Skip to main content

VCD Chirality Transfer: A New Insight into the Intermolecular Interactions

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry I

Abstract

The Vibrational Circular Dichroism (VCD) spectroscopy has been developing rapidly in both experimental and theoretical aspects. Currently, the VCD has become one of the most effective and reliable spectroscopic technique to determine the absolute configuration of chiral molecules. Its success is related to the availability of instrumentation and software for quantum-chemical calculation of the spectra. Nowadays, large parts of the VCD spectra can be trustfully predicted by theory and critically verified by confiding experiment, and vice versa. In the last decade, several theoretical and experimental VCD studies reported on VCD chirality transfer phenomenon occurring when an achiral molecule becomes VCD active as a result of intermolecular interactions with a chiral one. There are still some theoretical and experimental uncertainties about the VCD chirality transfer, however, benefits from an comprehensive use of the phenomenon can push our ability to diversify the intermolecular complexes and deepen our understanding of intermolecular interactions. This chapter is a review of the computational studies on VCD chirality transfer phenomenon supported by the experimental references, and ended by perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Je montre, en effet, que l’hémiédrie est liée avec le sens de la polarisation rotatoire. Or, ce dernier phénomène étant moléculaire et accusant une dissymétrie dans les molécules, l’hémiédrie, à son tour, se trouve donc en étroite connexion avec la dissymétrie des derniers éléments qui composent le cristal.”

  2. 2.

    “Was kann wohl meiner Hand oder meinem Ohr ähnlicher, und in allen Stücken gleicher sein, als ihr Bild im Spiegel? Und dennoch kann ich eine solche Hand, als im Spiegel gesehen wird, nicht an die Stelle ihres Urbildes setzen; denn wenn dieses eine rechte Hand war, so ist jene im Spiegel eine linke, und das Bild des rechten Ohres ist ein linkes, das nimmermehr die Stelle des ersteren vertreten kann. Nun sind hier keine innre Unterschiede, die irgendein Verstand nur denken könnte; und dennoch sind die Unterschiede innerlich, soweit die Sinne lehren, denn die linke Hand kann mit der rechten, ohnerachtet aller beiderseitigen Gleichheit und Ähnlichkeit, doch nicht zwischen denselben Grenzen eingeschlossen sein, (sie können nicht kongruieren) der Handschuh der einen Hand kann nicht auf der andern gebraucht werden. Was ist nun die Auflösung? Diese Gegenstände sind nicht etwa Vorstellungen der Dinge, wie sie an sich selbst sind, und wie sie der pure Verstand erkennen würde, sondern es sind sinnliche Anschauungen, d. i. Erscheinungen, deren Möglichkeit auf dem Verhältnisse gewisser an sich unbekannten Dinge zu etwas anderem, nämlich unserer Sinnlichkeit beruht. Von dieser ist nun der Raum die Form der äußern Anschauung, und die innere Bestimmung eines jeden Raumes ist nur durch die Bestimmung des äußeren Verhältnisses zu dem ganzen Raume, davon jener ein Teil ist, (dem Verhältnisse zum äußeren Sinne) d. i. der Teil ist nur durchs Ganze möglich, welches bei Dingen an sich selbst, als Gegenständen des bloßen Verstandes niemals, wohl aber bei bloßen Erscheinungen stattfindet. Wir können daher auch den Unterschied ähnlicher und gleicher, aber doch inkongruenter Dinge (z. B. widersinnig gewundener Schnecken) durch keinen einzigen Begriff verständlich machen, sondern nur durch das Verhältnis zur rechten und linken Hand, welches unmittelbar auf Anschauung geht.”

    “What can be more similar in every respect and in every part more alike to my hand and to my ear, than their images in a mirror? And yet I cannot put such a hand as is seen in the glass in the place of its archetype; for if this is a right hand, that in the glass is a left one, and the image or reflection of the right ear is a left one which never can serve as a substitute for the other. There are in this case no internal differences which our understanding could determine by thinking alone. Yet the differences are internal as the senses teach, for, notwithstanding their complete equality and similarity, the left hand cannot be enclosed in the same bounds as the right one (they are not congruent); the glove of one hand cannot be used for the other. What is the solution? These objects are not representations of things as they are in themselves, and as the pure understanding would know them, but sensuous intuitions, that is, appearances, the possibility of which rests upon the relation of certain things unknown in themselves to something else, viz., to our sensibility. Space is the form of the external intuition of this sensibility, and the internal determination of every space is only possible by the determination of its external relation to the whole space, of which it is a part (in other words, by its relation to the external sense). That is to say, the part is only possible through the whole, which is never the case with things in themselves, as objects of the mere understanding, but with appearances only. Hence the difference between similar and equal things, which are yet not congruent(for instance, two symmetric helices), cannot be made intelligible by any concept, but only by the relation to the right and the left hands which immediately refers to intuition.”

  3. 3.

    3“Other members of this same school say there are ten principles, which they arrange in two columns of cognates-limit and unlimited, odd and even, one and plurality, right and left, male and female, resting and moving, straight and curved, light and darkness, good and bad, square and oblong. In this way Alcmaeon of Croton seems also to have conceived the matter, and either he got this view from them or they got it from him; for he expressed himself similarly to them. For he says most human affairs go in pairs, meaning not definite contrarieties such as the Pythagoreans speak of, but any chance contrarieties, e.g. white and black, sweet and bitter, good and bad, great and small. He threw out indefinite suggestions about the other contrarieties, but the Pythagoreans declared both how many and which their contraricties are.”

References

  1. Pasteur L (1848) Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et le sens de la polarisation rotatoire. Annales de chimie et de physique 24:442–459,~3e série

    Google Scholar 

  2. Flack HD (2009) Louis Pasteur’s discovery of molecular chirality and spontaneous resolution in 1848, together with a complete review of his crystallographic and chemical work. Acta Crystallogr A 65:371–389

    CAS  PubMed  Google Scholar 

  3. Kelvin L (1894) The molecular tactics of a crystal. J Oxf Univ Junior Sci Club 18:3–57

    Google Scholar 

  4. Bentley R (2010) Chiral: a confusing etymology. Chirality 22:1–2

    CAS  PubMed  Google Scholar 

  5. (a) Kant I (1783) Prolegomena zu einer jeden künftigen Metaphysik die als Wissenschaft wird auftreten können. Hamburg (Meiner) 2001 http://www.uni-potsdam.de/u/philosophie/texte/prolegom/!start.htm (§13) (English translation: http://philosophy.eserver.org/kant-prolegomena.txt (cf. first part, section 13)); (b) Aristotle (350 B.C.E) Metaphysics (1. 5) (τάμετάτάφυσικά) trans: Ross WD http://classics.mit.edu/Aristotle/metaphysics.1.i.html

  6. Moss GP (1996) Basic terminology of stereochemistry (IUPAC recommendations 1996). Pure Appl Chem 68:2193–2222, p. 2203, Blue Book, p. 479

    CAS  Google Scholar 

  7. Mizerski W (2008) Chemical tables, (in polish). Adamantan Publishing House, Warsaw

    Google Scholar 

  8. Moss GP (1996) Basic terminology of stereochemistry (IUPAC recommendations 1996). Pure Appl Chem 68:2203

    Google Scholar 

  9. Sauvage J-P (1993) Topology in molecular chemistry. New J Chem 17:618–763 (whole issue)

    Google Scholar 

  10. Dobrowolski JCz (2003) DNA knots and links (wzły i sploty DNA). Polimery 48:3–15

    CAS  Google Scholar 

  11. Dietrich-Buchecker CO, Rapenne G, Sauvage J-P, De Cian A, Fisher J (1999) A dicopper(I) trefoil knot with m-phenylene bridges between the ligand subunits: synthesis, resolution, and absolute configuration. Chem Eur J 5:1432–1439

    CAS  Google Scholar 

  12. Amabilino DB, Stoddart JF (1995) Interlocked and interwined structures and superstructures. Chem Rev 95:2725–2828

    CAS  Google Scholar 

  13. Herges R (2006) Topology in chemistry: designing möbius molecules. Chem Rev 106:4820–4842

    CAS  PubMed  Google Scholar 

  14. Murasugi K (1996) Knot theory and its applications. Birkhäuser, Boston-Bazylea-Berlin

    Google Scholar 

  15. Pieranski P (1998) In search of ideal knots. In: Stasiak A, Katritch V, Kauffman LH (eds) Ideal knots, vol 19, Series on knots and everything. World Scientific, Singapore/New Jersey/London/Hong Kong

    Google Scholar 

  16. Dobrowolski JCz (2003) On the classification of topological isomers: Knots, Links, Rotaxanes, etc. Croat Chem Acta 76:145–152.

    CAS  Google Scholar 

  17. Barron LD (2009) An introduction to chirality at the nanoscale. In: Amabilino DB (ed) Chirailty at the nanoscale: nanoparticles, surface, materials and more. Wiley, Weinheim

    Google Scholar 

  18. Zehnacker A, Suhm MA (2008) Chirality recognition between neutral molecules in the gas phase. Angew Chem Int Ed 47:6970–6992

    CAS  Google Scholar 

  19. Crassous J (2009) Chiral transfer in coordination complexes: towards molecular materials. Chem Soc Rev 38:830–845

    CAS  PubMed  Google Scholar 

  20. Berova N, Di Bari L, Pescitelli G (2007) Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem Soc Rev 36: 914–931

    CAS  PubMed  Google Scholar 

  21. Feringa BL, van Delden RA (1999) Absolute asymmetric synthesis: the origin, control and amplification of chirality. Angew Chem Int Ed 38:3418–3438

    CAS  Google Scholar 

  22. Hembury GA, Borovkov VV, Inoue Y (2008) Chirality-sensing supermolecular systems. Chem Rev 108:1–70

    CAS  PubMed  Google Scholar 

  23. Alkorta I, Elguero J (2009) Chirality and chiral recognition. In: Leszczynski J, Shukla MK (eds) Practical aspects of computational chemistry methods, concepts and applications. Springer, Heidelberg/Dordrecht/London/New York

    Google Scholar 

  24. Keiderling TA (1996) In: Fasman GD (ed) Circular dichroism and the conformational analysis of biomolecules. Plenum Press, New York

    Google Scholar 

  25. Pecul M, Sadlej J (2003) Ab initio calculations of the intermolecular nuclear spin-spin coupling constants. In: Leszczynski J (ed) Computational chemistry, vol 8, Review of current trends. World Scientific, New York, pp 131–160

    Google Scholar 

  26. Sadlej J, Dobrowolski JCz, Rode JE (2010) VCD spectroscopy as a novel probe for chirality transfer in molecular interactions. Chem Soc Rev 39:1478–1488

    CAS  PubMed  Google Scholar 

  27. Polavarapu PL (2007) Renaissance in chiroptical spectroscopic methods for molecular structure determination. Chem Rec 7:125–132

    CAS  PubMed  Google Scholar 

  28. Nicu VP, Baerends EJ (2009) Robust normal modes in vibrational circular dichroism spectra. Phys Chem Chem Phys 11:6107–6118

    CAS  PubMed  Google Scholar 

  29. Liu Y, Yang G, Losada M, Xu Y (2010) Vibrational absorption, vibrational circular dichroism, and theoretical studies of methyl lactate self-aggregation and methyl lactate-methanol intermolecular interactions. J Chem Phys 132:234513

    PubMed  Google Scholar 

  30. Barron LD (2004) Molecular light scattering and optical activity, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  31. Buckingham AD (1994) Faraday Discuss 99:1, whole issue: Vibrational Optical Activity: from fundamentals to biological applications

    CAS  Google Scholar 

  32. Autschbach J (2009) Computing chiroptical properties with first-principles theoretical methods: background and illustrative examples. Chirality 21:E116–E152

    CAS  PubMed  Google Scholar 

  33. Nafie LA, Dukor RK, Freedman TB (2002) Vibrational circular dichroism. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, Chichester, pp 731–744

    Google Scholar 

  34. Polavarapu PL (1998) Vibrational spectra: principles and applications with emphasis on optical activity. Elsevier, New York, pp 143–182

    Google Scholar 

  35. Polavarapu PL (1990) Ab initio vibrational raman and raman optical activity spectra. J Phys Chem 94:8106–8112

    CAS  Google Scholar 

  36. Polavarapu PL (2006) Quantum mechanical predictions of chirooptical vibrational properties. Int J Quantum Chem 106:1809–1814

    CAS  Google Scholar 

  37. Polavarapu PL (2008) Why is it important to simultaneously use more than one chiroptical spectroscopic method for determining the structures of chiral molecules. Chirality 20: 664–672

    CAS  PubMed  Google Scholar 

  38. Ballard RF, Mason SF, Vane GW (1963) Circular dichroism of dissymmetric α, β-unsaturated ketones. Discuss Faraday Soc 35:43–47

    Google Scholar 

  39. Moscowitz A, Wellman KM, Djerassi C (1963) Optical rotatory dispersion studies. XCIV. Some effects of solvation upon optically active molecules. Proc Natl Acad Sci USA 50: 799–804

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Wellman KM, Records R, Bunsenberg E, Djerassi C (1964) Optical rotatory dispersion studies. XCI. The Use of Low-temperature circular dichroism measurements for “fingerprinting” of steroidal ketones. J Am Chem Soc 86:492–498

    CAS  Google Scholar 

  41. Weigang OE Jr (1965) Vibrational structuring in circular dichroism. J Chem Phys 42: 2244–2245

    CAS  Google Scholar 

  42. Deutsche CW, Moscowitz A (1968) Optical activity of vibrational origin. I. A model helical polymer. J Chem Phys 49:3257–3272

    CAS  Google Scholar 

  43. Deutsche CW, Moscowitz A (1970) Optical activity of vibrational origin. II. Consequences of polymer conformation. J Chem Phys 53:2630–2644

    CAS  Google Scholar 

  44. Dudleys RJ, Mason F, Peacock RD (1972) Infrared vibrational circular dichroism. J Chem Soc Chem Commun 1084–1085

    Google Scholar 

  45. Chabay I, Hsu EC, Holzwarth G (1972) Infrared circular dichroism measurement between 2000 and 5000 cm-1: Pr+3 tartrate complexes. Chem Phys Lett 15:211–214

    CAS  Google Scholar 

  46. Holzwarth G, Chabay I (1972) Optical activity in molecular vibrations: a coupled oscillator model. J Chem Phys 57:1632–1635

    CAS  Google Scholar 

  47. Hsu EC, Holzwarth G (1973) Vibrational circular dichroism in crystalline alpha-NiSO4.6H2 O and alpha-ZnSeO4.6H2O Between 1900 and 5000 cm-1. J Chem Phys 59:4678–4685

    CAS  Google Scholar 

  48. Schellman JA (1973) Vibrational optical activity. J Chem Phys 58:2882–2886

    Google Scholar 

  49. Barron LD, Buckingham AD (1975) Rayleigh and raman optical activity. Annu Rev Phys Chem 26:381

    CAS  Google Scholar 

  50. Buckingham AD, Raab RE (1975) Electric-field-induced differential scattering of right and left circularly polarized light. Proc R Soc Lond Ser A 345:365–377

    Google Scholar 

  51. Nafie LA, Cheng JC, Stephens PJ (1975) Vibrational circular dichroism of 2, 2, 2-trifluoro-1- phenylethanol. J Am Chem Soc 97:3842–3843

    CAS  Google Scholar 

  52. Holzwarth G, Hsu EC et al (1974) Infrared circular dichroism of carbon-hydrogen and carbon-deuterium stretching modes. Observations. J Am Chem Soc 96:251–252

    CAS  Google Scholar 

  53. Nafie LA, Keiderling TA, Stephens PJ (1976) Vibrational circular dichroism. J Am Chem Soc 98:2715–2723

    CAS  Google Scholar 

  54. Nafie LA, Diem M (1979) Theory of high frequency differential interferometry: application to the measurement of infrared circular and linear dichroism via fourier transform spectroscopy. Appl Spectrosc 33:130–135

    CAS  Google Scholar 

  55. Bouř P (2009) Cross-polarization detection enables fast measurement of vibrational circular dichroism. Chem Phys Chem 10:1983–1985

    PubMed  Google Scholar 

  56. Nafie LA (2008) Vibrational circular dichroism: a New tool for the solution-state determination of the structure and absolute configuration of chiral natural product molecules. Nat Prod Commun 3:451–466

    CAS  Google Scholar 

  57. Bürgi T, Vargas A, Baiker A (2002) VCD spectroscopy of chiral cinchona modifiers used in heterogeneous enantioselective hydrogenation: conformation and binding of non-chiral acids. J Chem Soc Perkin Trans 2:1596–1601

    Google Scholar 

  58. Ellzy MW, Jensen JO, Hameka HF, Kay JG (2003) Correlation of structure and vibrational spectra of the zwitterion L-alanine in the presence of water: an experimental and density functional analysis. Spectrochim Acta A Mol Biomol Spectrosc 59:2619–2633

    PubMed  Google Scholar 

  59. Rode JE, Dobrowolski JCz (2003) VCD technique in determining intermolecular H-bond geometry: a DFT study. J Mol Struct Theochem 637:81–89

    CAS  Google Scholar 

  60. Sadlej J, Dobrowolski JCz, Rode JE, Jamróz MH (2006) DFT study of vibrational circular dichroism spectra of D-lactic acid–water complexes. Phys Chem Chem Phys 8:101–113

    CAS  PubMed  Google Scholar 

  61. Sadlej J, Dobrowolski JCz, Rode JE, Jamróz MH (2007) Density functional theory study on vibrational circular dichroism as a tool for analysis of intermolecular systems: (1:1) cysteine-water complex conformations. J Phys Chem A 111:10703–10711

    CAS  PubMed  Google Scholar 

  62. Kuppens T, Herrebout H, van der Veken B, Bultinck P (2006) Intermolecular association of tetrahydrofuran-2-carboxylic acid in solution: a vibrational circular dichroism study. J Phys Chem A 110:10191–10200

    CAS  PubMed  Google Scholar 

  63. Debie E, Jaspers L, Bultinck P, Herrebout W, van der Veken B (2008) Induced solvent chirality: a VCD study of camphor in CDCl3. Chem Phys Lett 450:426–430

    CAS  Google Scholar 

  64. Debie E, Bultinck P, Herrebout W, van der Veken B (2008) Solvent effects on IR and VCD spectra of natural products: an experimental and theoretical VCD study of pulegone. Phys Chem Chem Phys 10:3498–3508

    CAS  PubMed  Google Scholar 

  65. Losada M, Xu Y (2007) Chirality transfer through hydrogen-bonding: experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys Chem Chem Phys 9:3127–3135

    CAS  PubMed  Google Scholar 

  66. Sun W, Wu J, Zheng B, Zhu Y, Liu C (2007) DFT study of vibrational circular dichroism spectra of (S)-glycidol–water complexes. J Mol Struct Theochem 809:161–169

    CAS  Google Scholar 

  67. Losada M, Tran H, Xu Y (2008) Lactic acid in solution: investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using vibrational absorption and vibrational circular dichroism spectroscopies. J Chem Phys 128:014508-1–014508-11

    Google Scholar 

  68. Losada M, Nguyen P, Xu Y (2008) Solvation of propylene oxide in water: vibrational circular dichroism, optical rotation, and computer simulation studies. J Phys Chem A 112:5621–5627

    CAS  PubMed  Google Scholar 

  69. Yang G, Xu Y (2009) Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: a vibrational circular dichroism study of glycidol in water. J Chem Phys 130:164506-1–164506-9

    Google Scholar 

  70. Schlosser DW, Devlin F, Jalkanen K, Stephens PJ (1982) Vibrational circular dichroism of matrix-isolated molecules. Chem Phys Lett 88:286–291

    CAS  Google Scholar 

  71. Henderson DO, Polavarapu P (1986) Fourier transform infrared vibrational circular dichroism of matrix-isolated molecules. J Am Chem Soc 108:7110–7111

    CAS  Google Scholar 

  72. Tarczay G, Magyarfalvi G, Vass E (2006) Towards the determination of the absolute configuration of complex molecular systems: matrix isolation vibrational circular dichroism study of (R)-2-amino-1-propanol. Angew Chem Int Ed 45:1775–1777

    CAS  Google Scholar 

  73. Pohl G, Perczel A, Vass E, Magyarfalvi G, Tarczay G (2007) A matrix isolation study on Ac-Gly-NHMe and Ac-L-Ala-NHMe, the simplest chiral and achiral building blocks of peptides and proteins. Phys Chem Chem Phys 9:4698–4708

    CAS  PubMed  Google Scholar 

  74. Tarczay G, Góbia S, Vass E, Magyarfalvi G (2009) Model peptide–water complexes in Ar matrix: complexation induced conformation change and chirality transfer. Vib Spectrosc 50:21–28

    CAS  Google Scholar 

  75. Góbi S, Knapp K, Vass E, Majer Z, Magyarfalvi G, Hollósi M, Tarczay G (2010) Is β-homo-proline a pseudo-γ-turn forming element of β-peptides? an IR and VCD spectroscopic study on Ac-β-HPro-NHMe in cryogenic matrices and solutions. Phys Chem Chem Phys 12:13603–13615

    PubMed  Google Scholar 

  76. Merten C, Amkreutz M, Hartwig A (2010) Determining the structure of α-phenylethyl isocyanide in chloroform by VCD spectroscopy and DFT calculations-simple case or challenge? Phys Chem Chem Phys 12:11635–11641

    CAS  PubMed  Google Scholar 

  77. Aviles-Moreno JR, Urena Horno E, Partal Urena F, López González JJ (2010) IR–raman–VCD study of R-(+)-pulegone: influence of the solvent. Spectrochim Acta A Mol Biomol Spectrosc. doi:10.1016/j.saa.2010.08.051

  78. Nicu VP, Neugebauer J, Baerends EJ (2008) Effects of complex formation on vibrational circular dichroism spectra. J Phys Chem 111:6978–6991

    Google Scholar 

  79. Nicu VP (2009) Implementation, calculation and interpretation of vibrational circular dichroism spectra. PhD Dissertation, Vrije Universiteit

    Google Scholar 

  80. Nicu VP, Debie E, Herrebout W, van der Veken B, Bultinck P, Baerends EJ (2010) A VCD robust mode analysis of induced chirality: the case of pulegone in chloroform. Chirality 21:E287–E297

    Google Scholar 

  81. Stephens PJ, Lowe MA (1985) Vibrational circular dichroism. Annu Rev Phys Chem 36: 213–241

    CAS  Google Scholar 

  82. Stephens PJ, Devlin FJ (2007) Vibrational circular dichroism. In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics. From theory to application. Wiley, New York, p 180

    Google Scholar 

  83. Hug W (2007) Raman opital activity. In: Mennucci B, Cammi R (eds) Continuum solvation models in chemical physics. From theory to application. Wiley, New York, p 220

    Google Scholar 

  84. Stephens PJ (1985) Theory of vibrational circular dichroism. J Phys Chem 89:748–752

    CAS  Google Scholar 

  85. Stephens PJ (1987) Gauge dependence of vibrational magnetic dipole transition moments and rotational strengths. J Phys Chem 91:1712–1715

    CAS  Google Scholar 

  86. Ditchfield R (1974) Self-consistent perturbation theory of diamagnetism. Mol Phys 27: 789–807

    CAS  Google Scholar 

  87. Devlin FJ, Stephens PJ (1994) Ab initio calculation of vibrational circular dichroism spectra of chiral natural products using MP2 force fields: camphor. J Am Chem Soc 116:5003–5004

    CAS  Google Scholar 

  88. Bak KL, Jørgensen P, Helgaker T, Ruud K, Jensen HJAa (1993) Gauge-origin independent multiconfigurational self-consistent-field theory for vibrational circular dichroism. J Chem Phys 98:8873–8887

    CAS  Google Scholar 

  89. Bak KL, Jürgensen P, Helgaker T, Ruud K (1994) Basis set convergence and correlation effects in vibrational circular dichroism calculations using London atomic orbitals. Faraday Discuss 99:121–129

    CAS  Google Scholar 

  90. Malkin VG, Malkina OL, Eriksson LA, Salahub DR (1995) In: Seminario JM, Politzer P (eds) Modern density functional theory: a tool for chemistry, vol 2. Elsevier, Amsterdam

    Google Scholar 

  91. Anisimov VI, Aryasetiawan F, Lichtenstein AI (1997) First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA + U method. J Phys Condens Matter 9:767–808

    CAS  Google Scholar 

  92. Becke AD (1988) A multicenter numerical integration scheme for polyatomic molecules. J Chem Phys 88:2547–2553

    CAS  Google Scholar 

  93. Lee C, Yang W, Parr RG (1988) Development of the colle-salvetti correlation-energy formula into a functional of electron density. Phys Rev B 37:785–789

    CAS  Google Scholar 

  94. Perdew JP, Burke K, Wang Y (1996) Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys Rev B 54:16533–16539

    CAS  Google Scholar 

  95. Burke K, Perdew JP, Wang Y (1998) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum, New York

    Google Scholar 

  96. Keal TW, Tozer DJ (2003) The exchange-correlation potential in Kohn–Sham nuclear magnetic resonance shielding calculations. J Chem Phys 119:3015–3024

    CAS  Google Scholar 

  97. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  98. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    CAS  Google Scholar 

  99. Peach MJG, Helgaker T, Salek P, Keal TW, Lutneas OP, Tozer DJ, Handy NC (2006) Assessment of a coulomb-attenuated exchange-corelation energy functional. Phys Chem Chem Phys 5:558–562

    Google Scholar 

  100. Bouř P, Kubelka J, Keiderling TA (2002) Ab initio quantum mechanical model of peptide helices and their vibrational spectra. Biopolymers 65:45–59

    PubMed  Google Scholar 

  101. Dunning TH Jr (1989) Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J Chem Phys 90:1007–1023

    CAS  Google Scholar 

  102. Jalkanen KJ, Jürgensen VW, Degtyarenko IM (2005) Linear response properties required to simulate vibrational spectra of biomolecules in various media: (R)-phenyloxirane (a comparative theoretical and spectroscopic vibrational study). Adv Quantum Chem 50:91–124

    CAS  Google Scholar 

  103. ADF Program System Release (2010) Scientific computing and modelling NV. Vrije Universiteit, Theoretical chemistry De Boelelaan 1083; 1081 HV Amsterdam; The Netherlands, Copyright © 1993–2010: Scientific Computing & Modelling NV Vrije Universiteit, Theoretical chemistry, Amsterdam, The Netherlands

    Google Scholar 

  104. Amos RD, Alberts IL, Andrews JS, Colwell SM, Handy NC, Jayatilaka D, Knowles PJ, Kobayashi R, Laidig KE, Laming G, Lee AM, Maslen PE, Murray CW, Rice JE (1995) In: Simandiras ED, Stone AJ, Su M-D, Tozer DJ (ed) CADPAC: the Cambridge analytic derivatives, package issue 6. Cambridge

    Google Scholar 

  105. Dalton J (2005) An ab initio electronic structure program. Release 2.0. Available at http://www.kjemi.uio.no/software/dalton/dalton.html. Accessed 1 Mar 2005

  106. Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman, JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian Inc, Wallingford

    Google Scholar 

  107. Gaussian 09, Rev. A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009). Gaussian Inc, Wallingford

    Google Scholar 

  108. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Ab initio calculation of atomic axial tensors and vibrational rotational strengths using density functional theory. Chem Phys Lett 252:211–220

    CAS  Google Scholar 

  109. Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1997) Ab initio prediction of vibrational absorption and circular dichroism spectra of chiral natural products using density functional theory: camphor and fenchone. J Phys Chem A 101:6322–6333

    CAS  Google Scholar 

  110. Devlin FJ, Stephens PJ, Cheeseman JR, Frisch MJ (1996) Prediction of vibrational circular dichroism spectra using density functional theory: camphor and fenchone. J Am Chem Soc 118:6327–6328

    CAS  Google Scholar 

  111. Mennucci B, Cammi R (eds) (2007) Properties and spectroscopies — Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester/ Hoboken

    Google Scholar 

  112. Frimand K, Bohr H, Jalkanen KJ, Suhai S (2000) Structures, vibrational absorption and vibrational circular dichroism spectra of L-alanine in aqueous solution: a density functional theory and RHF study. Chem Phys 255:165–194

    CAS  Google Scholar 

  113. Jalkanen KJ, Suhai S (1996) N-acetyl-N-alanine N’-methylamide: a density functional analysis of the vibrational absorption and vibrational circular dichroism spectra. Chem Phys 208:81–116

    CAS  Google Scholar 

  114. Kim J, Kapitán J, Lakhani A, Bouř P, Keiderling TA (2008) Tight β-turns in peptides. DFT-based study of infrared absorption and vibrational circular dichroism for various conformers including solvent effects. Theor Chem Acc 119:81–97

    CAS  Google Scholar 

  115. Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) Theoretical study of aqueous N-acetyl-L-alanine N-methylamide: structures and Raman, VCD, and ROA spectra. J Phys Chem B 102:2587–2602

    CAS  Google Scholar 

  116. Capelli C, Monti S, Rizzo A (2005) Effect of the environment on vibrational infrared and circular dichroism spectra of (S)-proline. Int J Quantum Chem 104:744–757

    Google Scholar 

  117. Tajkhorshid E, Jalkanen KJ, Suhai S (1998) Structure and vibrational spectra of the zwitterion L-alanine in the presence of explicit water molecules: a density functional analysis. J Phys Chem B 102:5899–5913

    CAS  Google Scholar 

  118. Kubelka J, Huang R, Keiderling TA (2005) Solvent effects on IR and VCD spectra of helical peptides: DFT-based static spectral simulations with explicit water. J Phys Chem B 109:8231–8243

    CAS  PubMed  Google Scholar 

  119. Oh K-I, Han J, Lee K-K, Hahn S, Han H, Cho M (2006) Site-specific hydrogen-bonding interaction between N-acetylproline amide and protic solvent molecules: comparisons of IR and VCD measurements with MD simulations. J Phys Chem A 110:13355–13365

    CAS  PubMed  Google Scholar 

  120. Vargas A, Bonalumi N, Ferri D, Baiker A (2006) Solvent-induced conformational changes of O-phenyl-cinchonidine: a theoretical and VCD spectroscopy study. J Phys Chem A 110:1118–1127

    CAS  PubMed  Google Scholar 

  121. Jürgensen VW, Jalkanen KJ (2006) The VA, VCD, Raman and ROA spectra of tri-L-serine in aqueous solution. Phys Biol 3:S63–S79

    PubMed  Google Scholar 

  122. Schweitzer-Stenner R, Measey T, Kakalis L, Jordan F, Pizzanelli S, Forte C, Griebenow K (2007) Conformations of alanine-based peptides in water probed by FTIR, Raman, vibrational circular dichroism, electronic circular dichroism, and NMR spectroscopy. Biochemistry 46:1587–1596

    CAS  PubMed  Google Scholar 

  123. Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2008) Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N-methylamide in aqueous solution: a combined theoretical and experimental approach. Theor Chem Acc 119:191–210

    CAS  Google Scholar 

  124. Yang S, Cho M (2009) Direct calculations of vibrational absorption and circular dichroism spectra of alanine dipeptide analog in water: quantum mechanical/molecular mechanical molecular dynamics simulations. J Chem Phys 131:135102-1–135102-8

    Google Scholar 

  125. Hatfield MPD, Murphy RF, Lovas S (2010) VCD spectroscopic properties of the β-hairpin forming miniprotein CLN025 in various solvents. Biopolymers 93:442–450

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang G, Xu Y, Hou J, Zhang H, Zhao Y (2010) Determination of the absolute configurations of the pentacoordinate chiral phosphorus compounds in solution using vibrational circular dichroism spectroscopy and density functional theory. Chem Eur J 16:2518–2527

    CAS  PubMed  Google Scholar 

  127. Yang G, Xu Y, Hou J, Zhang H, Zhao Y (2010) Diastereomers of the pentacoordinate chiral phosphorus compounds in solution: absolute configurations and predominant conformations. Dalton Trans 39:6953–6959

    CAS  PubMed  Google Scholar 

  128. Brizard A, Berthier D, Aimé C, Buffeteau T, Cavagnat D, Ducasse L, Huc I, Oda R (2009) Molecular and supramolecular chirality in gemini-tartrate amphiphiles studied by electronic and vibrational circular dichroisms. Chirality 21:S153–S162

    Google Scholar 

  129. Rode JE, Dobrowolski JCz On theoretical VCD spectra of quinine-BF3 complexes (submitted)

    Google Scholar 

  130. Coriani S, Thorvaldsen AJ, Kristensen K, Joergensen P (2011) Variational response- function formulation of vibrational circular dichroism. Phys Chem Chem Phys. 13:4224–4229

    CAS  PubMed  Google Scholar 

  131. Bouchet A, Brotin T, Cavagnat D, Buffeteau T (2010) Induced chiroptical changes of a water-soluble cryptophane by encapsulation of guest molecules and counterion effects. Chem Eur J 16:4507–4518

    CAS  PubMed  Google Scholar 

  132. Bouchet A, Brotin T, Linares M, Ågren H, Cavagnat D, Buffeteau T (2011) Conformational effects induced by guest encapsulation in an enantiopure water-soluble Cryptophane. J Org Chem 76:1372–1383

    CAS  PubMed  Google Scholar 

  133. Góbi S, Magyarfalvi G (2011) Reliability of computed signs and intensities for vibrational circular dichroism spectra. Phys Chem Chem Phys 13:16126–16129.

    Google Scholar 

  134. Góbi S, Vass E, Magyarfalvi G, Tarczay G (2011) Effects of strong and weak hydrogen bond formation on VCD spectra: a case study of 2-chloropropionic acid, Phys Chem Chem Phys 13:13972–13984

    PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Science and Higher Education in Poland Grants No. NN204 242034 and N N204 443140. The computational Grants G19–4 and G31–13 from the Interdisciplinary Center of Mathematical and Computer Modeling (ICM) at the University of Warsaw are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dobrowolski, J.C., Rode, J.E., Sadlej, J. (2011). VCD Chirality Transfer: A New Insight into the Intermolecular Interactions. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_15

Download citation

Publish with us

Policies and ethics