Skip to main content

Relativistic Effects in Chemistry and a Two-Component Theory

  • Chapter
  • First Online:
  • 2340 Accesses

Abstract

In this chapter I demonstrate a series of examples showing the importance of relativistic quantum chemistry to the proper description of variety of molecular and atomic properties including valence and core ionization potentials, electron affinities, chemical reactions, dissociation energies, spectroscopic parameters and other properties. An overview of basic principles of the relativistic quantum chemistry and the reduction of relativistic quantum chemistry to two–component form is also presented. I discuss the transition of the four–component Dirac theory to the infinite–order two–component (IOTC) formalism through the unitary transformation which decouples exactly the Hamiltonian.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Styszyński J (2010) Challenges and advances in computational chemistry and physics. In: Barysz M, Ishikawa J (eds) Relativistic methods for chemists, vol 10. Springer, Dordrecht/Heidelberg/London/New York, pp 99–164

    Google Scholar 

  2. Pyykkö P (1988) Chem Rev 88:563

    Google Scholar 

  3. Sommerfeld A (1916) Ann Phys 51:1

    CAS  Google Scholar 

  4. Biedenharn LC (1983) Phys 13:13

    Google Scholar 

  5. Lide DR (ed) (2005) CRC handbook of chemistry and physics, CD-ROM. CRC, Boca Raton

    Google Scholar 

  6. Neogrady P, Kellö V, Urban M, Sadlej AJ (1997) Int J Quantum Chem 63:557

    CAS  Google Scholar 

  7. Ilias̆ M, Neogrády P (1999) Chem Phys Lett 309:441

    Google Scholar 

  8. Pyykkö P (1986) Relativistic theory of atoms and molecules I – A bibligraphy 1916–1985. Lecture notes in chemistry. Springer, Berlin

    Google Scholar 

  9. Pyykkö P (1993) Relativistic theory of atoms and molecules II – A bibligraphy 1986–1992. Lecture notes in chemistry, vol 60. Springer, Berlin

    Google Scholar 

  10. Pyykkö P (2000) Relativistic theory of atoms and molecules III – A bibligraphy 1993–1999. Lecture notes in chemistry, vol 76. Springer, Berlin

    Google Scholar 

  11. Pyykkö P (2009) Database ‘RTAM’ Version 15, Relativistic quantum chemistry database. http://rtam.csc.fi/

  12. Dyall KG, Faegri K Jr (2007) Introduction to relativistic quantum chemistry. Oxford University Press, New York

    Google Scholar 

  13. Reiher M, Wolf A (2009) Relativistic quantum chemistry. The fundamental theory of molecular science. Wiley, Weinheim

    Google Scholar 

  14. Barysz M, Ishikawa Y (eds) (2010) Challenges and advances in computational chemistry and physics. Relativistic methods for chemists. Springer, London

    Google Scholar 

  15. Ilias̆ M, Kellö V, Urban M (2010) Acta Phys Slovaca 60:259

    Google Scholar 

  16. Barysz M (2000) J Chem Phys 113:4003

    CAS  Google Scholar 

  17. Barysz M (2001) J Chem Phys 114:9315

    CAS  Google Scholar 

  18. Barysz M, Sadlej AJ (2002) J Chem Phys 116:2696

    CAS  Google Scholar 

  19. Barysz M, Sadlej AJ (2002) J Mol Struct Theochem 573:181

    Google Scholar 

  20. Kȩdziera D, Barysz M (2004) Chem Phys Lett 393:521

    Google Scholar 

  21. Kȩdziera D, Barysz M, Sadlej AJ (2004) Struct Chem 15:369

    Google Scholar 

  22. Barysz M, Mentel L, Leszczyński J (2009) J Chem Phys 130:164114

    PubMed  Google Scholar 

  23. Barysz M (2010) Two–component relativistic theories. In: Barysz M, Ishikawa Y (eds) Challenges and advances in computational chemistry and physics. Relativistic methods for chemists. Springer, London, p 165, the review article

    Google Scholar 

  24. Barysz M, Pyykkö P (1998) Chem Phys Lett 285:398

    CAS  Google Scholar 

  25. Reprinted from publication, Barysz M, Pyykkö P (1998) Strong chemical bonds to gold. CASPT2 results for diatomic AuBe + , AuC + , AuMg + , and AuSi + , 285:398–403, with permission from Elsevier, Copyright 2011

    Google Scholar 

  26. Schwerdtfeger P (ed) (2004) Theoretical and computational chemistry. Relativistic electronic structures, part 2. Applications p 394

    Google Scholar 

  27. Frobe M, Schulze N, Kloss H (1983) Chem Phys Lett 99:500

    Google Scholar 

  28. Dyall KG (1992) J Chem Phys 96:1210

    CAS  Google Scholar 

  29. Reprinted with permission from, Dyall KG (1992) J Chem Phys 96:1210. Copyright 2011, American Institute of Physics

    Google Scholar 

  30. Baes CF Jr, Messmer RE (1986) The hydrolysis of cations. Krieger, Malabar

    Google Scholar 

  31. Barysz M, Leszczyński J, Bilewicz A (2004) Phys Chem Chem Phys 6:4553

    CAS  Google Scholar 

  32. Siegbahn K, Nordling C, Johansson G, et al (1969) ESCA applied to free molecules. North-Holland, Amsterdam

    Google Scholar 

  33. Bakke AA, Chen AW, Jolly WL (1980) J Electron Spectrosc Relat Phenom 20:333

    CAS  Google Scholar 

  34. See the review papers in the Coord Chem Rev (2005) vol 249

    Google Scholar 

  35. Siegbahn K, Fahlman C, Nordberg R, Hamrin K, Hedman J, Johansson G, Bergamrk T, Karlsson SE, Lindgren L, Lindberg B (1967) ESCA, atomic, molecular and solid state structure studied by means of electron spectroscopy. Almqvist and Wiksell, Uppsala

    Google Scholar 

  36. Barysz M, Leszczyński J (2007) J Chem Phys 126:154106

    PubMed  Google Scholar 

  37. Reprinted with permission from, Barysz M, Leszczyński J (2007) J Chem Phys 126:154106. Copyright 2011, American Institute of Physics

    Google Scholar 

  38. Barysz M, Klobukowski M, Leszczynski J (2011) Struct Chem (to be published)

    Google Scholar 

  39. Moss RE (1973) Advanced molecular quantum mechanics. Chapman and Hall, London

    Google Scholar 

  40. Pestka G, Sadlej AJ (2002) J Mol Struct Theochem 592:7

    CAS  Google Scholar 

  41. Grant IP, Quiney HM (1988) Adv At Mol Phys 23:457, and references therein

    Google Scholar 

  42. Rutkowski A (1986) J Phys B 19:141

    Google Scholar 

  43. Kutzelnigg W (1989) Z Phys D 11:15

    CAS  Google Scholar 

  44. Kutzelnigg W (1990) Z Phys D 15:27

    CAS  Google Scholar 

  45. Chang Ch, Pélissier M, Durand P (1986) Phys Scr 34:394

    CAS  Google Scholar 

  46. van Lenthe E, Baerends EJ, Snijders JG (1993) J Chme Phys 99:4597

    Google Scholar 

  47. Faas S, Snijders JG, van Lenthe JH, van Lenthe E (1995) J Chem Phys Lett 246:632

    CAS  Google Scholar 

  48. van Lenthe E, van Leeuven, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57:281

    Google Scholar 

  49. Dyall KG, van Lenthe E (1999) J Chem Phys 111:1366

    CAS  Google Scholar 

  50. Dyall KG (1997) J Chem Phys 106:9618

    CAS  Google Scholar 

  51. Dyall KG (1998) J Chem Phys 109:4201

    CAS  Google Scholar 

  52. Filatov M, Cremer D (2002) Theor Chem Acc 108:168

    CAS  Google Scholar 

  53. Filatov M, Cremer D (2002) Chem Phys Lett 351:259

    CAS  Google Scholar 

  54. Filatov M, Cremer D (2002) Chem Phys Lett 370:647

    Google Scholar 

  55. Liu W (2010) Mol Phys 108:1679

    CAS  Google Scholar 

  56. Hess BA (1985) Phys Rev A 32:756

    CAS  Google Scholar 

  57. Hess BA (1986) Phys Rev A 33:3742

    CAS  Google Scholar 

  58. Foldy LL, Wouthuysen SA (1950) Phys Rev 78:29

    Google Scholar 

  59. Heully JL, Lindgren I, Lindroth E, Lundquist S, Mårtenson-Pendril AM (1986) J Phys B 19:2799–2815

    CAS  Google Scholar 

  60. Kellö V, Sadlej AJ, Hess BA (1996) J Chem Phys 105:1995

    Google Scholar 

  61. Barysz M, Sadlej AJ (1997) Theor Chem Acc 97:260

    CAS  Google Scholar 

  62. Kellö V, Sadlej AJ (1998) Int J Quantum Chem 68:159

    Google Scholar 

  63. Kellö V, Sadlej AJ (1999) Phys Rev A 60:3575, and references therein

    Google Scholar 

  64. Sucher J (1980) Phys Rev A 22:348

    CAS  Google Scholar 

  65. Samzow R, Hess BA, Jansen G (1992) J Chem Phys 96:1227

    CAS  Google Scholar 

  66. Kȩdziera D, Barysz M (2004) J Chem Phys 121:6719

    PubMed  Google Scholar 

  67. Andrae D (1997) J Phys B At Mol Opt Phys 30:4435

    CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank V. Kellö, M. Urban, M. Ilias̆, and K. G. Dyall for their permission to use of their numerical data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Barysz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Barysz, M. (2011). Relativistic Effects in Chemistry and a Two-Component Theory. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_4

Download citation

Publish with us

Policies and ethics