Skip to main content

Theoretical Studies of Thymine–Thymine Photodimerization: Using Ground State Dynamics to Model Photoreaction

  • Chapter
  • First Online:
Practical Aspects of Computational Chemistry I

Abstract

Excited electronic states of DNA are extremely important in biology and yet most of these states have lifetimes of ∼ 1 ps. This short lifetime allows for very little nuclear rearrangement during dissipation. In particular, photoinduced thymine-thymine (TT) dimer formation has been found to be a picosecond process. The most prevalent TT dimer is formed by a [2+2] addition of the C5–C6 double bonds of the dimerizing thymines. Given the topochemical rules known for photoinduced [2+2] addition of organic compounds in the solid state, a similar set of rules is presented for TT dimerization in solution phase DNA. It is found that a single ground state geometric parameter (the distance, d,between the C5–C6 double bonds) is sufficient as a constraint on when dimers can form such that accurate TT dimer quantum yields can be predicted. The electronic basis of such a model is examined along with calibration of the model for dT20 and dA20dT20. The application and validity of this model to a variety of double and single stranded DNA systems is then discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shukla MK, Leszczynski J (2008) Radiation induced molecular phenomena in nucleic acids: a brief introduction. In: Shukla MK, Leszczynski J (eds) Radiation induced molecular phenomena in nucleic acid. Springer, Dordrecht/London, pp 1–14

    Google Scholar 

  2. Crespo-Hernandez CE, Cohen B, Hare PM, Kohler B (2004) Ultrafast excited-state dynamics in nucleic acids. Chem Rev 104:1977

    CAS  PubMed  Google Scholar 

  3. Shukla MK, Leszczynski J (2008) Radiation induced molecular phenomena in nucleic acids. Springer, Dordrecht/London

    Google Scholar 

  4. Beukers R, Berends W (1960) Isolation and identification of the irradiation product of thymine. Biochim Biophys Acta 41:550

    CAS  PubMed  Google Scholar 

  5. Beukers R, Eker APM, Lohman PHM (2008) 50 years thymine dimer. DNA Repair 7:530

    CAS  PubMed  Google Scholar 

  6. Setlow RB (1966) Cyclobutane-type pyrimidine dimers in polynucleotides. Science 153:379

    CAS  PubMed  Google Scholar 

  7. Taylor JS, Brockie IR, O’Day CL (1987) A building block for the sequence-specific introduction of cis-syn thymine dimers into oligonucleotides. solid-phase synthesis of TpT[c,s]pTpT. J Am Chem Soc 109:6735

    CAS  Google Scholar 

  8. Marguet S, Markovitsi D (2005) Time-resolved study of thymine dimer formation. J Am Chem Soc 127:5780–5781

    CAS  PubMed  Google Scholar 

  9. Schreier WJ, Kubon J, Regner N, Haiser K, Schrader TE, Zinth W Clivio P, Gilch P (2009) Thymine dimerization in DNA model systems: cyclobutane photolesion is predominantly formed via the singlet channel. J Am Chem Soc 131:5038

    CAS  PubMed  Google Scholar 

  10. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernandez CE, Swaminathan VN, Carell T, Zinth W, Kohler B (2007) Thymine dimerization in DNA is an ultrafast photoreaction. Science 315:625–629

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Johnson AT, Wiest O (2007) Structure and dynamics of poly(T) single-strand DNA: implications toward CPD formation. J Phys Chem B 111:14398–14404

    CAS  PubMed  Google Scholar 

  12. Law YK, Azadi J, Crespo-Hernandez CE, Olmon E, Kohler B (2008) Predicting thymine dimerization yields from molecular dynamics simulations. Biophys J 94:3590–3600

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McCullagh M, Hariharan M, Lewis FD, Markovitsi D, Douki T, Schatz GC (2010) Conformational control of TT dimerization in DNA conjugates. A molecular dynamics study. J Phys Chem B 114:5215–5221

    CAS  PubMed  Google Scholar 

  14. Hariharan M, McCullagh M, Schatz GC, Lewis FD (2010) Conformational control of thymine photodimerization in single-strand and duplex DNA containing locked nucleic acid TT steps. J Am Chem Soc 132:12856–12858

    CAS  PubMed  Google Scholar 

  15. Cohen MD, Schmidt GMJ (1964) Topochemistry. Part I. A Survey. 1996–2000

    Google Scholar 

  16. Ramamurthy V, Venkatesan K (1987) Photochemical-reactions of organic-crystals. Chem Rev 87:433

    CAS  Google Scholar 

  17. Neidle S (1999) Oxford handbook of nucleic acid structure. Oxford University Press, Oxford/New York

    Google Scholar 

  18. Zhang RB, Eriksson LA (2006) A triplet mechanism for the formation of cyclobutane pyrimidine dimers in UV-irradiated DNA. J Phys Chem B 110:7556–7562

    CAS  PubMed  Google Scholar 

  19. Kwok W-M, Ma C, Phillips DL (2008) A doorway state leads to photostability or triplet photodamage in thymine DNA. J Am Chem Soc 130:5131

    CAS  PubMed  Google Scholar 

  20. Bernardi F, Olivucci M, Robb MA (1990) Predicting forbidden and allowed cycloaddition reactions – potential surface-topology and its rationalization. Acc Chem Res 23:405

    CAS  Google Scholar 

  21. Bernardi F, De S, Olivucci M, Robb MA (1990) Mechanism of ground-state-forbidden photochemical pericyclic-reactions – evidence for real conical intersections. J Am Chem Soc 112:1737

    CAS  Google Scholar 

  22. Dallos M, Lischka H, Shepard R, Yarkony, DR, Szalay PG (2004) Analytic evaluation of nonadiabatic coupling terms at the mr-ci level. ii. minima on the crossing seam: formaldehyde and the photodimerization of ethylene. J Chem Phys 120:7330

    CAS  PubMed  Google Scholar 

  23. Boggio-Pasqua M, Groenhof G, Schaefer LV, Grubmuller H, Robb MA (2007) Ultrafast deactivation channel for thymine dimerization. J Am Chem Soc 129:10996

    CAS  PubMed  Google Scholar 

  24. Du H, Fuh RA, Li AC, Lindsey JS (1998) Photochemcad: a computer-aided design and research tool in photochemistry. Photochem Photbiol 68:141

    CAS  Google Scholar 

  25. Markovitsi D, Gustavsson T, Talbot F (2007) Excited states and energy transfer among DNA bases in double helices. Photochem Photobiol Sci 6:717

    CAS  PubMed  Google Scholar 

  26. Case DA et al (2004) Amber 8. University of California, San Francisco

    Google Scholar 

  27. Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283–312

    CAS  Google Scholar 

  28. Foloppe N, MacKerell AD (2000) All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J Comput Chem 21:86–104

    CAS  Google Scholar 

  29. MacKerell AD, Banavali NK (2000) All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution. J Comput Chem 21:105–120

    CAS  Google Scholar 

  30. Gale JM, Nissen KA, Smerdon MJ (1987) UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10.3 bases. Proc Natl Acad Sci U S A 84:6644–6648

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gale JM, Smerdon MJ (1990) UV induced (6-4) photoproducts are distributed differently than cyclobutane dimers in nucleosomes. Photochem Photobiol 51:411–417

    CAS  PubMed  Google Scholar 

  32. Mitchell DL, Nguyen TD, Cleave JE (1990) Nonrandom induction of pyrimidine-pyrimidone (6–4) photoproducts in ultraviolet-irradiated human chromatin. J Biol Chem 265:5353–5356

    CAS  PubMed  Google Scholar 

  33. Segal E, Fondufe-Mittendorf Y, Chen L, Thastrom A, Field Y, Moore IK, Wang J-PZ, Widom J (2006) A genomic code for nucleosome positioning. Science 442:772

    CAS  Google Scholar 

  34. Bourre F, Renault G, Seawell PC, Sarasin A (1985) Distribution of ultraviolet-induced lesions in simian virus 40 DNA. Biochimie 67:293–299

    CAS  PubMed  Google Scholar 

  35. Becker MM, Wang Z (1989) Origin of ultraviolet damage in DNA. J Mol Biol 210:429–438

    CAS  PubMed  Google Scholar 

  36. Hariharan M, Lewis FD (2008) Context-dependent photodimerization in isolated thymine–thymine steps in DNA. J Am Chem Soc 130:11870–11871

    CAS  PubMed  Google Scholar 

  37. Desnous C, Babu BR, Moriou C, Mayo JUO, Favre A, Wengel J, Clivio P (2008) The sugar conformation governs (6–4) photoproduct formation at the dinucleotide level. J Am Chem Soc 130:30–31

    CAS  PubMed  Google Scholar 

  38. Pande V, Nilsson L (2008) Insights into structure, dynamics and hydration of locked nucleic acid (LNA) strand-based duplexes from molecular dynamics simulations. Nucleic Acids Res 36:1508–1516

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lu X-J, Olson WK (2003) 3DNA: a software package for the analysis, rebuilding and visualization of three-dimensional nucleic acid structures. Nucleic Acids Res 31:5108–5121

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nielsen KE, Singh SK, Wengel J, Jacobsen JP (2000) Solution structure of an LNA hybridized to DNA: NMR study of the d(CTLGCTLTLCTLGC):d(GCAGAAGCAG) duplex containing four locked nucleotides. Bioconjug Chem 11:228–238

    CAS  PubMed  Google Scholar 

  41. Egli M, Minasov G, Teplova M, Kumar R, Wengel J (2001) X-ray crystal structure of a locked nucleic acid (LNA) duplex composed of a palindromic 10-mer DNA strand containing one LNA thymine monomer. J Chem Commun 7:651–652

    Google Scholar 

  42. Ivanova A, Rosch N (2007) The structure of LNA:DNA hybrids from molecular dynamics simulations:the effect of locked nucleotides. J Phys Chem A 111:9307–9319

    CAS  PubMed  Google Scholar 

  43. Crespo-Hernandez CE, Cohen B, Kohler B (2005) Base stacking controls excited-state dynamics in A-T containing DNA. Nature 436:1141–1144

    CAS  PubMed  Google Scholar 

  44. Chinnapen DJF, Sen D (2004) A deoxyribozyme that harnesses light to repair thymine dimers in DNA. Proc Natl Acad Sci U S A 101:65–69

    CAS  PubMed  Google Scholar 

  45. Cannistraro VJ, Taylor J-S (2009) Acceleration of the 5-methylcytosine deamination in cyclobutane dimers by G and its implications for UV-induced C-to-T muataion hotspots. J Mol Biol 392:1145–1157

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Pan Z, McCullagh M, Schatz GC, Lewis FD (2011) Conformational control of thymine photodimerization in purine-containing trinucleotides. J Phys Chem Lett 2:1432–1438

    CAS  Google Scholar 

  47. Monajjemi M, Ketabi S, Zadeh MH, Amiri A (2006) Simulation of DNA bases in water: comparison of the monte carlo algorithm with molecular mechanics force fields. Biochemistry (Moscow) 71:S1–S8

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fred Lewis, Mahesh Hariharan and Zhengzheng Pan for performing almost all of the experiments referred to in this chapter and numerous useful discussions. Funding for this research was provided by the National Science Foundation (NSF-CRC Grant CHE-0628130).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

McCullagh, M., Schatz, G.C. (2011). Theoretical Studies of Thymine–Thymine Photodimerization: Using Ground State Dynamics to Model Photoreaction. In: Leszczynski, J., Shukla, M.K. (eds) Practical Aspects of Computational Chemistry I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0919-5_13

Download citation

Publish with us

Policies and ethics