. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865

    Article  CAS  PubMed  Google Scholar 

  221. Adamo C, Barone V (1999) J Chem Phys 110:6158

    Article  CAS  Google Scholar 

  222. Helgaker T, Gauss J, Jørgensen P, Olsen J (1997) J Chem Phys 106:6430

    Article  CAS  Google Scholar 

  223. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory. Wiley, Chichester

    Book  Google Scholar 

  224. Honda H, Noro T, Tanaka K, Miyoshi E (2001) J Chem Phys 114:10791

    Article  CAS  Google Scholar 

  225. Lengsfield BH III (1980) J Chem Phys 73:382

    Article  CAS  Google Scholar 

  226. Liu B, Yoshimine M (1981) J Chem Phys 74:612

    Article  CAS  Google Scholar 

  227. Lengsfield BH III, Liu B (1981) J Chem Phys 75:478

    Article  CAS  Google Scholar 

  228. Sakai Y, Nakai T, Mogi K, Miyoshi E (2003) Mol Phys 101:117

    Article  CAS  Google Scholar 

  229. Tanaka K, Sekiya M, Tawada Y, Miyoshi E (2005) J Chem Phys 122:214315

    Article  PubMed  Google Scholar 

  230. Ishikawa T, Tanaka K (2004) Chem Phys Lett 395:166

    Article  CAS  Google Scholar 

  231. Mon MS, Mori H, Miyoshi E (2008) Chem Phys Lett 462:23

    Article  CAS  Google Scholar 

  232. Lovallo CC, Klobukowski M (2002) Int J Quantum Chem 90:1099

    Article  CAS  Google Scholar 

  233. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  234. Evans CJ, Lesarri A, Gerry MCL (2000) J Am Chem Soc 122:6100

    Article  CAS  Google Scholar 

  235. Evans CJ, Gerry MCL (2000) J Chem Phys 112:9363

    Article  CAS  Google Scholar 

  236. Evans CJ, Rubinoff DS, Gerry MCL (2000) Chem Phys Phys Chem 2:3943

    Article  CAS  Google Scholar 

  237. Reynard LM, Evans CJ, Gerry MCL (2001) J Mol Spectrosc 206:33

    Article  CAS  PubMed  Google Scholar 

  238. Cooke SA, Gerry MCL (2004) J Am Chem Soc 123:17000

    Article  Google Scholar 

  239. Ancilotto F, Lerner PB, Cole MW (1995) J Low Temp Phys 101:1123

    Article  CAS  Google Scholar 

  240. Sakai Y, Koyanagi M, Mogi K, Miyoshi E (2002) Surf Sci 513:272

    Article  CAS  Google Scholar 

  241. Hay PJ, Wadt WR (1985) J Chem Phys 82:299

    Article  CAS  Google Scholar 

  242. Miyoshi E, Mori H, Tanaka S, Sakai Y (2002) Surf Sci 514:383

    Article  CAS  Google Scholar 

  243. Miyoshi E, Iura T, Sakai Y, Touchihara H, Tanaka S, Mori H (2003) J Mol Struct (Theochem) 630:225

    Article  CAS  Google Scholar 

  244. Zeng T, Jamshidi Z, Mori H, Miyoshi E, Klobukowski M (2007) J Comput Chem 28:2027

    Article  CAS  PubMed  Google Scholar 

  245. Gajewski M, Tuszynski J, Mori H, Miyoshi E, Klobukowski M (2008) Inorg Chim Acta 361:2166

    Article  CAS  Google Scholar 

  246. Gajewski M, Klobukowski M (2009) Can J Chem 87:1492

    Article  CAS  Google Scholar 

  247. Zeng T, Klobukowski M (2008) J Phys Chem A 112:5236

    Article  CAS  PubMed  Google Scholar 

  248. Piecuch P, Kucharski SA, Kowalski K, Musial M (2000) J Chem Phys 113:18

    Article  Google Scholar 

  249. Piecuch P, Kucharski SA, Kowalski K, Musial M (2000) J Chem Phys 113:5644

    Article  Google Scholar 

  250. Piecuch P, Wloch M (2005) J Chem Phys 123:224105

    Article  PubMed  Google Scholar 

  251. Wloch M, Gour JR, Piecuch P (2007) J Phys Chem A 111:11359

    Article  CAS  PubMed  Google Scholar 

  252. Tsukamoto S, Mori H, Tatewaki H, Miyoshi E (2009) Chem Phys Lett 474:28

    Article  CAS  Google Scholar 

  253. Fujiwara T, Mori H, Mochizuki Y, Tatewaki H, Miyoshi E (2010) J Mol Struct (Theochem) 949:28

    Article  CAS  Google Scholar 

  254. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Chem Phys Lett 313:701

    Article  CAS  Google Scholar 

  255. Mochizuki Y, Nakano T, Koikegami S, Tanimori S, Abe Y, Nagashima U, Kitaura K (2004) Theor Chem Acc 112:442

    Article  CAS  Google Scholar 

  256. Mochizuki Y, Koikegami S, Nakano T, Amari S, Kitaura K (2004) Chem Phys Lett 396:473

    Article  CAS  Google Scholar 

  257. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) J Comput Chem 25:872

    Article  CAS  PubMed  Google Scholar 

  258. Ishikawa T, Mochizuki Y, Imamura K, Tokiwa H, Nakano T, Mori H, Tanaka K, Miyoshi E, Tanaka S (2006) Chem Phys Lett 430:361

    Article  CAS  Google Scholar 

  259. Barnett NJ, Slipchenko LV, Gordon MS (2009) J Phys Chem A 113:7474

    Article  CAS  PubMed  Google Scholar 

  260. Hanson K, Roskop L, Djurovich PI, Zahariev F Gordon MS, Thompson ME (2010) J Am Chem Soc 132:16247

    Article  CAS  PubMed  Google Scholar 

  261. Haiges R, Boatz JA, Christe KO (2010) Angew Chem Int Ed 49:8008

    Article  CAS  Google Scholar 

  262. Fitzsimmons A, Mori H, Miyoshi E, Klobukowski M (2010) J Phys Chem A 114:8786

    Article  CAS  PubMed  Google Scholar 

  263. Shim J, Klobukowski M, Barysz M, Leszczynski J (2011) Phys Chem Chem Phys 13:5703

    Article  CAS  PubMed  Google Scholar 

  264. Rakowitz F, Marian CM, Seijo L, Wahlgren U (1999) J Chem Phys 110:3678

    Article  CAS  Google Scholar 

  265. Rakowitz F, Marian CM, Seijo L (1999) J Chem Phys 111:10436

    Article  CAS  Google Scholar 

  266. Sansonetti JE, Martin WC (2005) Handbook of basic atomic spectroscopic data. J Phys Chem Ref Data 34(4):1559–2259

    Article  CAS  Google Scholar 

  267. Baig MA, Connerade JP (1985) J Phys B 18:1101

    Article  CAS  Google Scholar 

  268. Hotop H, Lineberger WC (1985) J Phys Chem Ref Data 14:731

    Article  CAS  Google Scholar 

  269. Huber KP, Herzberg G (1979) Molecular spectra and molecular structure constants of diatomic molecules, vol 4. van Nostrand, New York

    Google Scholar 

  270. Pitzer KS (1984) Int J Quantum Chem 25:131

    Article  CAS  Google Scholar 

  271. Zeng T, Fedorov DG, Schmidt MW, Klobukowski M (2011) J Chem Theory Comput 7:2864

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work would not be possible without the initial impetus provided by Professor Sigeru Huzinaga and his subsequent supervision and participation in the development of the consecutive versions of the model core potentials. We are grateful to Professors Yoshiko Sakai, Eisaku Miyoshi, and Hirotoshi Mori for many years of fruitful collaboration. We appreciate the support of Professor Mark Gordon and Dr. Mike Schmidt for the continuing development of the Gamess-US program system which has been our principal computational tool. Recent developments in the spin-orbit adapted MCPs would be impossible without the inspiring and insightful participation of Dr. Dmitri Fedorov. Finally, a few words of gratitude to our financial supporters: TZ is grateful to Alberta Ingenuity Funds, Killam Trusts, and Alberta Scholarship Program for student scholarships during his PhD studies. MK thanks the Natural Sciences and Engineering Research Council of Canada for the support of the model core potential development under Research Grant No. G121210414.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Klobukowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Zeng, T., Klobukowski, M. (2011). Model Core Potentials in the First Decade of the XXI Century. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_8

Download citation

Publish with us

Policies and ethics