Skip to main content

Mathematical Models in Schizophrenia

  • Chapter
  • First Online:
Book cover Handbook of Schizophrenia Spectrum Disorders, Volume I

Abstract

Schizophrenia is a severe and complex mental disorder that causes an enormous societal and financial burden. Our current understanding of schizophrenia is very fragmented, and the disease is still regarded as an enigma even though its main features have been recognized for centuries. When the post-genomic era arrived, high-throughput instruments and methods ushered in an explosion in the generation of large datasets. This rich information began to facilitate the development of mathematical models, and these models are beginning to show the potential of propelling schizophrenia research onto a new, quantitative level. As schizophrenia is a complex disease that involves uncounted biological processes, there is no complete model which covers even the majority of aspects pertaining to schizophrenia. Instead, every currently available model focuses on a certain aspect of the disease. In this chapter, we review mathematical models of schizophrenia according to their mathematical foundation and structure, as well as the phenomenon they represent. Thus, an outline of mathematical modeling practices in schizophrenia is presented for biologists, psychiatrists, and clinicians. In the future, mathematical models may be expected to provide valuable guidance in the long-term investigation of complex diseases like schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ICD:

International classification of diseases

DSM:

Diagnostic and statistical manual of mental disorders

References

  1. Editorial (1988) Where next with psychiatric illness? Nature 336:95–96

    Article  Google Scholar 

  2. MacDonald AW, Schulz SC (2009) What we know: findings that every theory of schizophrenia should explain. Schizophr Bull 35:493–508

    Article  PubMed  Google Scholar 

  3. Saraceno B (2002) The WHO world health report 2001 on mental health. Epidemiol Psichiatr Soc 11:83–87

    PubMed  Google Scholar 

  4. Mental Health Report (2001) Book Mental Health Report 2001. World Health Organization, Geneva

    Google Scholar 

  5. Strauss JS, Carpenter WT Jr, Bartko JJ (1974) The diagnosis and understanding of schizophrenia. Part III: speculations on the processes that underlie schizophrenic symptoms and signs. Schizophr Bull 1:61–69

    Google Scholar 

  6. Liddle PF (1987) The symptoms of chronic schizophrenia. a re-examination of the positive-negative dichotomy. Br J Psychiatry 151:145–151

    Article  CAS  PubMed  Google Scholar 

  7. Sullivan PF, Kendler KS, Neale MC (2003) Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. Arch Gen Psychiatry 60:1187–1192

    Article  PubMed  Google Scholar 

  8. O‘Donovan MC, Williams NM, Owen MJ (2003) Recent advances in the genetics of schizophrenia. Hum Mol Genet 12(2):R125–R133

    Article  PubMed  Google Scholar 

  9. Corcoran C, Walker E, Huot R, Mittal V, Tessner K, Kestler L, Malaspina D (2003) The stress cascade and schizophrenia: etiology and onset. Schizophr Bull 29:671–692

    PubMed  Google Scholar 

  10. Caspi A, Moffitt TE, Cannon M, et al (2005) Moderation of the effect of adolescent-onset cannabis use on adult psychosis by a functional polymorphism in the catechol-O-methyltransferase gene: longitudinal evidence of a gene X environment interaction. Biol Psychiatry 57:1117–1127

    Article  CAS  PubMed  Google Scholar 

  11. St Clair D, Xu M, Wang P, Yu Y, Fang Y, Zhang F, Zheng X, Gu N, Feng G, Sham P, He L (2005) Rates of adult schizophrenia following prenatal exposure to the Chinese famine of 1959–1961. JAMA 294:557–562

    Article  CAS  PubMed  Google Scholar 

  12. Shenton ME, Dickey CC, Frumin M, McCarley RW (2001) A review of MRI findings in schizophrenia. Schizophr Res 49:1–52

    Article  CAS  PubMed  Google Scholar 

  13. Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatry 162:2233–2245

    Article  PubMed  Google Scholar 

  14. Davis KL, Stewart DG, Friedman JI, Buchsbaum M, Harvey PD, Hof PR, Buxbaum J, Haroutunian V (2003) White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch Gen Psychiatry 60:443–456

    Article  PubMed  Google Scholar 

  15. Pantelis C, Velakoulis D, McGorry PD, et al (2003) Neuroanatomical abnormalities before and after onset of psychosis: a cross-sectional and longitudinal MRI comparison. Lancet 361:281–288

    Article  PubMed  Google Scholar 

  16. Turner JA, Smyth P, Macciardi F, Fallon JH, Kennedy JL, Potkin SG (2006) Imaging phenotypes and genotypes in schizophrenia. Neuroinformatics 4:21–49

    Article  PubMed  Google Scholar 

  17. Umbricht D, Krljes S (2005) Mismatch negativity in schizophrenia: a meta-analysis. Schizophr Res 76:1–23

    Article  PubMed  Google Scholar 

  18. Laruelle M, Abi-Dargham A, van Dyck CH, et al (1996) Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 93:9235–9240

    Article  CAS  PubMed  Google Scholar 

  19. Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry 52:998–1007

    CAS  PubMed  Google Scholar 

  20. Volk DW, Austin MC, Pierri JN, Sampson AR, Lewis DA (2000) Decreased glutamic acid decarboxylase67 messenger RNA expression in a subset of prefrontal cortical gamma-aminobutyric acid neurons in subjects with schizophrenia. Arch Gen Psychiatry 57:237–245

    Article  CAS  PubMed  Google Scholar 

  21. Abi-Dargham A (2007) Alterations of serotonin transmission in schizophrenia. Int Rev Neurobiol 78:133–164

    Article  CAS  PubMed  Google Scholar 

  22. Seeman P, Chau-Wong M, Tedesco J, Wong K (1975) Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 72:4376–4380

    Article  CAS  PubMed  Google Scholar 

  23. Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    Article  CAS  PubMed  Google Scholar 

  24. Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic/dopamine receptors. Nature 261:717–719

    Article  CAS  PubMed  Google Scholar 

  25. Griesinger W (1861) Die Pathologie und therapie der Psychischen Krankheiten. Stuttgart, Krabbe

    Google Scholar 

  26. Kraepelin E (1899) Psychiatrie: Ein Lehrbuch fur Studierende und Arzte. JA Barth, Leipzig

    Google Scholar 

  27. Bleuler E (1911) Dementia praecox, or the group of schizophrenias. In: Aschaffenburg G (Hrsg) Handbuch der Psychiatrie. Deuticke, Leipzig

    Google Scholar 

  28. Schneider K (1959) Clinical psychopathology. Grune and Stratton, New York, NY

    Google Scholar 

  29. Rosenhan DL (1973) On being sane in insane places. Science 179:250–258

    Article  CAS  PubMed  Google Scholar 

  30. Tretter F, Albus M (2008) Systems biology and psychiatry – modeling molecular and cellular networks of mental disorders. Pharmacopsychiatry 41(Suppl 1):S2–S18

    Article  PubMed  Google Scholar 

  31. Le Novere N (2008) Neurological disease: are systems approaches the way forward? Pharmacopsychiatry 41(Suppl 1):S28–S31

    Article  PubMed  Google Scholar 

  32. Thom R (1975) Structural stability and morphogenesis. Addison-Wesley, London

    Google Scholar 

  33. MacCulloch MJ, Waddington JL (1979) Catastrophe theory: a model interaction between neurochemical and environmental influences in the control of schizophrenia. Neuropsychobiology 5:87–93

    Article  CAS  PubMed  Google Scholar 

  34. Bromet E, Harrow M, Tucker GJ (1971) Factors related to short-term prognosis in schizophrenia and depression. Arch Gen Psychiatry 25:148–154

    CAS  PubMed  Google Scholar 

  35. Bromet E, Harrow M, Kasl S (1974) Premorbid functioning and outcome in schizophrenics and nonschizophrenics. Arch Gen Psychiatry 30:203–207

    CAS  PubMed  Google Scholar 

  36. Branchey M, Meisner M, Simpson GM (1977) A paradox in the prognosis of schizophrenia. explanation by a mathematical model. J Theor Biol 66:267–280

    Article  CAS  PubMed  Google Scholar 

  37. Caffey EM Jr., Galbrecht CR, Klett CJ (1971) Brief hospitalization and aftercare in the treatment of schizophrenia. Arch Gen Psychiatry 24:81–86

    PubMed  Google Scholar 

  38. Caton CL, Koh SP, Fleiss JL, Barrow S, Goldstein JM (1985) Rehospitalization in chronic schizophrenia. J Nerv Ment Dis 173:139–148

    Article  CAS  PubMed  Google Scholar 

  39. Herz MI, Endicott J, Spitzer RL (1977) Brief hospitalization: a two-year follow-up. Am J Psychiatry 134:502–507

    CAS  PubMed  Google Scholar 

  40. Waldo MC, Carey G, Myles-Worsley M, Cawthra E, Adler LE, Nagamoto HT, Wender P, Byerley W, Plaetke R, Freedman R (1991) Codistribution of a sensory gating deficit and schizophrenia in multi-affected families. Psychiatry Res 39:257–268

    Article  CAS  PubMed  Google Scholar 

  41. Moxon KA, Gerhardt GA, Gulinello M, Adler LE (2003) Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus. Biol Cybern 88:247–264

    Article  PubMed  Google Scholar 

  42. Faraone SV, Simpson JC, Brown WA (1992) Mathematical models of complex dose-response relationships: implications for experimental design in psychopharmacologic research. Stat Med 11:685–702

    Article  CAS  PubMed  Google Scholar 

  43. Wilson WH (2004) A visual guide to expected blood levels of long-acting injectable risperidone in clinical practice. J Psychiatr Pract 10:393–401

    Article  PubMed  Google Scholar 

  44. Allen DN, Strauss GP, Donohue B, van Kammen DP (2007) Factor analytic support for social cognition as a separable cognitive domain in schizophrenia. Schizophr Res 93:325–333

    Article  PubMed  Google Scholar 

  45. Brown GG, Lohr J, Notestine R, Turner T, Gamst A, Eyler LT (2007) Performance of schizophrenia and bipolar patients on verbal and figural working memory tasks. J Abnorm Psychol 116:741–753

    Article  PubMed  Google Scholar 

  46. Weinstein S, Woodward TS, Ngan ET (2007) Brain activation mediates the association between structural abnormality and symptom severity in schizophrenia. Neuroimage 36:188–193

    Article  PubMed  Google Scholar 

  47. Friedman L, Jesberger JA, Meltzer HY (1991) A model of smooth pursuit performance illustrates the relationship between gain, catch-up saccade rate, and catch-up saccade amplitude in normal controls and patients with schizophrenia. Biol Psychiatry 30:537–556

    Article  CAS  PubMed  Google Scholar 

  48. Mossman D (1997) A decision analysis approach to neuroleptic dosing: insights from a mathematical model. J Clin Psychiatry 58:66–73

    Article  CAS  PubMed  Google Scholar 

  49. Vogler GP, Gottesman II, McGue MK, Rao DC (1990) Mixed-model segregation analysis of schizophrenia in the Lindelius Swedish pedigrees. Behav Genet 20:461–472

    Article  CAS  PubMed  Google Scholar 

  50. Risch N, Baron M (1984) Segregation analysis of schizophrenia and related disorders. Am J Hum Genet 36:1039–1059

    CAS  PubMed  Google Scholar 

  51. Kringlen E (2000) Twin studies in schizophrenia with special emphasis on concordance figures. Am J Med Genet 97:4–11

    Article  CAS  PubMed  Google Scholar 

  52. Kang G, Yue W, Zhang J, Huebner M, Zhang H, Ruan Y, Lu T, Ling Y, Zuo Y, Zhang D (2008) Two-stage designs to identify the effects of SNP combinations on complex diseases. J Hum Genet 53:739–746

    Article  CAS  PubMed  Google Scholar 

  53. Tsuang MT (1998) Genetic epidemiology of schizophrenia: review and reassessment. Kaohsiung J Med Sci 14:405–412

    CAS  PubMed  Google Scholar 

  54. Schurhoff F, Golmard JL, Szoke A, Bellivier F, Berthier A, Meary A, Rouillon F, Leboyer M (2004) Admixture analysis of age at onset in schizophrenia. Schizophr Res 71:35–41

    Article  PubMed  Google Scholar 

  55. Chen E, Berrios GE (1996) Recognition of hallucinations: a new multidimensional model and methodology. Psychopathology 29:54–63

    Article  CAS  PubMed  Google Scholar 

  56. Campana A, Duci A, Gambini O, Scarone S (1999) An artificial neural network that uses eye-tracking performance to identify patients with schizophrenia. Schizophr Bull 25:789–799

    CAS  PubMed  Google Scholar 

  57. Berman KF (1987) Cortical “stress tests” in schizophrenia: regional cerebral blood flow studies. Biol Psychiatry 22:1304–1326

    Article  CAS  PubMed  Google Scholar 

  58. Moller HJ, Leitner M (1988) A non-linear mathematical model for computerized analysis of mood curves: construction of the model and its application to the mood curves of depressive and schizophrenic inpatients. J Affect Disord 14:203–211

    Article  CAS  PubMed  Google Scholar 

  59. Moller HJ, Leitner M, Dietzfelbinger T (1987) A linear mathematical model for computerized analyses of mood curves: an empirical investigation on mood courses in depressive and schizophrenic inpatients. Eur Arch Psychiatry Neurol Sci 236:260–268

    Article  CAS  PubMed  Google Scholar 

  60. Cohen JD, Servan-Schreiber D (1993) A theory of dopamine function and its role in cognitive deficits in schizophrenia. Schizophr Bull 19:85–104

    CAS  PubMed  Google Scholar 

  61. Braver TS, Barch DM, Cohen JD (1999) Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function. Biol Psychiatry 46:312–328

    Article  CAS  PubMed  Google Scholar 

  62. Peled A, Geva AB (2000) The perception of rorschach inkblots in schizophrenia: a neural network model. Int J Neurosci 104:49–61

    Article  CAS  PubMed  Google Scholar 

  63. Moore SC, Sellen JL (2006) Jumping to conclusions: a network model predicts schizophrenic patients’ performance on a probabilistic reasoning task. Cogn Affect Behav Neurosci 6:261–269

    Article  PubMed  Google Scholar 

  64. Amos A (2000) A computational model of information processing in the frontal cortex and basal ganglia. J Cogn Neurosci 12:505–519

    Article  CAS  PubMed  Google Scholar 

  65. Monchi O, Taylor JG, Dagher A (2000) A neural model of working memory processes in normal subjects, Parkinson’s disease and schizophrenia for fMRI design and predictions. Neural Netw 13:953–973

    Article  CAS  PubMed  Google Scholar 

  66. Lange N (2003) What can modern statistics offer imaging neuroscience? Stat Methods Med Res 12:447–469

    Article  PubMed  Google Scholar 

  67. Schmajuk NA, Gray JA, Lam YW (1996) Latent inhibition: a neural network approach. J Exp Psychol Anim Behav Process 22:321–349

    Article  CAS  PubMed  Google Scholar 

  68. Carter JR, Neufeld RW (2007) Cognitive processing of facial affect: connectionist model of deviations in schizophrenia. J Abnorm Psychol 116:290–305

    Article  PubMed  Google Scholar 

  69. Jobe T, Vimal R, Kovilparambil A, Port J, Gaviria M (1994) A theory of cooperativity modulation in neural networks as an important parameter of CNS catecholamine function and induction of psychopathology. Neurol Res 16:330–341

    CAS  PubMed  Google Scholar 

  70. Ruppin E, Reggia JA, Horn D (1996) Pathogenesis of schizophrenic delusions and hallucinations: a neural model. Schizophr Bull 22:105–123

    CAS  PubMed  Google Scholar 

  71. Razzouk D, Mari JJ, Shirakawa I, Wainer J, Sigulem D (2006) Decision support system for the diagnosis of schizophrenia disorders. Braz J Med Biol Res 39:119–128

    Article  CAS  PubMed  Google Scholar 

  72. do Amaral MB, Satomura Y, Honda M, Sato T (1995) A psychiatric diagnostic system integrating probabilistic and categorical reasoning. Methods Inf Med 34:232–243

    CAS  PubMed  Google Scholar 

  73. Qi Z, Miller GW, Voit EO (2008) A mathematical model of presynaptic dopamine homeostasis: implications for schizophrenia. Pharmacopsychiatry 41(Suppl 1):S89–S98

    Article  CAS  PubMed  Google Scholar 

  74. Lindskog M (2008) Modelling of DARPP-32 regulation to understand intracellular signaling in psychiatric disease. Pharmacopsychiatry 41(Suppl 1):S99–S104

    Article  CAS  PubMed  Google Scholar 

  75. Fernandez É, Schiappa R, Girault JA, Le Novère N (2006) DARPP-32 is a robust integrator of dopamine and glutamate signals. PLoS Comput Biol 2:e176

    Article  PubMed  Google Scholar 

  76. Lindskog M, Kim M, Wikstrom MA, Blackwell KT, Kotaleski JH (2006) Transient calcium and dopamine increase PKA activity and DARPP-32 phosphorylation. PLoS Comput Biol 2:e119

    Article  PubMed  Google Scholar 

  77. Qi Z, Miller GW, Voit EO (2010) Computational modeling of synaptic neurotransmission as a tool for assessing dopamine hypotheses of schizophrenia. Pharmacopsychiatry 43(Suppl 1):S50–S60

    Article  CAS  PubMed  Google Scholar 

  78. Carlsson A (1959) The occurrence, distribution and physiological role of catecholamines in the nervous system. Pharmacol Rev 11:490–493

    CAS  PubMed  Google Scholar 

  79. Van Rossum J (1967) The significance of dopamine-receptor blockade for the action of neuroleptic drugs. In: Brill HCJ, Deniker P, Hippius H, Bradley PB (eds) Neuropsychopharmacology. Proceedings Fifth Collegium Internationale Neuro-psychopharmacologicum. Excerpta Medica, Amsterdam, 321–329

    Google Scholar 

  80. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144

    Article  CAS  Google Scholar 

  81. Carlsson A, Lindqvist M, Magnusson T (1957) 3, 4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180:1200

    Article  CAS  PubMed  Google Scholar 

  82. Qi Z, Miller GW, Voit EO (2010) The internal state of medium spiny neurons varies in response to different input signals. BMC Syst Biol 4:26

    Article  PubMed  Google Scholar 

  83. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed  Google Scholar 

  84. Wolf JA, Moyer JT, Lazarewicz MT, Contreras D, Benoit-Marand M, O‘Donnell P, Finkel LH (2005) NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J Neurosci 25:9080–9095

    Article  CAS  PubMed  Google Scholar 

  85. Schwegler H (2006) Phenomenological modelling of some mechanisms in schizophrenia. Pharmacopsychiatry 39(Suppl 1):S43–S49

    Article  PubMed  Google Scholar 

  86. an der Heiden U (2006) Schizophrenia as a dynamical disease. Pharmacopsychiatry 39(Suppl 1):S36–S42

    Article  PubMed  Google Scholar 

  87. Wang XJ (2006) Toward a prefrontal microcircuit model for cognitive deficits in schizophrenia. Pharmacopsychiatry 39(Suppl 1):S80–S87

    Article  PubMed  Google Scholar 

  88. Siekmeier PJ, Hasselmo ME, Howard MW, Coyle J (2007) Modeling of context-dependent retrieval in hippocampal region CA1: implications for cognitive function in schizophrenia. Schizophr Res 89:177–190

    Article  PubMed  Google Scholar 

  89. Tanaka S (2008) Dysfunctional GABAergic inhibition in the prefrontal cortex leading to “psychotic” hyperactivation. BMC Neurosci 9:41

    Article  PubMed  Google Scholar 

  90. Danziger L, Elmergreen GL (1954) Mathematical theory of periodic relapsing catatonia. Bull Math Biophys 16:15–21

    Article  Google Scholar 

  91. Danziger L, Elmergreen GL (1958) Mechanism of periodic catatonia. Confin Neurol 18:159–166

    Article  CAS  PubMed  Google Scholar 

  92. Cronin-Scanlon J (1974) A mathematical model for catatonic schizophrenia. Ann NY Acad Sci 231:112–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the National Institutes of Health (P01-ES016731, G.W.M. PI) and an endowment from the Georgia Research Alliance (E.O.V). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsoring institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Qi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Qi, Z., Miller, G.W., Voit, E.O. (2011). Mathematical Models in Schizophrenia. In: Ritsner, M. (eds) Handbook of Schizophrenia Spectrum Disorders, Volume I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0837-2_14

Download citation

Publish with us

Policies and ethics